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e-mail vedoućıho: irena.mlynkova@mff.cuni.cz
Abstrakt:
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Chapter 1

Introduction

1.1 Motivation

The internet is a world of communication and data exchange. But if two parts
want to communicate with each other, they must use the same language. One
of the popular languages used for a communication and a data exchange on
the internet is the Extensible Markup Language (XML) [20]. XML is a
markup language, that specifies only a syntax of markups. The structure of
the XML document must be described explicitly in a so-called XML schema
document. Thus, if two parts want to communicate using the XML language,
they must have the same XML schema document to know the XML document
structure.

The two most popular languages, that are both proposed by the W3C
[16], are DTD [20] and XML Schema [17, 18, 19]. The former one is a part of
the XML specification and it is a basic XML schema description language.
But there are situations, where DTD constructs are insufficient. The latter
language was created for purposes, where DTD is not strong enough. When
the object-oriented approaches were spreaded in the computer science, there
were requirements for an object-oriented description of the XML document
structure. XML Schema is the product. It provides inheritance between
types, substitution groups or user-defined data types.

But specifying a schema for an XML document is not mandatory. Thus
there can be XML documents that are not associated with a schema. It has
been found, that 52 % of randomly crawled XML documents have no schema
defined [10]. This observation yields to the study of automatic inference of
XML schema for a given set of XML documents. A number of works is
concerned with the automatic schema construction. Most of it is focused on
inferring DTD [4, 11, 12, 22]. Some later works are focused on additional
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XML Schema constructs [14, 15, 3, 2] especially on inferring different types
for elements with the same name but different structure. But there is still
space for further improvements.

1.2 Aim of the Thesis

The aim of this thesis is to propose an algorithm of construction of XML
Schema for a given set of XML samples. This thesis analyses existing solu-
tions and discuss their advantages and disadvantages. It mainly focuses on
ways of how can user interaction help in the XML Schema inference. Espe-
cially in the inference of constructs that cannot be expressed by DTD such as
inheritance or groups. Part of the thesis is an experimental implementation
of the proposed algorithm and it includes experimental results.

1.3 Structure of the Theisis

This chapter presented a motivation and the aim of the thesis. Second Chap-
ter contains basic definitions from automata theory and formal languages
theory needed for the next chapters. In Chapter 3 XML and XML Schema
languages are described and some definitions are presented. Related work is
described and discussed in Chapter 4. In Chapter 5 possibilities of the user
interaction are discussed and the proposed algorithm is outlined. Chapter
6 contains some details of the experimental implementation. Experimental
results are presented in Chapter 7. Finally, Chapter 8 contains a conclusion
and some suggestions for the future work. Part of this thesis is also a brief
user guide for the experimental implementation located in Appendix B.
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Chapter 2

Basic Definitions

In this chapter basic definitions from the theoretical informatics are placed.
The definitions necessary in the following chapters are from the scope of the
formal languages theory and the automata theory [6].

2.1 Formal Languages Theory

An Alphabet Σ in the context of formal languages can be any finite or
infinite set, although usually a set of symbols or characters is used. The
elements of an alphabet are called letters. A word over an alphabet can
be any finite sequence of letters. The set of all words over an alphabet Σ is
denoted by Σ∗. An empty word is denoted by λ.

Definition 2.1.1 A formal language L over an alphabet Σ is a subset of Σ∗.

A formal language can be represented simply by a set of words or can be
described using various types of formalisms. For example, a formal language
can be a set of words generated by some formal grammar, a set of words that
match by a particular regular expression or a set of words accepted by some
automaton.

2.1.1 Grammars

Definition 2.1.2 A formal grammar G is a quaternion (S,N, Σ, P ), where
S is the start symbol, S ∈ N , N is a set of nonterminal symbols, Σ is a set
of terminal symbols (an alphabet) and P is a set of production rules of the
form

(Σ ∪ N)∗N(Σ ∪ N)∗ → (Σ ∪ N)∗
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Definition 2.1.3 Given a grammar G = (S,N, Σ, P ), the binnary relation
⇒G on strings in (Σ ∪ N)∗ is defined by:

x ⇒G y ⇐⇒ ∃u, v, w ∈ Σ∗, X ∈ N : x = uXv ∧ y = uwv ∧ X → w ∈ P

Definition 2.1.4 The language of G denoted by L(G) is defined as a set
w ∈ Σ∗|S ⇒∗

G w where ⇒∗
G is the transitive closure of (Σ ∪ N)∗.

