

STATIC HASHING: SOLUTION NDBI007: Practical Class 3

- Expand directory from example 2
 - ► Insert record 28
 - > Primary hashing function is given as $h(k, s) = k \mod s$
 - Secondary hashing function is $h_i(k, r) = (k > > i) \mod r$
 - Compute all the parameters and illustrate the directory and primary file

EXERCISE 1: SOLUTION

- Select class storage
 - ► $h(28,7) = 28 \mod 7 = 0$

> We can expand the class storage at the end of the primary file, i.e., p = 3, r = 3

- \blacktriangleright Then we need to select proper *i*
 - ► $h_0(14,3) = (14 > > 0) \mod 3 = 14$ n
 - ► $h_0(21,3) = (21 > > 0) \mod 3 = 21$ n
 - ► $h_0(28,3) = (28 > > 0) \mod 3 = 28$ n

	• . •	٠			key	value
	position	1	r	р	0	14
	0	0	3	3	1	10
nod $3 = 2$	1				2	17
	2	\cap)	1	3	21
nod $3 = 0$	<u></u> Л	U		<u> </u>	4	28
	5 5				5	14
nod $3 = 1$	<u> </u>				6	
	0				7	

- Expand directory from exercise 1
 - ► Insert record 42
 - > Primary hashing function is given as $h(k, s) = k \mod s$
 - Secondary hashing function is $h_i(k, r) = (k > > i) \mod r$
 - Compute all the parameters and illustrate the directory and primary file

 \blacktriangleright Advice: If you get a collision for every *i*, increment parameter *r* by 1 and try computation again

EXERCISE 2: SOLUTION

- ► Select class storage
- ► $h(42,7) = 42 \mod 7 = 0$
- > We can expand the class storage at the end of the primary file, i.e., p = 3, r = 4
- \blacktriangleright Then we need to select proper *i*

For every i > 5 we always get a collision. In such case, we increase *r* by one ► $(14 >> 0) \mod 5 = 4$ $(21 >> 0) \mod 5 = 1$ $(28 >> 0) \mod 5 = 3$ $(42 >> 0) \mod 5 = 2$

- $> 0) \mod 4 = 2$
- $> 1) \mod 4 = 1$
- $> 2) \mod 4 = 2$
- $> 3) \mod 4 = 1$
- > 4) mod 4 = 2
- $> 5) \mod 4 = 1$
- > 6) mod 4 = **0**

position	i	r	р	
0	0	5	3	
1				
2				
3	0	2	1	
4				
5				
6				

kev	value
0	14
1	10
2	17
3	
4	21
5	42
6	28
7	14

> Apply Larson & Kalja method to insert record 41 into the structure from example 4

Note all the computations and illustrate the result

Tip: In some cases, we can split multiple pages on a single insert

EXERCISE 3: SOLUTION

- ► $h_0(41) = 41 \mod 5 = 1$ $s_0(41) = (41 > > 0) \mod 7 = 41 \mod 7 = 6 \sim 110_2$
- Page number 1 is full and the highest signature belongs to record 41
- \blacktriangleright Therefore, we upgrade separator to 110₂ and reinsert record 41
- $\succ h_0(41) = 41 \mod 5 = 1$ $s_0(41) = (41 > > 0) \mod 7 = 41 \mod 7 = 6 \sim 110_2$
- > Again, page number 1 but this time 41 has too big signature, so we fail to insert (*i* is increased) and we try to insert 41 again
- ► $h_1(41) = (41 + 1) \mod 5 = 2$ $s_1(41) = (41 > > 1) \mod 7 = 6 \sim 110_2$
- > Page number 2 is also full and again 41 has the biggest signature
- ► We update page separator and reinsert again
- ► $h_2(41) = (41+2) \mod 5 = 3$ $s_2(41) = (41 > > 2) \mod 7 = 3 \sim 011_2$

0	10	40	3
110	011	101	0
1	51	61	2
110	010	101	0
2	32	37	4
111	100	010	0(
3	41		
111	011		
4			
111			

Note all the computations and illustrate the result

split this page, then we may reinsert more than just a single record

> Apply Larson & Kalja method to insert record 67 into the structure from exercise 3

> Tip: If one page contains more records with the same signature and we need to

EXERCISE 4: SOLUTION

- ► $h_0(67) = 67 \mod 5 = 2$ $s_0(67) = (67 > > 0) \mod 7 = 67 \mod 7 = 4 \sim 100_2$
- ► We try to insert record 67 into page 2
- > The page 2 is full, therefore we have to split the page
- ➤ This time, we have two values, i.e., 32 and 67, with the biggest signature
- So we update the page separator and reinsert both values
- ► $h_1(32) = (32 + 1) \mod 5 = 3$ $s_1(32) = (32 > > 1) \mod 7 = 5 \sim 101_2$
- ► $h_1(67) = (67 + 1) \mod 5 = 3$ $s_1(67) = (67 > > 1) \mod 7 = 2 \sim 010_2$

0	10	40	3
110	011	101	0
1	51	61	2
110	010	101	0
2		37	4
100		010	00
3	41	32	6
111	011	101	1
4			
111			

