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Chapter 1

Introduction

Exchanging of a wide variety of data plays an increasingly important role
on the Web. Nowadays, it is not convenient to exchange data in a format
that needs a special software to handle them.

In consequence of this fact, in recent years, the eXtensible Markup
Language (XML) [BPSM00b] has gained increasing relevance as a standard
for data representation and manipulation. Currently, XML is recommended
by the World Wide Web Consortium and a support of XML can be found
in various applications such as database systems, programming languages,
or even in word processors.

However, for sharing data between two subjects it is necessary to use
the same structure of documents. For this purpose various XML schemes
were proposed for description of a type of XML documents. The Document
Type Definition (DTD) [BPSM00a] language is one of standards expressing
XML schemes. XML Schema [Fal01] is other very popular, more expressive,
XML schema language.

Increasing numbers of data available on the Web invoke new tasks, such
as e.g., document validation, query processing, data transformation, storage
strategies based on clustering, data integration, etc. Evaluation of similarity
of XML documents or XML schemes plays a crucial role in all of these fields,
especially for the purpose of optimization For example, a similarity measure
can be exploited for grouping together data containing the same type of
objects or for integration of different schemes describing the same kind of
information.

1.1 Aims of this Work

The first aim of this work is an analysis of existing approaches to XML
similarity. The core of the work is a proposal of an efficient method for
similarity evaluation among XML schemes. Our aim is to focus on various
aspects of similarity evaluation, such as, e.g., linguistic and structural in-
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CHAPTER 1. INTRODUCTION 8

formation, and integrate them into our method. The last part of the work
is an experimental implementation of the proposed algorithms.

This work is based on so-called edit distance method which are used
for computing the distance between two structures, i.e. strings or trees.
DTD is chosen as a language for definition of schemes of XML documents
especially for its popularity and simplicity.

In the implementation, we exploited some existing solutions for side
components of the algorithm, e.g. the library for searching the thesaurus.

Finally, we get experimental results of our implementation.

1.2 Contents of the Work

In the first chapter, the motivation of the work is described and aims, that
we want to realize, are determined.

In the second chapter, a brief summary of basic technology used in the
work is described. Selected basic terms are defined in this chapter as well.

Categorization and analysis of related works is described in the third
chapter.

The fourth chapter focuses on the proposal and a detailed description of
our own algorithms and discussion of their advantages and disadvantages.

In the fifth chapter we describe used technologies and architecture of
our implementation. Minor restriction of our implementation is mentioned
at the end of the chapter.

Experimental results of various tests with our implementation are de-
scribed in the sixth chapter.

And finally, the seventh chapter evaluates the proposed method. Possi-
bilities for future extension of the work are mentioned as well.



Chapter 2

Technology and Definition

In this chapter, basic technologies used in the work are described - languages
XML and DTD and edit distance technique which is used for comparing
similarity between two structures.

2.1 XML − eXtensible Markup Language

The Extensible Markup Language (XML) [BPSM00b] is a markup language
for representation of structured data. It is standardized and recommended
by the World Wide Web Consortium (W3C). XML is a subset of the Stan-
dard Generalized Markup Language (SGML). In contrast to HTML, that
is other popular subset of SGML, XML does not have fixed specified set of
tags.

XML documents are composed of markup and content. There are
several kinds of markup that can occur in an XML document: elements,
entities, comments, processing instructions, marked sections, and document
type declarations.

Elements

Elements are the most common form of markup. Most elements identify
the nature of the content they surround. However, some elements may
be empty, in which case they have no content. An element begins with a
start-tag, <element>, and ends with an end-tag, </element>, except an
empty element, which can have only one tag, <element/>. Elements may
be nested but must not overlap. Each non-root element must be completely
contained in another element.

<USER>

<FirstName>James</FirstName>
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CHAPTER 2. TECHNOLOGY AND DEFINITION 10

<Username>bart</Username>

</USER>

Attributes

Attributes are name-value pairs used to describe XML elements, or
to provide additional information about elements. Attributes are always
contained within the start tag of an element after its name. All attribute
values must be quoted.

<USER ID="21">

<FirstName>James</FirstName>

<Username>bart</Username>

</USER>

Entities

Some characters cannot be easily entered on the keyboard. In order to
insert these characters into a document, entities are used to represent these
special characters. Entities are also used to refer to often repeated text.
An entity reference is a placeholder that represents the entity. It consists
of the entity’s name preceded by an ampersand ”&” and followed by a
semicolon ”;”. Each entity must have a unique name. For instance, ”&ls;”
represents left angle bracket ”<”.

Comments

XML comments start with <!– and end with –>. Two dashes – may not
appear anywhere in the text of the comment. Comments may be placed
between markup anywhere in a document. They are not part of the textual
content of an XML document.

Processing Instructions

Processing instructions provides information to an application. Like
comments, they are not of the textual content of an XML document.
Processing instructions have the form: <?identifier data?>

CDATA Sections

A CDATA section is suitable if we want to insert a text with special
characters, such as e.g., ”<” or ”&”. Inside section, <![CDATA[ text ]]>,
all special characters are ignored.
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Well-formed Document

A well-formed document conforms to rules of XML syntax. A document
that is not well-formed is not considered to be XML. We say that a document
is well-formed if:

• all not empty elements have a closing tag,

• opening and closing tags are written with the same case (XML tags
are case sensitive),

• all elements are properly nested,

• document have a root tag,

• all attribute values are quoted.

2.2 DTD − Document Type Definition

Document Type Definition is a SGML and XML schema language. The
DTD describes a type of a XML document by defining the constraints
on the structure of an XML document. It declares the allowable set of
elements within the document. It also declares children element types, and
their order and number, attributes, entities, processing instructions and
comments in a document.

Associating DTDs with Documents

A DTD is associated with an XML document via a Document Type
Declaration.
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

The declaration can be internal or it can reference an external file.
The internal document type declaration must be placed between the XML
declaration and the root element. The keyword DOCTYPE must be
followed by the name of the root element in the XML document. External
declaration are useful for creating a common DTD that can be shared
between multiple documents.

Element Type Declaration

Element type declarations specifies the rules for the type and number of
elements that may appear in an XML document, what elements may appear
inside each other, and what order they must appear in. An element type
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cannot be declared more than once. Following contents of an element type
is allowable:

• EMPTY - refers to tags that are empty

• ANY - refers to any valid content

• children element types - refers to any number of element types within
another element type

• mixed content - refers to a combination of (#PCDATA) and children
elements. PCDATA represents text that is not markup

<!ELEMENT element0 (element1, element2)>

<!ELEMENT element1 (element3)>

<!ELEMENT element2 (#PCDATA)>

<!ELEMENT element3 (#PCDATA)>

Attribute Declaration

Attributes are additional information associated with an element type.
Attributes are declared via the keyword ATTLIST. The ATTLIST decla-
rations identify which element types may have attributes, what type of
attributes they may be, and what the default value of the attributes are.
There are three types of attributes:

• CDATA - represents text that is not markup

• Tokenized attribute type:

– ID is a unique identifier of the attribute.

– IDREF is used to establish connections between elements. The
IDREF value of the attribute must refer to an ID value.

– ENTITY are used to reference data that act as an abbreviation
or can be found at an external location.

• Enumerated attribute types allow you to make a choice between dif-
ferent attribute values.

<!ELEMENT image EMPTY>

<!ATTLIST image height CDATA #REQUIRED>

Constraints

All attributes have one of the following constraints:

• #REQUIRED - The attribute must always be included
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• #IMPLIED - The attribute does not have to be included.