In other words, a string in the language L(G) is generated by applying
repetitively any production rule from P starting with the start symbol S,
until no nonterminal symbols is present in the string. The language consists
of all the strings that can be generated in this manner.

Chomsky Hierarchy

The Chomsky hierarchy defines classes of formal grammars according to their
production rules complexity.

Level 0 - unrestricted grammars include all formal grammars as defined
in Definition 2.1.2. They generate exactly all languages that can be
recognised by a Turing machine.

Level 1 - context-sensitive grammars include grammars that have only
rules of the form uXv → uwv with X a nonterminal, u, v, w sequences
of terminals and nonterminals and the sequence w nonempty. The rule
S → λ is allowed only if S does not appear on the right side of any other
rule. These grammars generate so called context-sensitive languages.

Level 2 - context-free grammars generate so called context-free langua-
ges. These grammars can have only rules of the form X → w where X
is a nonterminal and w is a sequence of terminals and nonterminals.

Level 3 - regular grammars generate the regular languages. These lan-
guages are exactly all languages that can be decided by a finite state
automaton or obtained by regular expressions. Regular grammars allow
only rules of the form X → xY or X → x where X,Y are nonterminals
and x is a terminal. The rule S → λ is allowed only if S does not
appear on the right side of any other rule.
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2.1.2 Regular Expressions

Regular expressions have the same expressive power as regular grammars.
It means, that every languages, that can be denoted by regular grammars,
can be also described by regular expressions. Regular expressions consist of
letters from an alphabet Σ and operators.

Definition 2.1.5 A regular expression R is a sequence over an alphabet
Σ ∪ {?, +, ∗, |, (, )}, where ? is an zero-or-one operator, + is one-or-more
operator, ∗ is zero-or-more operator, | is choice operator and (, ) are group-
ing parentheses.

• zero-or-one operator ? makes the symbol or group optional. For exam-
ple a regular expression abc? accepts a set {ab, abc}

• one-or-more operator + allows repetition of symbol or group. For
example a regular expression abc+ accepts a set {abc, abcc, abccc, . . .}

• zero-or-more operator ∗ has the similar usage as +, but allows option-
ality. For example a regular expression abc∗ accepts a set {ab, abc, abcc,
abccc, . . .}

• choice operator | accepts one of the symbol or group. For example a
regular expression a|b|c accepts a set {a, b, c}

• parentheses group symbols or fragments of regular expression. All op-
erators can be applied on a group. For example a regular expression
(ab)+ accepts a set {ab, abab, ababab, . . .}

Thanks to the parentheses, regular expressions can be nested together.
All the following examples are valid regular expressions.

Example: Valid regular expressions

(a|b)∗ (a|b)c
(a|bc?)∗ (ab?c) + |c
((ab∗) ∗ |ac)+ ((ab) + |(bc) + |(abc + |c)+)

2.2 Automata Theory

The Automata theory is closely related to the Formal languages theory. In
the Section 2.1, classes of grammars were defined. Each automata is classified
by the class of formal languages that it is able to recognise. For the purpose
of this thesis, only a finite state automaton will be defined, that recognizes
class of regular languages.
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Definition 2.2.1 A deterministic finite state automaton A is a quintuple
A = (Q, q0, Σ, δ, F ) where Q is a set of states, q0 is the initial state, q0 ∈ Q,
Σ is an alphabet of the language the automaton recognizes, δ is a transition
function δ : Q × Σ → Q and F is a set of final states, F ⊆ Q.

Simply said, an automaton consists of a set of states and a set of transi-
tions. Each transition defines an outgoing state, an incomming state and a
letter. The outgoing state is a state, where transition “starts”. The incom-
ming state is a state, where transition “ends”. Similarily a state defines a
set of outgoing transitions and a set of incomming transitions. The outgoing
transition is a transition, that “leaves” the state. The incomming transition
is a transition, that “comes in” to the state.

