
HARD DISK DRIVE
NDBI007: PRACTICAL CLASS 1

Inspired by NDBI007 practical class materials created by Petr Škoda; Tutor: Pavel Koupil; October 13th 2021



NDBI007: PRACTICAL CLASS 1

IMPORTANT TERMS
▸ Latency 


▸ 


▸ Single rotation is equal to 


▸ Seek Time 


▸ Average seek time from one random track (cylinder) to any other is the most common seek time metric


▸ Track-to-track seek time is the amount of time that is required to seek between adjacent tracks


▸ Full-track seek time (full stroke) is the time needed to seek data from the first track to the last


▸ Block Transfer Time 

r

r =
1

rotational_speed

2 ∙ r

s

btt

2



NDBI007: PRACTICAL CLASS 1

DISK STRUCTURE

▸ Disk structure


▸ The surface of platters is divided into tracks


▸ Track is divided into sectors


▸ The set of all tracks with the same diameter form a cylinder


▸ Zoned bit recording


▸ The tracks closest to the outer edge contain more sectors per 
track


▸ The data transfer speed over the outside cylinders is higher 
since the angular speed is constant regardless which track is 
being read

3

https://www.snia.org/education/storage_networking_primer/stor_devices/data_structure



NDBI007: PRACTICAL CLASS 1

TRACK CAPACITY (TC)
▸ Track capacity can be based on different characteristics*


▸ The size of a sector is constant


▸ As the number of sector differ (zoned bit recording), we expect the estimated track capacity to differ


▸ User cylinders





▸ Sectors per track (SPT)**





TC =
capacity

data_heads ∙ user_cylinders
=

75 ∙ 109

10 ∙ 27724
≈ 0.28 MB

TC = SPT ∙ sector_size

4

*     All used characteristics can be found in the data sheet for the IBM Deskstar HDD

**   SPT is not provided for the IBM Deskstar HDD as the number of sector per track is not constant



NDBI007: PRACTICAL CLASS 1

EXERCISE 1: ESTIMATE TRACK CAPACITY BASED ON R AND MTR

▸ Estimate track capacity based on latency (r) and media transfer rate (MTR)


▸ Media transfer rate uses bits not bytes as unit (1B = 8b)


▸ We use MTR (max) measured at the outer edge of the HDD


▸ We use  since we need the amount of time required to full rotation of plates


▸ Transfer speed on outer edge is maximal, therefore the result is the upper bound





2 ∙ r

MTR =
TC
2 ∙ r

5



NDBI007: PRACTICAL CLASS 1

EXERCISE 2: ESTIMATE TRACK CAPACITY BASED ON SDR
▸ Estimate track capacity based on sustained data rate (SDR)


▸ SDR is computed as the average transfer speed. Therefore, we must consider:


▸ The time taken to get heads to the right track


▸ The time taken to switch tracks in a single cylinder, i.e.,  (value is not presented in data sheets, consider it to be )


▸ To get SDR we have to:


▸ Move heads to a cylinder


▸ Read the whole cylinder, one track to another. Only one head can be read at a certain time


▸ Move heads to another cylinder, i.e., 


head_switch_time ±1 ms

track_to_track_time

SDR =
data_heads ∙ TC

2 ∙ r ∙ data_heads + (data_heads − 1) ∙ head_switch_time + track_to_track_time

6



NDBI007: PRACTICAL CLASS 1

EXAMPLE 1: READING FULLY FRAGMENTED FILE FROM THE HDD (SOLVED)

▸ Consider fully fragmented file, i.e., the blocks are not adjacent


▸ We assume uniformly distributed blocks


▸ File size is 1 GB


▸ Block size is 4 kB


▸ The process of reading fragmented data looks like this:


▸ Move heads to the right cylinder


▸ Read a sector


▸ Continue with 1 until the whole file is read

7



NDBI007: PRACTICAL CLASS 1

EXAMPLE 1: READING FULLY FRAGMENTED FILE FROM THE HDD (SOLVED)

▸ First, we need to know how many blocks form the 1 GB file, i.e., the block count 





▸ We compute how long does it take to transfer a single block, i.e., we compute the block transfer time *





▸ Finally, we combine all together


BC

BC =
1 ∙ 109

4 ∙ 103
= 250000

btt

btt =
2 ∙ r
TC

∙ block_size =
2 ∙ 4.17

0.3
∙ 0.004 = 0.11 ms

read_time = BC ∙ (s + r + btt) = 250000 ∙ (8.5 + 4.17 + 0.11) ≈ 3195 s ≈ 53 m

8

*     It is important to realize that we use TC that is somewhere between the estimates we got before



NDBI007: PRACTICAL CLASS 1

EXERCISE 3: READING FULLY FRAGMENTED FILE

▸ Solve previous example having TC estimate based on latency and media transfer rate MTR (see 
exercise 1)


▸ You can also use MTR to compute  directly





▸ Try it yourself: Usage of MTR and usage of TC computed from MTR have the same result


btt

btt =
block_size

MTR
8

9



NDBI007: PRACTICAL CLASS 1

EXAMPLE 2: READING SEQUENTIAL DATA FROM THE HDD (SOLVED)
▸ In this case, blocks are adjacent


▸ Once again, file size is 1 GB and block size is 4 kB


▸ We can use sustained transfer rate (STR) since it equals to  +  + 


▸ But let's assume that the STR is unknown to us


▸ First, we need to find out how many tracks the file occupies, i.e., number of tracks 