• #FIXED ”Value” - The attribute must always have the default value
that is specified

Entities

Entities reference data that act as an abbreviation or can be found at
an external location.

Notations

Notations are used to identify the format of unparsed entities (non-XML
data), elements with a notation attribute, or specific processing instructions.

2.3 Edit Distance Algorithms

Edit distance algorithms were originally used for comparing similarity be-
tween two strings, [Ham50, Lev66]. They are based on the idea to find
the cheapest sequence of edit operations that can transform one string into
another.

Edit operations can be defined variously. For example, [Ham50] uses
only one operation - substitution of a single character, therefore this
algorithm can be used only for strings of the same length. Currently
used algorithms are usually based on three edit operations defined in
Levenshtein distance algorithm [Lev66]. It uses one-step operations -
insertion, deletion, and substitution of a single character. A non-negative
constant cost is associated with each operation. In the simplest version all
the operations cost one unit except for substitution of identical characters,
in which case the cost is zero.

Levenshtein algorithm, based on dynamic programming, is depicted in
Figure 2.1. At the beginning (line 4) a matrix for storing computed costs
of edit operations is defined. At lines 5-7 costs of insertions characters of
string B are initialized, similarly costs of deletions characters of string A are
initialized at lines 8-10. At lines 11-18 the optimal operation for each pair
of characters is found and previously computed values are incremented by
the cost of this optimum operation. Finally, the minimum distance between
strings A and B is stored in to position dist[M ][N ].

2.3.1 Tree Edit Distance

Edit distance technique is also used for finding similarity between two trees.
Most algorithms in this category are direct descendants of the Levenshtein
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Input: stringA, stringB
Output: Edit distance between stringA and stringB

begin1

M = Length(A);2

N = Length(B);3

int[][] dist = new int[0..M][0..N];4

for j=0 to N do5

dist[0][j] = j; //generally: dist[0][j] = CostInsert(B[j])6

end7

for i=0 to M do8

dist[i][0] = i; //generally: dist[i][0] = CostDelete(A[i])9

end10

for i=1 to M do11

for j=1 to N do12

dist[i][j] = Min(13

dist[i-1][j-1] + CostSubstitution(A[i], B[j]), //substitution14

dist[i][j-1] + 1, //insertion15

dist[i-1][j] + 1); //deletion16

end17

end18

return distance[M][N];19

end20

Figure 2.1: Levenshtein distance algorithm

algorithm, e.g. [SZ97], [NJ]. All of them use three basic edit operations
insertion, deletion, and substitution. In contrast to string edit distance,
these operations are applied on a (single) node of a tree instead of a character
in a string.

[NJ] defines two additional edit operations that allow transforming of
more complex structures of a tree. This algorithm is described in the section
3.1.1. In our work we use the same five operations therefore they should be
described formally. However, at first, some basic terms have to be defined.

Definition 2.3.1. [Ordered Tree] An ordered tree is a rooted tree in which
the children of each node are ordered. If a node x has k children then these
children are uniquely identified, left to right, as x1, x2, . . . , xk.

Definition 2.3.2. [First-Level Subtree] Given an ordered tree T with a
root node r of degree k, the first-level subtrees, T1, T2, . . . , Tk of T are the
subtrees rooted at r1, r2, . . . , rk.



CHAPTER 2. TECHNOLOGY AND DEFINITION 15

For a given tree T with a root node r of degree m and first-level subtrees
T1, T2, . . . , Tm, the tree transformation operations are defined formally as
follows:

Definition 2.3.3. [Substitution] SubstitutionT (rnew) is a node substitu-
tion operation applied to T that yields the tree T ′ with root node rnew and
first-level subtrees T1, ..., Tm.

Definition 2.3.4. [Insertion] Given a node x with degree 0, InsertT (x, i)
is a node insertion operation applied to T at i that yields the new tree T ′

with root node r and first-level subtrees T1, ..., Ti, x, Ti+1, ..., Tm.

Definition 2.3.5. [Deletetion] If the first-level subtree Ti is a leaf node,
DeleteT (Ti) is a delete node operation applied to T at i that yields the tree
T ′ with root node r and first-level subtrees T1, ..., Ti−1, Ti+1, ..., Tm.

Definition 2.3.6. [Insertion Tree] Given a tree A, InsertTreeT (A, i) is
an insert tree operation applied to T at i that yields the tree T ′ with root
node r and first-level subtrees T1, ..., Ti, A, Ti+1, ..., Tm.

Definition 2.3.7. [Deletion Tree] DeleteTreeT (Ti) is a delete tree oper-
ation applied to T at i that yields the tree T ′ with root node r and first-level
subtrees T1, ..., Ti−1, Ti+1, ..., Tm.



Chapter 3

Related Works

Measuring similarity of XML data is a very general issue and we can use
several classifications of it. Probably the most frequently used classification
is based on the level on which the data are measured. Similarity of XML
data can be measured among XML documents, XML schemes, or between
the two groups.

The task of measuring similarity can be also classified according to the
kind of its application or according to the approach that is chosen for solving
the problem. For example, some works are focusing on structural similarity
of data whereas others measure similarity based on meaning of words, i.e.
semantics.

Of course various other classifications can be established. We can con-
sider required precision of similarity or we can divide methods according to
the amount of information that is taken into account.

3.1 Similarity Among Documents

At present there are many works that focus on measuring similarity among
XML documents. A lot of them exploit the fact that XML documents
can be represented as labeled trees. Two types of different approaches are
discussed in this chapter. The first one measures similarity by transforming
one tree to another. In contrast, the second type does not rely on graph
representation of XML documents and its approach is completely different.

3.1.1 Tree Edit Distance

Tree edit distance is one of the most popular approaches for computing
similarity between two XML documents. The most of works in this area
use operations for transformation only on a single node [ZS89].

Beside three basic operations for transforming tree - Substitute node,
Insert node and Delete node, two new edit operations are used in [NJ].

16
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Their definitions were formally described in 2.3.1. Since XML documents
usually contain structures that occur repeatedly, these repeating structures
can be transformed with single operation, (Insert tree or Delete tree), if they
are contained in both trees. In this case the cost for their transforming is
lower than if sequence of a single-node operations is applied and it invokes
higher similarity of the trees. Insert tree or Delete tree operations can not
be applied if the structures are not contained in both trees.

A non-negative constant cost is associated with each of these five op-
erations. The algorithm works with general costs that can be specified by
user. For experimental evaluation of this method the costs were set to 1 for
each operation.

Transformation of one tree to another tree can be done by a lot of
different sequences of edit operations. Finding the optimal variant of all
these sequences is a time-consuming task. Instead of that so-called allowable
sequences are defined in the proposal.

Definition 3.1.1. [Allowable] A sequence of edit operations transforming
a source tree A to a destination tree B is allowable if it satisfies the following
two conditions:

1. A tree P may be inserted only if P already occurs in the source tree A.
A tree P may be deleted only if P occurs in the destination tree B.

2. A tree that has been inserted via the InsertTree operation may not
subsequently have additional nodes inserted. A tree that has been deleted
via the DeleteTree operation may not previously have had (children) nodes
deleted.

Without the first restriction on allowable sequences of edit operations,
the whole source tree could be deleted in the first step and destination tree
could be inserted in the second step. The second restriction enables to
compute the costs for inserting and deleting subtrees efficiently.