Definition 2.2.2 A finite state automaton A = (Q, q0, Σ, δ, F ) recognizes
or accepts a word w = w0, w1, w2 . . . wn if δ(q0, w0) = q1 ∧ δ(q1, w1) = q2 ∧
δ(q2, w2) = q3 . . . δ(qn, wn) = qn+1 ∧ qn+1 ∈ F . A path p(w) is a sequence
q0, q1 . . . qn+1.

Definition 2.2.3 A language of A denoted by L(A) is defined as a set {w ∈
Σ∗|δ̂(q0, w) ∈ F} where δ̂ : Q × Σ∗ → Q.

A function δ̂ is in other words a concatenation of particular δ operations
over the word w.

Definition 2.2.4 Having a set of words W , a prefix tree automaton T for
W is a deterministic finite state automaton that accepts exactly each w ∈ W
and for each pair w1, w2 ∈ W , paths p(w1) and p(w2) have in common exactly
the states corresponding to the common prefix of the words.
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Chapter 3

XML and XML Schema

XML (eXtensible Markup Language) [20] standardised by the W3C consor-
tium [16] is a standard specifying a structured data description. XML is a
simplified subset of SGML (Standard Generalised Markup Language) [21]
designed to make the XML parser much easier than an SGML parser. The
XML syntax is simpler but it keeps the whole expressive power of SGML.
XML is used in various places for various purposes. For example for a data
exchange, as a data storage or as a communication protocol (XML-RPC).

3.1 XML Syntax

Each XML document contains one or more elements. An element may reffer
to other elements to cause the inclusion in the document. Actually, an XML
document can be viewed as a kind of a tree.

Definition 3.1.1 A root element or a document element is an element which
is not a part of a content of any other element in the document. There can
be only one such element.

For example in the XML document from Figure 3.1, the root element is
a mobile element.

Definition 3.1.2 An XML element or simply an element is a fragment of
an XML document which is either delimited by a start-tag and end-tag or by
an empty-element-tag. Each element has a type, it is identified by name and
may have a content and a set of attributes. Each attribute has a name and
a value.
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<xml version ="1.0" encoding ="ISO -8859 -1" standalone ="no"?>

<mobile >

<manufacturer >Nokia </ manufacturer >

<model >

<no >6300 </no>

<type >bar </type >

<weight >91 g</weight >

<dimensions >106 x43x11 mm </dimensions >

</model >

<model >

<no>N81 </no>

<type >slide </type >

<weight >140 g</weight >

<dimensions >102 x50x17 .8 mm </dimensions >

<description >Symbian S60 , WIFI </ description >

</model >

</mobile >

Figure 3.1: XML Examples: Nokia.xml

<xml version ="1.0" encoding ="ISO -8859 -1" standalone ="no"?>

<mobile >

<manufacturer id="12345" >" Sony Ericsson </ manufacturer >

<model >

<no>Z750 </no>

<type >Clamshell </type >

<dimensions >97 x49x20 .1 mm </dimensions >

<weight >110 g</weight >

</model >

</mobile >

Figure 3.2: XML Examples: SonyEricsson.xml

Element tags start with a < bracket and end with a > bracket. An end-tag
follows the open bracket with a / character, an empty-element-tag places a
/ character before the close bracket.

Each non-empty element starts with the start-tag and ends with the end-
tag with the same name as the start-tag. An element content is placed
between start-tag and end-tag. For example non-empty element mobile has a
start-tag <mobile>, end tag </mobile> and all between these tags is a content.

Each empty element consists only from an empty-element-tag and has no
content. For example <wheel/> is an empty element.

A start-tag or an empty-element-tag may have a set of attributes. At-
tributes are placed after element name delimited by a space character. Each
attribute has a name and value and has a structure of name="value". For
example <wheel size="17" type="car"/> is an empty element with attributes
size and type. The size attribute has a value 17 and the type attribute has
a value car.
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A content of an element may have the following value:

• a character string

• a list of child elements

• mixed content - child elements interlaced with character strings

Definition 3.1.3 A child element or subelement of the given element e is an
element that occurs in the content of e. For the child element, e is a parent
element.

Each document may be a well-formed XML document and, in addition,
a valid XML document.