▸ We compute number of cylinders 


MTR head_switch_time track_to_track_time

nT

nT =
file_size

TC
=

1 ∙ 109

0.3 ∙ 106
= 3333.3

nC

nC =
nT

data_heads
=

3333.3
10

= 333.3

10



NDBI007: PRACTICAL CLASS 1

EXAMPLE 2: READING SEQUENTIAL DATA FROM THE HDD (SOLVED)
▸ Now, we can compute the read time as the summation of several times:


▸ Move heads to the initial cylinder 


▸ Read blocks 


▸ Number of head switches. i.e., for each cylinder we have to do  switches, i.e., 



▸ Time to move between adjacent cylinders, as we assume the best possible positioning for block, i.e., 






(s + r)

(2 ∙ r ∙ nT)

data_heads − 1
(nC ∙ (data_heads − 1) ∙ head_switch_time)

(nC ∙ track_to_track_time)

tread = (s + r) + (2 ∙ r ∙ nT) + (nC ∙ (data_heads − 1) ∙ head_switch_time) + (nC ∙ track_to_track_time)

tread = (8.5 + 4.17) + (2 ∙ 4.17 ∙ 3333.3) + (333.3 ∙ (10 − 9) ∙ 1) + (333.3 ∙ 1.2) = 31 s

11



NDBI007: PRACTICAL CLASS 1

EXAMPLE 3: BANK WITHDRAWALS - RECORD STRUCTURE (SOLVED)
▸ Design a record structure for a credit card system 

managing 5,000,000 cards


▸ The system should allow a defined amount of money to be 
withdrawn when a card is inserted


▸ The withdrawal should identify the relevant DB record, i.e., 
the account associated with that card, and check the daily 
and weekly limits on withdrawals


▸ The log records withdrawals for the last 7 days and the 
start date is the information when the first recorded 
withdrawal was made


▸ To test the limit for the last 7 days, we simply check what 
date is the last log entry (from the start date) .


▸ Record structure:


▸ card_number (8B), i.e., primary identifier (key)


▸ account_number (8B)


▸ balance (8B)


▸ PIN (2B)


▸ one_day_limit (2B)


▸ seven_day_limit (2B)


▸ log (7x8B) 


▸ start_date (4B)

12



NDBI007: PRACTICAL CLASS 1

EXAMPLE 4: BANK - TIME REQUIRED FOR SINGLE WITHDRAWAL (SOLVED)

▸ The withdrawal needs to find the record and write it to the log


▸ Consider a situation where we have an index-sequential file, i.e., data sorted sequentially 
with an index to a primary key built over this primary file


▸ First, determine how many records fits the size of one block, i.e., 


▸ We define block size 4 kB, pointer size 4 B (needed to calculate index blocking factor)


▸ Record size  (rounded to the nearest power of 2)


B = 4 kB

R = 128 B

b =
B
R

=
4 ∙ 210 B

128 B
= 32

13



NDBI007: PRACTICAL CLASS 1

EXAMPLE 4: BANK - TIME REQUIRED FOR SINGLE WITHDRAWAL (SOLVED)

▸ Second, determine blocking factor for the index 


▸ We need  blocks to store records of all the accounts


▸ The number of blocks is also the number of index sheets


▸ We need to know how many index records (key-pointer pairs) can fit in the index block, i.e., the blocking factor 
for the index 


 (we have 32 bit pointers)





RI

N = 5,000,000 ÷ 32 = 156,250

RI

RI = 8 B + 4 B

B = 4 ∙ 210 B

b =
B
R

=
4 ∙ 210B

12 B
= 341

14



NDBI007: PRACTICAL CLASS 1

EXAMPLE 4: BANK - TIME REQUIRED FOR SINGLE WITHDRAWAL (SOLVED)
▸ Third, the height of the tree is calculated





▸ The root of the index tree is always stored in memory (it is 1 page)


▸ Therefore, 3 disk accesses are needed to read the record (2 index levels and 1 data file block)


▸ However, in the situation we are in our tree-level 2 has only 2 pages


▸ 2 pages can address 2 ∗ 341 * 341 pages, which is more pages than the primary file has


▸ In such a situation, we can keep the second level of the index, i.e., 2 pages, straight in memory, and then we only need to touch the disk twice


▸ Then the time it takes to load the record*








▸ If I can process a record in one rotation of the disk, then after the time of one rotation (2𝑟) I can write the modified data back to disk

h = ⌈logRI
N⌉ = ⌈log341 156,250⌉ = 3

T = 2 ∙ (s + r + btt) + 2r + btt

T = 2 ∙ (8.5 + 4.17 + 0.11) + 2 ∙ 4.17 + 0.11 = 34 ms

15

*     Twice because I go once to the index level 3 and once to the data file



NDBI007: PRACTICAL CLASS 1

EXAMPLE 5: BANK - TRANSACTIONS PER DAY (SOLVED)
▸ In 2007, the number of all transactions in the Czech Republic per day was about 800,000


▸ Can our system handle such a number, assuming that we handle a quarter of all transactions in the country?


▸ Assume that the load is not evenly distributed over the day and that half of all transactions are made at peak times


▸ That is, 100,000 requests per hour go to our system


▸ That is, how many requests are we able to serve per hour?





▸ , therefore our system handles the workload

nT =
60 ∙ 60 ∙ 1,000

T
=

60 ∙ 60 ∙ 1,000
34

= 105,882

nT > 100,000

16