To satisfy the first restriction, i.e. for inserting a subtree, we have to
find out if this subtree is contained in the source tree A. This is realized
with pre-created ContainedIn lists for each node of destination tree B. If a
subtree of tree B rooted at node vB is involved also in A then a pointer on
corresponding root node vA of the subtree of tree A is added to ContainedIn
list of node vB. Hence, we can simply find out if a subtree rooted at any
node of destination tree can be inserted via InsertTree operation.

In Figure 3.1 is depicted an example of containedIn relationship. Pat-
tern tree P is contained in tree A and B but is not contained in tree C.
That is why InsertTree operation for tree P would be applied only for trees
A and B.

Having ContainedIn lists, we can now calculate the cost of inserting
every subtree of B or deleting every subtree of A. CostGraft(Ti) (for in-
serting) and CostPrune(Ti) (for deleting) are produced for this purpose.
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Figure 3.1: Examples of ContainedIn Relationship

CostGraft(Ti) carries minimum of the costs of all allowable sequences of
operations necessary for inserting subtree Ti into tree B. CostPrune(Ti) is
similar for deleting subtree Ti from tree A.

Graft cost is computed by a simple bottom-up procedure. For each
node v ∈ B we consider two possibilities. If subtree P rooted at v is not
contained in tree A (ContainedIn list of node v is empty) then CostGraft

for this subtree is calculated recursively as the sum of inserting the single
node v and the CostGraft of each child of v - this sum can be called d0. If
subtree P is contained in tree A then we compute also the InsertTree cost
for P - we can call this d1. Then the CostGraft for the subtree rooted at v
is the minimum of d0 and d1. Prune costs are computed similarly for each
node in A.

If we have graft cost (resp. prune cost) for each subtree in B (resp. A)
then we can determine the minimum cost for transforming tree A into tree
B by the following dynamic algorithm depicted in Figure 3.2.

The algorithm dynamically computes costs of different sequences of op-
erations to transform tree A to B. At line 4, the M + 1×N + 1 matrix for
storing computed costs is created, where M is the degree of the root node
of tree A and N is the degree of the root node of tree B. At line 5 the first
element of the matrix is initialized with the cost of substitution of the root
node of A to the root node of B. At lines 7-8, the value from previous step
is subsequently increased by the costs of inserting each subtree of the root
node of B to the root node of A. Consequently, we have evaluated the cost
of inserting all subtrees of B at position dist[0][N ]. Similarly, evaluated cost
of deleting all subtrees of the root node A is stored at position dist[M ][0]
after executing lines 9-10.

The remaining values of the matrix are computed dynamically at lines
12-18, where the procedure considers also Substitution edit operation. In
other words, at these lines the procedure decides among inserting or deleting
the subtree or substituting nodes of the subtree. At line 15, the procedure is
called recursively for evaluating single-node operations. In recursive calling
is the main difference between this procedure and the procedure depicted
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Figure 3.2: Edit Distance Algorithm

in Figure 2.1. Finally, the value of the optimum variant of edit operations
is returned at line 19.

Due to lines 12-18 the algorithm runs in quadratic time in the combined
size of elements of the two documents which are compared.

3.1.2 Time Series Comparing

As mentioned above, most of existing techniques for measuring structural
similarity of XML documents concern with tree representation of docu-
ments. In contrast, the algorithm described in [FMM+02] represents XML
documents as time series where each tag occurrence corresponds to an im-
pulse. The degree of similarity between documents is given by analyzing
frequencies of the Fourier Transform of such series.

The algorithm has two phases. In the first one, called document encoding,
the structure of documents is encoded into time series. In the second one,
called similarity measures, the similarity of such time series is calculated.

In the first phase the tree structure of an XML document is traversed
in a depth-first, left-to-right way. During the visit an impulse is produced
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when a start tag is found. The impulse is hold until the corresponding end
tag is reached.

More precisely, during the the traversing of the tree structure a unique
number is assigned to each node (tag) by a function γ. For a set D of XML
documents this function, called direct tag encoding, associates each start
tag els with its position in the sequence tnames(D), where tnames(D) is
the set of all the distinct tag names appearing in D. End tags ele can be
associated with the symmetric value γ(ele) = −γ(els).

A document encoding is a function enc(d) that associates an XML doc-
ument d ∈ D with a time series representing the structure of d. For a set
D of XML documents function enc associates each d ∈ D with a sequence
of integers, i.e. enc(d) = h0, h1, ..., hn.

A document encoding function can be defined by several ways. In
[FMM+02] authors use encoding strategy called multilevel encoding. To
describe it following terms have to be defined. For a given set D of XML
documents,

Definition 3.1.2. [nestd(t)] is set of start tags els in d ∈ D occurring
before tag t and for which there is no end tag ele appearing before t.
lt = |nestd(t)| is denoted as nesting level.

Definition 3.1.3. [maxdepth(D)] denotes the maximum nesting level of
tags appearing in documents in D.

Multilevel encoding weights each tag t using its nesting level lt and
maxdepth(D) − lt as an exponent of a fixed factor B, so that elements
appearing at higher levels of the document tree have higher weights. B is
usually set as B = |tnames(D)| + 1. Then, a multilevel encoding of d is a
sequence of impulses [h0, h1, ..., hn], where:

hi = γ (ti)×Bmaxdepth(D)−lti +
∑

tj∈nestd(ti)

γ (tj)×Bmaxdepth(D)−ltj

In the second phase of the algorithm the resulting similarity is calculated
from the signals produced in the first phase. However, comparing such two
signals can be as difficult as comparing the original documents because
comparing documents having different lengths requires to combine resizing
and alignment.

Hence, better way is to apply Discrete Fourier Transform (DFT ) on
the signals h1 and h2 and compute the integral of the magnitude difference of
their transforms. In order to approximate the integral, the result of DFT is

linearly interpolated and a new D̃FT is produced, having M = Nd1 +Nd2−1
points, where Ndi

is the number of tags in document di.
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Now we get new two signals h̃1 = D̃FT (h1), h̃2 = D̃FT (h2) (with M
points) and the distance of the documents is defined as the approximation
of the difference of the magnitudes of these new signals:

dist(d1, d2) =

M/2∑
k=1

(
|h̃1(k)| − |h̃2(k)|

)2


1

2

The main advantage of this complex approach is that it is not so com-
putationally expensive as the most of algorithms based on transforming a
document into another. Time complexity is O(N log N), where N is num-
ber of tags in both XML documents. So, it is better than complexity of the
algorithm mentioned in the previous section.

3.2 Similarity Among Data and Schema

Measuring similarity between an XML document and an XML schema is
another area of investigation. Works interested in this area are usually used
for approximate validation of XML documents or for clustering of XML
data. However, not so many approaches for solving these problems has
benn described yet.

3.2.1 Common, Plus, and Minus Elements

The algorithm proposed in [BGM04] measures similarity between an XML
document and a DTD. Both of them are represented as labeled trees. The
matching algorithm is based on identification of:

• common elements appearing both in the document and in the DTD,

• plus elements appearing in the document but not in the DTD, and

• minus elements appearing in the DTD but not in the document.

Obviously, the number of common elements must be higher than plus and
minus elements to achieve a high degree of similarity.

However, not only the ratio between common and plus and minus
elements is relevant. The algorithm takes into account also the structure
of the trees, the presence of DTD operators, and the fact that elements
at higher levels are more relevant than elements at lower levels. For this
purpose function feval is defined that evaluates all possible matches between
the document and the DTD based on the level of common, plus and minus
elements.
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3.3 Similarity Among Schemes

Exploitation of similarity among XML schemes is mainly connected with
integration of heterogeneous data or with clustering of XML schemes. A
huge number of works have been proposed in this area as well.