Definition 3.1.4 A document is an XML document if it is well-formed, as
defined in the XML specification. In addition, the XML document is valid if
it meets certain further constraints.

In brief, an XML document is well-formed, if it has one root element and
all elements are of the form defined above in this Section.

This section has briefly described an XML syntax. The description covers
only constructs necessary for this thesis. The complete XML specification is
placed in [20].

3.2 XML Validation

An XML document can conform to some defined schema. An XML schema
is a description of a type of XML document. It defines a type of each element
and defines a root element. The type consists of the definition of a content
and allowed attributes.

Definition 3.2.1 An XML document is valid if it conforms to its associated
XML schema.

There are some languages that express XML schemas. The XML spec-
ification comes with a Document Type Definition (DTD) language. This
language is supported by the XML itself and can be defined in an external
source or directly in an XML document. For the DTD syntax see the XML
specification [20].

DTD defines a type for each element name occurring in an XML docu-
ment. Such type definition contains a list of allowed attributes, the allowed
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<xsd:schema xmlns:xsd="http ://www.w3.org /2001/ XMLSchema">

<xsd:element name=" mobile" type=" MobileType "/>

<xsd:complexType name=" MobileType">

<xsd:sequence >

<xsd:element name=" manufacturer" type=" ManufacturerType "/>

<xsd:element name="model" type=" ModelType" maxOccurs =" unbounded"/>

</xsd:sequence >

</xsd:complexType >

<xsd:complexType name=" ManufacturerType">

<xsd:simpleContent >

<xsd:extension base="xsd:string">

<xsd:attribute name="id" type=" idType"/>

</xsd:extension >

</xsd:simpleContent >

</xsd:complexType >

<xsd:simpleType name=" idType">

<xsd:restriction base="xsd:integer">

<xsd:minInclusive value ="10000"/ >

<xsd:maxInclusive value ="99999"/ >

</xsd:restriction >

</xsd:simpleType >

<xsd:complexType name=" ModelType">

<xsd:all >

<xsd:element name="no" type="xsd:positiveInteger "/>

<xsd:element name="type" type="xsd:string"/>

<xsd:element name=" weight" type="xsd:string"/>

<xsd:element name=" dimensions" type="xsd:string"/>

<xsd:element name=" description" type="xsd:string" minOccurs ="0"/>

</xsd:all >

</xsd:complexType >

Figure 3.3: XML Schema Examples: mobile.xsd

attribute value, and the allowed element content as a deterministic regular
expression, where Σ is a set of all element names in the XML document.

The DTD language has relatively poor expressive power. Thus, other
more expressive XML schema languages were developed. The most popular
languages are RELAX NG [9] and XML Schema [17]. This thesis is mainly
focused on the XML Schema language, since it is widely spreaded and most
promissing XML schema language in the present.

3.3 XML Schema Language

The XML Schema [17] is a language describing the structure of XML docu-
ments. XML Schema was approved as a W3C Recommendation in 2001. Like
DTD, XML Schema defines types of elements consisting of allowed attributes
definition and the element content definition. But it provides much more con-
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structs such an advanced basic types definition, inheritance, model groups,
permutation operator and so on. The next advantage of XML Schema is that
it has an XML syntax. Each XML Schema document (XSD) is also an XML
document.

Definition 3.3.1 An XML Schema document is an XML document valid
against the XML Schema specification.

In Figure 3.3 an example of an XSD is outlined. This document will be
used as an example in the whole section. The schema defines a structure
of the XML documents from Figure 3.1 and 3.2. Each of the elements in
the schema has a prefix xsd: which is associated with the XML Schema
namespace through the xmlns declaration that appears in the schema element.

3.3.1 Type Definitions

Each XML element is assigned with a type. An element type defines at-
tributes of the element and the element content. Types are divided into two
groups. Elements that contain any subelements or carry attributes are said
to have complex types, elements with only a text content are said to have
simple types.

Definition 3.3.2 An XSD type or simply a type is defined as a pair of a
content type and a set of attribute declarations.

Simple Types

Definition 3.3.3 A simple type is an XSD type with empty attribute decla-
ration set and content type of a data type as defined in XML Schema speci-
fication.

