

# **STATIC INDEXES AND BITMAPS: SOLUTION** NDBI007: Practical Class 2

Based on NDBIO07 practical class materials created by Petr Škoda; Tutor: Pavel Koupil; October 27th 2021

![](_page_0_Picture_3.jpeg)

### **EXERCISE 1: PRIMARY KEY INDEX**

- Determine index height and compute the size of every index level
- blocks N
  - ► Remember that the first (bottom) level points directly into the primary file N
- > You will have to compute blocking factor for the primary index
  - Suppose page size equal to 4 kB and record size 9 B

► The number of pages on the next level can be c

► Build primary key index for a sequential file that contains 5,000,000 student records (of size 256 B)

> You will have to compute blocking factor for the primary file in order to determine number of

computes as 
$$n_{PAGES,L=i} = \lceil \frac{n_{PAGES,L=i-1}}{b} \rceil$$

2

## **EXERCISE 1: PRIMARY KEY INDEX (SOLUTION)**

- ► Blocking factor of primary file  $b = \lfloor \frac{B}{R} \rfloor = \lfloor \frac{4 \cdot 2^{10}}{256} \rfloor = 16$
- ► Number of blocks of primary file  $n_B = 5,000,000 \div 16 = 312,500$
- ► Blocking factor of primary key index  $b_{ID} = \lfloor \frac{B}{P} \rfloor$
- Primary key index levels
  - $\blacktriangleright$  The number of pages to index: 312, 500, leve
  - ▶ The number of pages to index: 687, level size
  - ► The number of pages to index: 2, level size:

$$= \lfloor \frac{4 \cdot 2^{10}}{9} \rfloor = 455$$

el size: 
$$n_{PAGES,L=i} = \lceil \frac{n_{PAGES,L=i-1}}{b} \rceil = \lceil \frac{312,500}{455} \rceil = 68$$
  
e:  $\lceil \frac{687}{455} \rceil = 2$   
 $\lceil \frac{2}{455} \rceil = 1$ 

![](_page_2_Picture_11.jpeg)

3

### **EXERCISE 2: DIRECT INDEX**

- records

  - > Determine index height and compute the size of every index level
  - Compare the structure with primary key index structure ► I.e., number of levels, sizes of levels, total size of index (in MB)

Build direct index on firstName for a sequential file that contains 5,000,000 student

Suppose that index record size is 20 B + 4 B (size of key + size of the pointer)

#### **EXERCISE 2: DIRECT INDEX (SOLUTION)**

► Blocking factor  $b_{FIRST\_NAME} = \lfloor \frac{B}{R} \rfloor = \lfloor \frac{4 \cdot 2^{10}}{24} \rfloor = 170$ 

► Direct index levels

Number of records in primary file: 5,000,000, level size:  $\left\lceil \frac{5,000,000}{170} \right\rceil = 29,412$ Number of pages to address: 29,412, level size:  $\left\lceil \frac{29,412}{170} \right\rceil = 174$ Number of pages to address: 174, level size:  $\left\lceil \frac{174}{170} \right\rceil = 2$ ► Number of pages to address: 2, level size:  $\left\lceil \frac{2}{170} \right\rceil = 1$ 

The total size of index is 29,412 + 174 + 2 + 1 = 29,589 so the total size is  $29,589 \cdot 4 \ kB \approx 115 \ MB$ ➤ The size of this index is much larger than the size of the primary key index

![](_page_4_Picture_10.jpeg)

### **EXERCISE 3: INDIRECT INDEX**

- student records
  - > Note that first level records and other level records differ in its size
    - ► First level: 25 B + 5 B (second name key size + primary key size)
  - Determine index height and compute the size of every index level

► Build indirect index on secondName for a sequential file that contains 5,000,000

> Other level: 25 B + 4 B (second name key size + pointer to another page)

![](_page_5_Picture_8.jpeg)

### EXERCISE 3: INDIRECT INDEX (SOLUTION)

- First level blocking factor is  $b_{SECOND\_NAME,FIRST\_}$
- ▶ Other level blocking factor is  $b_{SECOND\_NAME,OTHE}$

- Indirect index levels
  - ► Number of records to address: 5,000,000, lev
  - ▶ Number of pages to address: 36,745, level siz
  - ► Number of pages to address: 261, level size:
  - ▶ Number of pages to address: 2, level size:  $\begin{bmatrix} -\frac{1}{2} \end{bmatrix}$

$$\__{LEVEL} = \lfloor \frac{B}{R} \rfloor = \lfloor \frac{4 \cdot 2^{10}}{30} \rfloor = 136$$
$$_{ER\_LEVELS} = \lfloor \frac{B}{R} \rfloor = \lfloor \frac{4 \cdot 2^{10}}{29} \rfloor = 141$$

vel size: 
$$\lceil \frac{5,000,000}{136} \rceil = 36,745$$
  
ze:  $\lceil \frac{36,745}{141} \rceil = 261$   
 $\lceil \frac{261}{141} \rceil = 2$   
 $\frac{2}{41} \rceil = 1$ 

![](_page_6_Picture_10.jpeg)