Schema matchers are often classified according to their approach. There
are a lot of individual matchers that use a single matching criterion for
computing mapping. Recently, automatic matchers that combine individual
matchers were proposed. They differ in the method of using individual
matchers. Hybrid [MBR01, LYHY02] matchers directly integrate several
matching approaches to determine the mapping based on multiple matching
criteria. Composite [DDH01, DR02] matchers use individual matchers for
computing separated results and then combine their results.

In this section three different matchers are outlined. Only the first one
is described in more detail.

3.3.1 XClust

XClust is a hybrid matcher that integrates several matching approaches.
It considers semantics, immediate descendant, and leaf-context similarity
of DTD elements. It analyzes element by element in order to identify
possible matches among direct subelements, considering the cardinality of
the elements (optional, repeatable, or mandatory) and similarity of their
tags.

Element Similarity

The first phase of computing similarity of two DTDs is evalution of element
similarity. It considers the semantics, structure, and context information of
elements.

The similarity of a pair of element nodes ElementSim(e1, e2) is defined
as the weighted sum of three components:

(1) Semantic Similarity SemanticSim(e1, e2)
(2) Immediate Descendants Similarity ImmediateDescSim(e1, e2)
(3) Leaf Context Similarity LeafContextSim(e1, e2)
The whole algorithm is shown in Figure 3.3.1. Particular procedures are

explained in the following text.

(1) Semantic Similarity

The semantic similarity considers similarity between the names, constraints,
and path context of two elements. The similarity is computed using several
algorithms:



CHAPTER 3. RELATED WORKS 23

Algorithm: ElementSim
Input: elements e1,e2; matching threshold Threshold; weights α, β, γ
Output: element similarity
Step 1. Compute recursive nodes similarity

if only one of e1 and e2 is recursive nodes
then return 0; //they will not be matched;
else if both e1 and e2 are recursive nodes
then return ElementSim(R− e1, R− e2, Threshold);
// R− e1, R− e2 are the corresponding reference nodes.

Step 2. Compute leaf-context similarity (LCSim)
if both e1 and e2 are leaf nodes
then return SemanticSim(e1, e2, Threshold);
else if only one of e1 and e2 is leaf node
then LCSim = SemanticSim(e1, e2, Threshold);
else //Compute leaf-context similarity

LCSim =LeafContextSim(e1, e2, Threshold);
Step 3. Compute immediate descendants similarity(IDSim)

IDSim=ImmediateDescSim(e1, e2, Threshold);
Step 4. Compute element similarity of e1 and e2

return α×SemanticSim(e1, e2, Threshold) +β × IDSim
+ γ × LCSim;

Figure 3.3: Algorithm to Compute Element Similarity

BasicSim - The basic similarity of two elements is defined as a weighted
sum of OntologySim and ConstraintSim:

BasicSim(e1, e2) = w1 ∗OntologySim(e1, e2)

+ w2 ∗ ConstraintSim(e1, e2),

where weights w1 + w2 = 1 and

• OntologySim - A recursive algorithm which determines ontology simi-
larity between two words w1 and w2 by comparing w1 with synonyms
of w2. It exploits procedure SynSet(w) that searches a thesaurus and
returns the set of synonyms of a word w. At the beginning of the
algorithm OntologySim a set S is initialized as S = {w2} and the
depth of algorithm is 0. If w1 /∈ S, then S =

⋃
w∈S

SynSet(w) and

depth+ = 1, until w ∈ S or depth is higher than Maxdepth, where
Maxdepth is a threshold to avoid infinite searching of thesaurus. If
no synonym is found, then OntologySim is 0, otherwise it is defined
as 0.8depth.
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• ConstraintSim - An algorithm to compute similarity of cardinality
constraints of two elements. ConstraintSim is computed from con-
straint compatibility table depicted in Figure 3.4.

* + ? none
* 1 0.9 0.7 0.7
+ 0.9 1 0.7 0.7
? 0.7 0.7 1 0.8
none 0.7 0.7 0.8 1

Figure 3.4: Cardinality Compatibility Table

Path Context Coefficient - An algorithm to determine the degree of
similarity of the paths of two elements. For two elements’ path contexts
(list of elements on the path from one element to another) we compute
their similarity by first determining the BasicSim between each pair of
elements in the contexts. Then the pairs of elements with highest similarity
are returned as a list of one-to-one mapping. Finally, resulting Path context
coefficient (PCC) is obtained by taking the average BasicSim from the
mapping list.

Let Root1, Root2 are the roots of e1, e2 respectively. Semantic similarity
now can be defined as:

SemanticSim(e1, e2) = PCC(e1, e1.Root1, e2, e2.Root2)

× BasicSim(e1, e2),

(2) Immediate Descendants Similarity

ImmediateDescSim is obtained by comparing immediate descendants (at-
tributes and subelements) of an element. For element e1 with immedi-
ate descendants c11, ..., c1n, and element e2 with immediate descendants
c21, ..., c2m, basic similarity is computed at first between each pair of de-
scendants in the two sets. The pairs of descendants with highest similarity
are selected. The resulting ImmediateDescSim of e1 and e2 is finally de-
termined taking the average BasicSim of their descendants.

(3) Leaf Context Similarity

In contrast to ImmediateDescSim, LeafContextSim of elements e1 and e2
considers leaf nodes of the subtrees rooted at these elements. Leaf similarity
is calculated as follows:

LeafSim(l1, e1, l2, e2) = PCC(l1, e1, l2, e2)

× BasicSim(l1, l2).
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Then, analogous to Immediate Descendants Similarity, the pairs of
leaf nodes with highest similarity are returned and the resulting
LeafContextSim is determined taking the average LeafSim of leaf
nodes.

The resulting element similarity can be obtained as follows:

ElementSim(e1, e2) = α× SemanticSim(e1, e2)

+ β × LeafContextSim(e1, e2)

+ γ × ImmediateDescSim(e1, e2),

where α + β + γ = 1 and (α, β, γ) ≥ 0.
Having ElementSim for each pair of elements of two DTDs, we can

finally evaluate similarity of the DTDs. Analogous to above procedures,
the pairs of elements with highest ElementSim are found and the resulting
similarity of two DTDs is determined taking the average of ElementSim of
found elements.

3.3.2 Cupid

Cupid [MBR01] is other variant of a hybrid matcher. The matcher focuses
on computing similarity coefficients, in the [0,1] range, between elements of
the two schemas and then deducing a mapping from those coefficients. The
algorithm has three phases:

1. Linguistic matching - In this phase the algorithm matches schema
elements on the basis of their names, data types, domains, etc. Linguistic
matching consists of three particular steps:

• Normalization - element names are normalized by tokenization
(parsing names into tokens based on punctation, case, etc.), expansion
(identifying abbreviations and acronyms) and elimination (discard-
ing preposition, articles, etc.). A thesaurus is used for each of these
steps.

• Categorization - elements are clustered into categories. This is based
on linguistic meaning of element names or on data types.

• Comparsion - tokens of elements (obtained in Normalization phase)
are compared using a thesaurus. Tokens are compared on the basis
of synonymy and hypernymy relationship. Only elements in the same
category (produced in Categorization phase) are compared in order
to reduce amount of comparisons.
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The result is a linguistic similarity coefficient, lsim, between each pair
of elements of two schemas.

2. Structural matching - The second phase transforms the original
schema into a tree and then performs a bottom-up structure matching,
resulting in a structural similarity between pairs of element. The result is
a context similarity coefficient, ssim.

The algorithm of this phase is based on the following observations:

• Two leaves are similar if they are individually (linguistic and data
type) similar, and if their ancestors and siblings are similar.