Simple types can be assigned to an element or an attribute. If the element
is of the simple type, it does not have any attributes and have only text
content of the specified data type. Attributes can have only simple types.

Simple types defined as a part of the XML Schema language are called
built-in simple types. For example built-in simple types are string and
positiveInteger. But simple types can also be user-defined. A User-defined
simple type is usually derived from some built-in or previously defined sim-
ple type by restriction, list or union. For example the idType simple type is
derived from built-in simple type integer by a restriction. The value scope
of the idType is 10000 - 99999 which is a subset of the integer value scope.
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Complex Types

Definition 3.3.4 A complex type is an XSD type where the content type is
represented by a content model

Complex Types can be assigned only to elements. Complex types allow
to define element attributes or an element content that consists of some ele-
ments. A complex type is represented by a complexType element. The element
usually contains content model declaration followed by attribute declarations,
both optional. The example shows the complex type manufacturerType with
simple content and one attribute id. The simple content is derived from the
string simple type by extension. The extension allows to define additional
attributes.

A complexType element has an attribute mixed which is used to define mixed
content. When an element content is mixed, character data are enabled to
appear between child elements declared as an element content.

A content model is recursively built from particles {element, sequence,

choice, all, group}. In the root of the content model only particles {sequence,
choice, all} can occurs. For example MobileType type uses the sequence par-
ticle and ModelType type uses the all particle.

3.3.2 Particles

Particles involve occurrence constrains. By default, each particle may occur
exactly once. To overwrite this, minOccurs and maxOccurs attributes are de-
fined for each particle. For example to mark a particle as optional, minOccurs
must be set to 0 as showed in case of element description. To allow particle
to be repeated anytimes, maxOccurs must be set to unbounded as showed in
model element declaration.

Sequence Particle

A sequence particle contains a possible empty list of particles {element,
sequence, choice, group}. The particles must occur in an instance document
in the exact order. A sequence particle is represented by a sequence element.
For example the mobile element has two subelements, manufacturer and model.
The elements must occur in the defined order, model element may occur more
times.
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Choice Particle

A choice particle contains a possible empty list of particles {element, sequence,

choice, group}. In an instance document exactly one particle from the list
may occur. A choice particle is represented by a choice element.

All Particle

An all particle contains a possible empty list of element particles. The
maxOccurs attribute of this particle and all the subelements must be set to 1
and the minOccurs attribute must be set to 0 or 1. In an instance document,
the particles may occur in any order. For example model element may contain
its subelements in any order as showed in the instance documents.

Group Particle

A group particle can be viewed as a wrapper that groups particles for further
usage. It contains at most one particle of {sequence, choice, all} and can be
defined globally. A globally defined group can be then referenced in complex
type declarations. This construct makes particle declarations reusable.

Element Particle

An element particle does not contain any particles at all. It represents subele-
ment which may occur in the element content. Each element must have a
type. If no type is assigned to an element, anyType is used, which means, that
the element may have any content. An element type can be referenced by
a type attribute or can be declared as anonymous type. Such type has no
name and is placed in the element content of the element element.

Particles are the main building blocks of an XSD. From particles element
types are composed. A content model built from particles can be expressed
as a regular expression describing the content of the element. An alphabet Σ
is a set of all subelement names present in the element content. Parentheses
are represented by start-tags and end-tags of particles, operators {+, ?, ∗}
are represented by minOccurs and maxOccurs attributes and an operator | is
represented by the choice particle. The sequence particle stands for the usual
concatenation. Group particles can be replaced by the referenced particles.
And only the last particle remains, an all particle, which can be replaced by
the choice particles like follows: (a&b&c) → (a(bc|cb)|b(ac|ca)|c(ab|ba)).

From the above it is clear, that an all particle is only a “syntactic sugar”
which only reduces the size of the schema, but has no additional expressive
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power. Thus, a content model has the same expressive power as regular
expressions, and can describe regular languages. For this purpose regular
expressions can be extended by one additional operator & which stands for
the all particle and have the previously outlined meaning.

The XML Schema specification constraints a content model to be de-
terministic, which means, that also the regular expression describing given
content model must be deterministic. Here the determinism means, that in
every phase of computation, the next step must be decided, not guessed. For
example having a finite state automaton, each state must not have two or
more outgoing transitions for the same letter to be deterministic.

