STATIC HASHING: SOLUTION
NDBI007: Practical Class

EXERCISE 1

- Expand directory from example 2
- Insert record 28
$>$ Primary hashing function is given as $h(k, s)=k \bmod s$
$>$ Secondary hashing function is $h_{i}(k, r)=(k \gg i) \bmod r$
- Compute all the parameters and illustrate the directory and primary file

EXERCISE 1: SOLUTION

- Select class storage
- $h(28,7)=28 \bmod 7=0$
- We can expand the class storage at the end of the primary file, i.e., $p=3, r=3$
- Then we need to select proper i
$>h_{0}(14,3)=(14 \gg 0) \bmod 3=14 \bmod 3=2$
$\rightarrow h_{0}(21,3)=(21 \gg 0) \bmod 3=21 \bmod 3=0$
$\rightarrow h_{0}(28,3)=(28 \gg 0) \bmod 3=28 \bmod 3=1$

				key	value
position	i	r		0	14
0	0	3		1	10
1				2	17
2				3	21
3	0	2		3	21
4				4	28
5				5	14
6				6	
				7	

EXERCISE 2

- Expand directory from exercise 1
- Insert record 42
$>$ Primary hashing function is given as $h(k, s)=k \bmod s$
> Secondary hashing function is $h_{i}(k, r)=(k \gg i) \bmod r$
- Compute all the parameters and illustrate the directory and primary file
> Advice: If you get a collision for every i, increment parameter r by 1 and try computation again

EXERCISE 2: SOLUTION

> Select class storage
> $h(42,7)=42 \bmod 7=0$

- We can expand the class storage at the end of the primary file, i.e., $p=3, r=4$
- Then we need to select proper i
$>(14 \gg 0) \bmod 4=2(21 \gg 0) \bmod 4=1(28 \gg 0) \bmod 4=0(42 \gg 0) \bmod 4=2$
$>(14 \gg 1) \bmod 4=3(21 \gg 1) \bmod 4=2(28 \gg 1) \bmod 4=2(42 \gg 1) \bmod 4=1$
$>(14 \gg 2) \bmod 4=3(21 \gg 2) \bmod 4=1(28 \gg 2) \bmod 4=3(42 \gg 2) \bmod 4=2$
$>(14 \gg 3) \bmod 4=1(21 \gg 3) \bmod 4=2(28 \gg 3) \bmod 4=3(42 \gg 3) \bmod 4=1$
$>(14 \gg 4) \bmod 4=0(21 \gg 4) \bmod 4=1(28 \gg 4) \bmod 4=1(42 \gg 4) \bmod 4=2$
$>(14 \gg 5) \bmod 4=0(21 \gg 5) \bmod 4=0(28 \gg 5) \bmod 4=0(42 \gg 5) \bmod 4=1$
$>(14 \gg 6) \bmod 4=0(21 \gg 6) \bmod 4=0(28 \gg 6) \bmod 4=0(42 \gg 6) \bmod 4=0$
- For every $i>5$ we always get a collision. In such case, we increase r by one
$>(14 \gg 0) \bmod 5=4(21 \gg 0) \bmod 5=1(28 \gg 0) \bmod 5=3(42 \gg 0) \bmod 5=2$

position	i	r	p
0	0	5	3
1			
2			
3	0	2	1
4			
5			
6			

kev	value
0	14
1	10
2	17
3	
4	21
5	42
6	28
7	14

EXERCISE 3

> Apply Larson \& Kalja method to insert record 41 into the structure from example 4

- Note all the computations and illustrate the result
> Tip: In some cases, we can split multiple pages on a single insert

EXERCISE 3: SOLUTION

$>h_{0}(41)=41 \bmod 5=1$
$s_{0}(41)=(41 \gg 0) \bmod 7=41 \bmod 7=6 \sim 110_{2}$

- Page number 1 is full and the highest signature belongs to record 41
- Therefore, we upgrade separator to 110_{2} and reinsert record 41
$>h_{0}(41)=41 \bmod 5=1$ $s_{0}(41)=(41 \gg 0) \bmod 7=41 \bmod 7=6 \sim 110_{2}$
- Again, page number 1 but this time 41 has too big signature, so we fail to insert (i is increased) and we try to insert 41 again
$>h_{1}(41)=(41+1) \bmod 5=2 \quad s_{1}(41)=(41 \gg 1) \bmod 7=6 \sim 110_{2}$
- Page number 2 is also full and again 41 has the biggest signature

0	10	40	30
110	011	101	010
1	51	61	20
110	010	101	011
2	32	37	42
111	100	010	000
3	41		
111	011		
4			
111			

- We update page separator and reinsert again
$>h_{2}(41)=(41+2) \bmod 5=3 \quad s_{2}(41)=(41 \gg 2) \bmod 7=3 \sim 011_{2}$

EXERCISE 4

> Apply Larson \& Kalja method to insert record 67 into the structure from exercise 3
> Note all the computations and illustrate the result

- Tip: If one page contains more records with the same signature and we need to split this page, then we may reinsert more than just a single record

EXERCISE 4: SOLUTION

> $h_{0}(67)=67 \bmod 5=2$

$$
s_{0}(67)=(67 \gg 0) \bmod 7=67 \bmod 7=4 \sim 100_{2}
$$

- We try to insert record 67 into page 2
- The page 2 is full, therefore we have to split the page
- This time, we have two values, i.e., 32 and 67, with the biggest signature
- So we update the page separator and reinsert both values
> $h_{1}(32)=(32+1) \bmod 5=3$

$$
s_{1}(32)=(32 \gg 1) \bmod 7=5 \sim 101_{2}
$$

0	10	40	30
110	011	101	010
1	51	61	20
110	010	101	011
2		37	42
100		010	000
3	41	32	67
111	011	101	10
4			
111			

- $h_{1}(67)=(67+1) \bmod 5=3$
$s_{1}(67)=(67 \gg 1) \bmod 7=2 \sim 010_{2}$