• Two non-leaf elements are similar if they are linguistically similar, and
the subtrees rooted at the two elements are similar.

• Two non-leaf elements are structurally similar if their leaf sets are
highly similar, even if their immediate descendants are not.

These observations are exploited in the TreeMatch algorithm depicted
in Figure 3.5. It is noticeable that the structural similarity is mainly based
on a similarity of leaf nodes. The focus on leaves is based on the assumption
that most of the information content is represented in leaves and that leaves
have less variation between schemes than the internal structure.

Figure 3.5: The TreeMatch algorithm

3. Mapping - Weighted sum, wsim, of linguistic and structural similarity
of pairs of elements is calculated in this phase.

wsim = wstruct × ssim+ (1− wstruct)× lsim,
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where wstruct is in the range [0,1]. Mapping is then decided on the base of
that sums.

After weighted sums are computed a mapping of elements is created by
choosing pairs of schema elements with maximal weighted similarity.

3.3.3 LSD

In contrast to the previous two methods, LSD (Learning Source Description)
[DDH01] belongs to matchers based on composite approach. The LSD
system semi-automatically creates semantic mappings of schema elements.

As a composite matcher, LSD integrates several individual matchers.
Each of them uses a special technique called machine learning. That tech-
nique enables to match a new data source against a previously determined
set of data. The system has two phases. In the first phase, called training
phase, the matcher is learned on sample data sources where the mapping
is given by a user. In the second phase, the rules gained from patterns are
applied to a new data sources.

Finally a global matcher is used to merge the lists of results from indi-
vidual matchers into a combined list of match candidates for each schema
element. The rate of efficiency of mapping depends on the amount of ex-
amined schemas during the training phase.



Chapter 4

Proposed Method

4.1 Method Overview

The method described in this work proposes to exploit the edit distance and
adjust it so it can be used to compute similarity of DTDs. The algorithm
is based mainly on the work presented in [NJ] which focuses on comparing
XML documents. The main contribution of this algorithm is in introduc-
ing two special edit operations Insert − Tree and Delete − Tree. These
operations allow manipulating more complex structures than a single node.
This is profitable for XML documents where some structures can be found
repeatedly due to cardinality of elements of DTD. For example, in Figure
4.1 two trees representing XML documents are depicted. The difference be-
tween them is only in the number of Product elements. Using Delete−Tree
operation the whole subtree of Product element can be removed from tree
B in one step.

Figure 4.1: Applying Delete-Tree operation

Some repeated structures can be found in DTD trees too, especially
if DTD contains some shared or recursive elements. That is why these
new edit operations are suitable for our method as well. However, some
procedures for computing edit distance need to be modified in order to use
the algorithm for DTDs.

28
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In addition, the semantic aspect of elements is often very important.
Therefore, this work concerns also with semantic similarity [LYHY02].

4.2 Parts of Method

The whole method can be divided into 3 main parts as shown in Figure 4.2.

Input: DTDA, DTDB

Output: Edit distance between DTDA and DTDB

begin1

TreeA = ParseDTD(DTDA);2

TreeB = ParseDTD(DTDB);3

CostGraft = ComputeCost(TreeB);4

CostPrune = ComputeCost(TreeA);5

return EditDistance(TreeA, TreeB, CostGraft, CostPrune);6

end7

Figure 4.2: Main parts of the algorithm

At first step the input DTDs are parsed (line 2 and 3) and their trees are
constructed. Next, costs for tree-inserting (line 4) and tree-deleting (line
5) are computed. In the final step (line 6) we compute edit distance using
dynamic programming.

4.3 Tree Construction

Many variants of transformation DTD into graph representation have al-
ready beena described. One of the most widely used, so-called DTD graph,
was presented in [STZ+99]. The method transforms a DTD into an ori-
ented graph, where nodes represent elements, attributes, and their cardi-
nality constraints and edges represent relationships among element and its
sub-elements, attributes, or cardinality constraints. However, this repre-
sentation is not suitable for our method, since it can contain also auxiliary
nodes: OR node for choice among elements, AND node for sequence of
elements. It is difficult to compare similarity of DTD graphs containing
both of these types of nodes, as they can generate totaly different XML
documents, although they can have very similar structure. Therefore, we
will use other representation of a DTD graph. However, we need to simplify
DTD at first.
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4.3.1 Simplification of DTDs

The DTD content model can be very complex and complicated, but it can be
simplified. Some transformation rules for simplifying DTDs are described,
e.g. in [STZ+99]. But these simplifications are too strong, because e.g. all
”+” operators are transformed to ”*” operators. Hence, we extend the rules
to preserve ”+” operators. The resulting rules are shown in Figures 4.3 and
4.4. Note that also transformation rules could be applied, but we do not
need any other for our method.

I-a) (e1|e2)∗ → e∗1, e
∗
2

I-b) (e1, e2)
∗ → e∗1, e

∗
2

I-c) (e1, e2)?→ e1?, e2?
I-d) (e1, e2)

+ → e+1 , e
+
2

I-e) (e1|e2)→ e1?, e2?

Figure 4.3: Flattening transformation rules

II-a) e++
1 → e+1

II-b) e∗∗1 → e∗1
II-c) e∗1?→ e∗1
II-d) e1?

∗ → e∗1
II-e) e+∗1 → e∗1
II-f) e∗+1 → e∗1
II-g) e1?

+ → e∗1
II-h) e+1 ?→ e∗1
II-i) e1??→ e?1

Figure 4.4: Simplification transformation rules

Rules I-a and all II-a to II-i are information preserving and therefore
they have high priority.

An example of element simplification is depicted in Figure 4.5. Note
that only the third step leads to information loss. As mentioned above,
another transformation could be used, e.g. for grouping elements with the
same name (e.g. ”Para” elements could be grouped in our example), but
we do not need these rules.

Rules I-a to I-e convert a nested definition into a flat representation.
Rules II-a to II-i reduce combination of cardinality operators. These trans-
formation rules are important for correct transforming DTDs into trees.
Their usage provides a logical foundation for DTD transformation and min-
imizes information loss. Other solution to avoid using ”OR” nodes in DTD
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Rule I-a: Sections (Title?, (Para | (Title?, Para+)+)*)

⇒ Sections (Title?, (Para*, ((Title?, Para+)+)*))

Rule II-e: Sections (Title?, (Para*, ((Title?, Para+)+)*))

⇒ Sections (Title?, (Para*, (Title?, Para+)*))

Rule I-b: Sections (Title?, (Para*, (Title?, Para+)*))

⇒ Sections (Title?, (Para*, Title?*, Para+*))

Rules II-d and II-e: Sections (Title?, (Para*, Title?*, Para+*))

⇒ Sections (Title?, Para*, Title*, Para*)

Figure 4.5: Example of transformation rules

tree is, for example, to avoid such nodes at all. But transformation rules
preserve more semantic information.

Other reason for using these rules is to enable converting all elements
definitions so that each cardinality constraint operator will be connected
only to one element. If we then join the constraint operator directly with the
element we can avoid nodes representing cardinality constraint operators.

4.3.2 DTD Tree

After transformation of a DTD, its tree can be defined as follows:

Definition 4.3.1. [DTD Tree] is an ordered rooted tree T (V,E) where

• V is a finite set of nodes. For v ∈ V , v = (vType, vName, vCardinality),
where vType is a type of node (attribute, element, #PCDATA), vName

is a name of an element or attribute, and vCardinality is cardinality
constraint operator of an element or an attribute,

• E ⊆ V ×V is a set of edges representing relationships between element
and its attributes or sub-elements.

For example, the DTD in Figure 4.6 can be transformed after simplifi-
cation into DTD tree depicted in Figure 4.7.

Note that the DTD definition may contain other constructs, such as,
e.g., entities, notations or EMPTY and ANY types of elements, enumer-
ated and tokenized attribute type. These constructs are not used in our
implementation for simplicity. However, it is very simple to extend our
tree definition to include them and it would not affect complexity of the
algorithm.
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<!ELEMENT Article (Title, Author+, Section+)>

<!ELEMENT Sections (Title?, (Para|(Title?, Para+)+)*)>

<!ELEMENT Title (#PCDATA)>

<!ELEMENT Para (#PCDATA)>

<!ELEMENT Author (#PCDATA)>

<!ATTLIST Author CDATA Name REQUIRED>

Figure 4.6: DTD example

Figure 4.7: DTD Tree representation after transformation

4.3.3 Shared and Repeating Elements

In general, the structure of a DTD does not have to be purely tree-like.
Some sub-elements may be shared by more than one element. In this case
edges in graph would violate the tree structure. Therefore, each appearance
of a shared element is represented using a single node (including its subtree).

On the other hand, if one of element’s ancestors appears in its definition
then recursive inclusion of elements occurs. And applying the previous rule
for shared element it would lead to an infinite branch of tree. The majority
of works concerning XML schema processing ignore this possibility at all.
But the mentioned inconvenience can be solved, e.g., by simplification of
such branch and repeating only several occurrences of this structure. From
statistical analysis of real data [MTP06] we know that 10 occurrences are
enough for approximation. Actually, it is not very important for our method
how many occurrences we use because each of them can be transformed
using single operation. Transformation of tree structures will be explained
in the following text more precisely.
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4.4 Tree Edit Operations

As mentioned above our method is based on the edit distance algorithm
for XML documents proposed in [NJ]. They use five edit operations for
transformation of XML trees. Due to our representation of DTD trees we
can use exactly the same operations. They were described in definitions
2.3.3 - 2.3.7.

However, we need to modify definition 3.1.1 of allowable sequences.

Definition 4.4.1. [Allowable] A sequence of edit operations transforming
a source tree A to a destination tree B is allowable if it satisfies the following
two conditions:

1. A tree P may be inserted only if tree similar to P already occurs in the
source tree A. A tree P may be deleted only if tree similar to P occurs in
the destination tree B.

2. A tree that has been inserted via the InsertTree operation may not
subsequently have additional nodes inserted. A tree that has been deleted
via the DeleteTree operation may not previously have had (children) node
deleted.

The meaning of similar node and similar tree will be explained in section
4.5.1. The reason for using only allowable sequence of edit operations is the
same as in the original algorithm. We only do not insist on occurrence
of exactly the same tree, but we allow only similar trees to be inserted or
deleted.

Each of the edit operations is associated with a non-negative cost. The
algorithm works with arbitrary costs. In our experimental implementation
constant unit costs are set for operation Insert and Delete. Costs for
insertion and deletion tree are parametrized. So, for example, we can simply
avoid using InsertTree operation by setting high value to its cost.

The original algorithm does not consider similarity of nodes. Since in
our method we want to take into account also cardinality, semantic and
syntactic similarity of elements, we compute cost for operation Substitution
as follows. Let x be the root node of tree A, y be the root node of B and ε
be similarity of these nodes. Then cost for SubstituteA(y) = 1− ε.

4.5 Computing Costs for Inserting and

Deleting Trees

Inserting a subtree Ti can be done with a single operation InsertTree or
with some combination of InsertTree and Insert operations. To find the
optimal variant the algorithm uses pre-computed cost for inserting tree
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Ti, CostGraft(Ti), and deleting tree Ti, CostPrune(Ti). The procedure for
computing these costs can be divided into two parts. In the first part
containedIn list is created for each subtree of Ti. In the second part
CostGraft and CostPrune are computed for Ti. This procedure is described
in detail in [NJ] and it is also summarized in the chapter 3.1.1. In our ap-
proach the procedure is modified to involve similarity. Before the changes
are applied, the similarity of DTD elements must be described.

4.5.1 Element Similarity

Similarity of elements can be evaluated using various criteria. Our method
focuses on semantic and syntactic similarity and also on similarity of cardi-
nality constraints of elements.

The first step to determine similarity focuses on the semantics of words.
Semantic similarity is a score that reflects the semantic relation between the
meanings of two words. Computing the score between two words w1 and w2

can be handled by searching synonyms of these words in a thesaurus. For
this purpose we can reuse the procedure OntologySim described in section
3.3.1.

Secondly, we focus on syntactic similarity of elements. It is determined
by computing the edit distance between labels of two elements. For our
purpose the Levenshtein algorithm id used (see Figure 2.1). It uses three
common edit operations: Substituting, Inserting and Deleting of a single
character where each operation is associated with constant unit costs.

Finally, we consider similarity of cardinality constraints of elements. For
our purpose we use cardinality compatibility table depicted in Figure 3.4.

In our experimental implementation this table is used also for attributes
where the IMPLIED constraint is associated with ? cardinality constraint
and REQUIRED constraint is associated with none cardinality constraint.

Now, the overall similarity, Sim, can be computed. However, since two
words with a similar meaning can have small syntactic similarity, we use
only maximum of this two scores. Hence, the overall similarity of elements
e1 and e2 is computed as follows:

Sim(e1, e2) = Max(SemanticSim(e1, e2), SyntacticSim(e1, e2))× α
+ CardinalitySim(e1, e2)× β,

where α + β = 1 and α, β >= 0 .
Since two different words can have relatively small edit distance it is

appropriate to use a threshold for the similarity. It can have general non-
negative value <= 1. If this value is set to 1, then only exactly same
elements will be marked as similar.
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4.5.2 ContainedIn Lists Creating

The procedure for determining element similarity is used for creating
ContainedIn lists which are used for computing CostGraft and CostPrune.
The list is created for each node of the destination tree and contains
pointers to similar nodes in the source tree.

The sketch of procedure for creating ContainedIn lists is shown in
Figure 4.8. Since creating of lists starts from leaves and continues to root,
there is recursive calling of procedure at line 4. At line 6 we find all similar
nodes of nodeB in tree A and add them to a list temporary. If nodeB is a
leaf, we have a ContainedIn list created. Otherwise, for non-leaf nodes we
have to filter the list with lists of node’s descendants (line 8).

In this step each descendant of nodeB has to be found at the correspond-
ing position in descendants of nodes in created ContainedIn list. More pre-
cisely, let vA ∈ nodeBContainedInList, childrenvA

is the set of vA descendants,
and childB is a child of nodeB, then childBContainedInList∩ childrenvA

6= ∅,
otherwise vA is removed from nodeBContainedInList. Due to this step only
whole subtrees remain in the ContainedInList.

Input: tree A, root of tree B
Output: CointainedInLists for all nodes in tree B
CreateContainedInLists(treeA, nodeB);1

begin2

foreach child in nodeB do3

CreateContainedInLists(treeA, child)4

end5

nodeBContainedInList = FindSimilarNodes(treeA, nodeB);6

foreach child in nodeB do7

nodeBContainedInList = FilterLists(nodeBContainedInList,8

childContainedInList);
end9

Sort(nodeBContainedInList);10

end11

Figure 4.8: ContainedIn Lists Creating

4.5.3 Costs for Inserting Trees - CostGraft

When ContainedIn lists with corresponding nodes are created for node r,
the cost for inserting the tree rooted at r can be assigned. The procedure
is shown in Figure 4.9. The ForEach loop computes sum, sumd0, for
inserting node r and all its subtrees. If InsertTree operation can be applied
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(ContainedIn list of r is not empty), sumd1, is computed for this operation
at line 10. The minimum of these costs are finally denoted as CostGraft for
node r.

Input: root of tree B
Output: CostGraft for tree B
ComputeCost(r);1

begin2

sumd0 = 1;3

foreach child in r do4

ComputeCost(child);5

sumd0 += CostGraft(child);6

end7

sumd1 = ∞;8

if rootContainedInList is not empty then9

sumd1 = ComputeInsertTreeCost(r);10

end11

CostGraft(root) = Min(sumd0,sumd1);12

end13

Figure 4.9: Computing CostGraft

4.5.4 Costs for Deleting Trees - CostPrune

Since rules for deleting a subtree T from source are same as rules for inserting
a subtree T into destination tree, costs for deleting trees are obtained by
exactly the same procedures. We only switch tree A to tree B in procedures
CreateContainedInLists and ComputeCost.

4.6 Computing Edit Distance

The last part of the algorithm for computing the edit distance is based on
dynamic programming. At this step the procedure decides which of the op-
erations defined in section 4.4 will be applied for each node to transforming
source tree A to destination tree B. This part of algorithm does not have
to be modified for DTDs so the original procedure presented in [NJ] is used.
The procedure is depicted in figure 3.2.
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4.7 Advantages and Disadvantages of the

Proposed Method

The method proposed in this thesis evaluates the minimal edit distance cost
for transforming one tree to another. Due to edit operations for inserting
and deleting trees this method is appropriate for DTD trees as well.

It takes into account semantic and syntactic similarity and cardinality
constraints too. The method is also very flexible due to possibility of
using parameters for weights of particular similarities. For example we can
avoid computing structural similarity between elements and determine only
semantic similarity. In this case we reflect only similar meanings of labels
of elements. We can also avoid computing similarity all together. Then this
method would be similar to [NJ].

This method uses transformation rules for eliminating alternative oper-
ators and complexity of element type definition. These rules are necessary
for effectiveness of computing the edit distance. But, on the other hand,
these rules can lead to some information loss, which could be a disadvan-
tage for some applications. A possible solution for including OR operators
in DTD trees is to split it into a forest of AND trees. But it can lead into
a huge number of trees and, hence, to higher complexity of the algorithm.

The method can be also extended with some other DTD constructs
which can appear in DTD, such as, e.g., entities or attribute types . Al-
though this is not difficult, task these constructs were not implemented only
for the purpose of transparency of this text.

4.8 Complexity

In [NJ] was shown that the overall complexity is O(|A‖B|) for algorithm
transforming tree A into tree B without determining similarity between
their nodes. In our method we have to consider additional procedures
for constructing DTD trees and mainly for computing similarity between
elements.

Constructing a DTD tree is simple operation which can be done
in O(|A|) for tree A. The complexity of finding similarity depends
on three procedures: SemanticSimilarity, SyntacticSimilarity and
CardinalityConstraintSimilarity.

Syntactic similarity (edit distance of elements’ labels) is computed for
each pair of elements in tree A and B. So the complexity is O(|A‖B‖ω|)
where ω is a maximal length of element’s label.

Similarity of cardinality operators is also computed for each pair of
elements. However, it is an operation with constant complexity. Hence,
its complexity is O(|A‖B|).
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The complexity of finding semantic similarity depends on the size of the
thesaurus and on the number of steps (depth) we want to search synonyms.
Since it is reasonable to search synonyms only for a few steps, we do not
consider depth for computing complexity. So the overall complexity is
O(|A‖B‖Σ|), where Σ is the set of words in the thesaurus. Without any
doubt this is the most time-consuming procedure in our method.



Chapter 5

Implementation

Experimental implementation of the proposed method is a part of this
work. The application is called DTDEditDistance. An overview of used
technologies, the architecture of the implementation, and user manual can
be found in this chapter.

5.1 Used Technology and Libraries

The application is written as a .NET Framework 2.0 Windows Application.
C# was used as programming language for the implementation. .NET was
chosen for its rich support of libraries for working with XML documents
and for author’s good experience of this language.

The special libraries [Sem05] for computing semantic similarity of two
words were used in our implementation. This library is also written using
.NET framework and it uses a lexical database, called WordNet [Wor07],
which is available online and provides a large repository of English lexical
items. WordNet library (version 2.1) has to be installed on computer, unless
semantic similarity is not enabled.

5.2 Overview of Architecture

The architecture composes of several modules and objects.

• UserInterface - this module is an interface between user and logical
parts of application

• EditDistanceMetric - the main module containing basic procedures
for computing edit distance

• DTDTree - the class representing DTD tree object, it also contains
some methods for processing DTD trees, e.g., depth-first-searching of
tree
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• DTDParser - the module for parsing DTD definitions, simplifying of
definitions and DTD trees constructing

• CostComputer - the module for computing costs of edit operations

• ElementManager - the module for processing elements (e.g., elements
similarity is computed by this module)

The communication among these modules is depicted in Figure 5.1.

Figure 5.1: Application Architecture

5.3 User Manual

A communication between user and application is enabled only through
graphic interface that is shown in Figure 5.2.

After starting of the application a windows form appears. At first two
separate files with DTD definitions have to be selected. Then, the pro-
cess for computing edit distance between the two DTDs can be started by
pressing button ”Edit Tree”.

A user can also influence the process for computing edit distance by
modifying its parameters or by selecting types of similarities that should
be used during the process. For example, Node similarity threshold is a
minimum value of a similarity between two elements. If the similarity is
lower than threshold, than it is decreased to zero. The meaning of the
other parameters are obvious from their description on the form.

The resulting value of edit distance between two DTDs is displayed on
the form as well. The value of similarity is displayed together with the result
of edit distance.
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Figure 5.2: DTDEditDistance application

5.4 Restriction of Implementation

The application DTDEditDistane was implemented only for experimen-
tal purpose. It should demonstrate behaviour of the main edit distance
procedure and influence of various parameters. The main restriction of ap-
plication is that it requests DTDs with simplified definition, described in
section 4.3.1. The transformation rules are not implemented.



Chapter 6

Experiments

In this chapter some experimental results of our implemented application
are reviewed. We made several types of experiments for evaluating our
method. In first one we collected some real DTDs and compared them each
other. Then DTDs were categorized according to their similarities. Next
experiments were focused on influence of some parameters on the algorithm.
For this purpose we used artificial DTDs.

6.1 Real Data Comparing

In this experiment we used 7 different DTDs. All of them are stored on the
supplied CD in ”DATA” directory.

First 5 DTDs represent a CUSTOMER object. Next two DTDs rep-
resent other objects: TV SCHEDULE and NEWSPAPER. We used
default values of parameters. Results of this test are depicted in Figure
6.1. The value in each cell is the resulting similarity of two DTDs for which
both semantic and structural similarity were used. We can see that DTDs,
representing the same object CUSTOMER, have higher similarities among
themselves (the average is 0.44) than similarities among DTDs representing
different objects (the average for NEWSPAPER DTD is 0.13 and aver-
age for TV SCHEDULE DTD is only 0.03). The only one exception is
between CUSTOMER1 DTD and NEWSPAPER DTD. Their similarity
is relatively high.

In the second test we used the exactly same DTDs but we computed
similarities without focusing on semantic similarity of elements. The result-
ing values are a little lower as we can see in Figure 6.2. However, the trend
between same and different objects is same as in the previous test.
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c1 c2 c3 c4 c5 tv news
customer1.dtd 1 0.57 0.43 0.19 0.71 0.08 0.42
customer2.dtd 0.57 1 0.57 0.45 0.48 0.10 0.11
customer3.dtd 0.43 0.57 1 0.39 0.36 0.01 0.13
customer4.dtd 0.19 0.45 0.39 1 0.21 0.00 0.00
customer5.dtd 0.71 0.48 0.36 0.21 1 0.00 0.11
tvschedule.dtd 0.08 0.10 0.01 0.00 0.00 1 0.00
newspaper.dtd 0.42 0.11 0.13 0.00 0.11 0.00 1

Figure 6.1: Real DTDs comparing

c1 c2 c3 c4 c5 tv news
customer1.dtd 1 0.45 0.23 0.09 0.57 0.00 0.13
customer2.dtd 0.45 1 0.50 0.42 0.32 0.00 0.00
customer3.dtd 0.23 0.50 1 0.30 0.15 0.00 0.00
customer4.dtd 0.09 0.42 0.30 1 0.20 0.00 0.00
customer5.dtd 0.57 0.32 0.15 0.20 1 0.00 0.00
tvschedule.dtd 0.00 0.00 0.00 0.00 0.00 1 0.00
newspaper.dtd 0.13 0.00 0.00 0.00 0.00 0.00 1

Figure 6.2: Real DTDs comparing without semantic similarity

6.2 Semantic Similarity Comparing

In this section we focused on some parameters of the application. At first,
we are concerned with semantic similarity. We defined three DTDs, see
Figure 6.3, which have exactly the same tree structure. They differs only
in their element names. The element names of first and second DTDs have
similar meaning while the element names of the third DTD have no lexical
meaning.

The resulting values of comparing these DTDs are depicted in Figure 6.4.
As we can see, there is a significant difference in comparing first two DTDs.
They were identified as almost similar when we used semantic similarity.
Despite comparing semantic similarity of DTD elements is time-consuming
task, it can be very useful for identifying similar DTDs.

6.3 Edit Distance Operations

The last experiment is focused on two special edit operations using for trans-
forming DTD trees, InsertTree and DeleteTree. They are proposed for
transforming repeating structures of a tree. We defined two similar DTDs
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<!ELEMENT PERSON (DOMICILE, WORK)>

<!ELEMENT DOMICILE (STATE, TOWN)>

<!ELEMENT STATE (#PCDATA)>

<!ELEMENT TOWN (#PCDATA)>

<!ELEMENT WORK (#PCDATA)>

<!ATTLIST PERSON SURNAME CDATA #REQUIRED>

<!ELEMENT USER (RESIDENCE, JOB)>

<!ELEMENT RESIDENCE (COUNTRY, CITY)>

<!ELEMENT COUNTRY (#PCDATA)>

<!ELEMENT CITY (#PCDATA)>

<!ELEMENT JOB (#PCDATA)>

<!ATTLIST USER LASTNAME CDATA #REQUIRED>

<!ELEMENT AAA (BBB, DDD)>

<!ELEMENT BBB (EEE, FFF)>

<!ELEMENT DDD (#PCDATA)>

<!ELEMENT EEE (#PCDATA)>

<!ELEMENT FFF (#PCDATA)>

<!ATTLIST AAA CCC CDATA #REQUIRED>

Figure 6.3: DTDs definition for semantic similarity comparing

With semantic similarity Without semantic similarity
PERSON x USER 0.92 0.40
PERSON x AAA 0.33 0.33

Figure 6.4: Influence of semantic similarity

depicted in Figure 6.5. One of them has shared elements. As mentioned in
the section 4.3.3, shared element is duplicated for each of its ancestors in
our DTD tree representation.

We made four comparison of these DTDs with different costs of edit
operations InsertTree and DeleteTree. We can see in Figure 6.6 that in
first two cases these special operations were really used. In the last two
comparisons the costs for the operations were too high and the repeating
tree structures were transformed by sequence of other single-node edit op-
erations.

The DTDs were correctly identified as similar only when costs of these
special operations were set sufficiently low.
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<!ELEMENT USER (CUSTOMER, EMPLOYEE)>

<!ELEMENT CUSTOMER (USERDATA, ORDERS)>

<!ELEMENT EMPLOYEE (USERDATA, POSITION)>

<!ELEMENT USERDATA (ID, NAME, BIRTHDAY)>

<!ELEMENT ORDERS (#PCDATA)>

<!ELEMENT POSITION (#PCDATA)>

<!ELEMENT ID (#PCDATA)>

<!ELEMENT NAME (#PCDATA)>

<!ELEMENT BIRTHDAY (#PCDATA)>

<!ELEMENT USER (CUSTOMER)>

<!ELEMENT CUSTOMER (USERDATA, ORDERS)>

<!ELEMENT USERDATA (ID, NAME, BIRTHDAY)>

<!ELEMENT ORDERS (#PCDATA)>

<!ELEMENT ID (#PCDATA)>

<!ELEMENT NAME (#PCDATA)>

<!ELEMENT BIRTHDAY (#PCDATA)>

Figure 6.5: DTDs definition for special edit operations

Cost=1 Cost=5 Cost=10 Cost=100
USER1 x USER2 0.92 0.74 0.52 0.52

Figure 6.6: Comparing different costs of edit operations
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Conclusion

The aim of this work was a proposal and implementation of own method
for similarity evaluation among XML schemes.

Firstly, existing solutions were analyzed and their advantages and dis-
advantages were discussed. Then, on the basis of the analysis and found
disadvantages of analyzed solutions, the algorithms of our new method were
proposed.

DTD language was chosen as a language for definition of schemes of XML
documents. DTD is commonly used for declaration of XML documents on
the web and it is also suitable language for its simplicity. These reasons
were decisive for selecting DTD. The tree edit distance technique was chosen
for similarity evaluation. This technique has approved itself for similarity
evaluation of XML documents and we wanted to extend it also on DTDs.

The proposed algorithms were implemented in the practical part of this
work. However, at first we researched some existing possible components
useful for our algorithms, such as WordNet working with the thesaurus,
that we used for searching synonyms of words.

The main contribution of this work is the extension of the edit distance
algorithm to processing DTD trees. In many related works this technique
was previously used, however, only for comparing similarity of XML doc-
uments. Other contribution is in focusing on various aspects of similarity
evaluation and using several individual solutions (i.e. edit distance of ele-
ments names, or searching a thesaurus to evaluate their semantic similarity)
together in one complex method. We also proposed our own representation
of DTD trees.

Finally, we can declare that our primary aims were realized in principle.
However, the proposed solution can be still extended. For example, further
edit operations can be added to our algorithm, e.g., moving a node or a
subtree, or deleting a non-leaf node. Other scope for future work is in using
another type of edit distance algorithm. There are quite a lot of types of
such algorithms dealing with XML documents. Using XML Schema instead
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of DTD is another interesting alternative for implementing tree edit distance
algorithm. XML Schema is another language for description of type of XML
document and it can be also represented as a tree, partly due to the fact
that it is based on XML language.
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Appendix A

Contents of CD-ROM

Contents of CD-ROM

The enclosed CD-ROM is a part of this thesis. It contains the text of
the work, source code of the implemented application and executable files
of the application DTDEditDistance. CD-ROM contains following files and
directories:

• text - directory with the text of the thesis in PDF format

• src - directory with source codes of the application

• app - directory containing binaries files of the application

• data - directory with data files that were used for experiments
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