3.3.3 Inheritance

XML Schema provides a type inheritance. The two provided approaches of
how one type can be inferred from another are an extension and a restriction.
Both simple types and complex types can be inferred, however only complex
types inheritace will be described, since simple types are not important for
this thesis.

Definition 3.3.5 Having a type T1 inherited from a type T2, T1 is said to be
a subtype and T2 is said to be a supertype.

The inheritance of complex types have the following syntax. As the root
element complexType element is used. It contains one subelement, simpleContent
or complexContent. The simpleContent element is mainly used, when the
subtype is a simple type with some additional attributes, for example the
ManufacturerType. The complexContent element contains one of the subele-
ments extension or restriction according to the chosen inheritance type.

Restriction

When a subtype is restricted from a supertype, the value space of the subtype
must be a subset of the value space of the supertype. Each instance of the
subtype must be also a valid instance of the supertype. More formally, when
G1 is a grammar describing the subtype and G2 is a grammar describing the
supertype, L(G1) ⊆ L(G2). Technically, XML Schema allows to restrict one
complex type from another by restricting the allowable number of repetition
of the particles.

The following example shows the subtype RestrictedMobileType. The su-
pertype MobileType is defined as a manufacturer element followed by at least
one model element. The subtype restrict the occurrence of the model element
to at most 10.
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<xsd:complexType name=" RestrictedMobileType">

<xsd:restriction base=" MobileType">

<xsd:sequence >

<xsd:element name=" manufacturer" type=" ManufacturerType "/>

<xsd:element name="model" type=" ModelType" maxOccurs ="10"/ >

</xsd:sequence >

</xsd:restriction >

</xsd:complexType >

Extension

The subtype is extended from a supertype by appending additional parti-
cles. In the other words, the subtype content model is an concatenation
of the supertype content model and the content model specified by the ad-
ditional particles. Note, that XML Schema does not allow other kinds of
extensions than appending. This simplyfies the extension processing, but it
is a relatively important restriction that users must deal with.

The following example outlines the ExtendedMobileType extended from the
MobileType. The value space of the subtype is defined as a manufacturer

element followed by at least one model element optionally followed by a
description element.

<xsd:complexType name=" ExtendedMobileType">

<xsd:extension base=" MobileType">

<xsd:sequence >

<xsd:element name=" description" type="xsd:string" minOccurs ="0"/>

</xsd:sequence >

</xsd:extension >

</xsd:complexType >
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Chapter 4

Related Work

In this chapter representants of the existing solutions will be described. Most
of existing solutions have focused on inference of DTDs [4, 11, 12, 22]. DTD
based solutions will be described in Section 4.1. Some later works have fo-
cused also on additional XML Schema constructs [14, 15, 3, 2]. Such solutions
will be described in Section 4.2.

4.1 DTD Based Solutions

4.1.1 DTD-Miner

DTD-Miner [11] system is a prototype for a structural re-engineering frame-
work proposed in [12]. This framework consists of three consecutive phases.

In the first phase XML documents are mapped into an n-ary tree repre-
sentation called the Document Tree. Document Tree nodes represent XML
elements in related document, edges represent parent-child relationships be-
tween elements. Each node in the Document Tree is uniquely identified by a
Node-ID (NID). The NID is also globally unique across all Document Trees.
In addition, each node contains an element name, a list of attributes and a
PCDATA flag (whether the corresponding element contains PCDATA). Ex-
ample of Document Trees for documents in Figure 3.1 and 3.2 are shown in
Figure 4.1.

The second phase, called Structure Discovery phase, creates an overall
structure from a set of Document Trees. In DTD-Miner system a Spanning
Graph is used as the overall structure.

In the final phase of DTD Construction a set of heuristic rules is applied
on the Spanning Graph to obtain the final DTD.
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Figure 4.1: Document Trees for Nokia.xml and SonyEricsson.xml

Spanning Graph

The Spanning Graph is an ordered directed acyclic graph. Each node in the
graph represents an element and is uniquely identified by a unique GID. Each
node also contains a tag name, a list of attributes and a list of NIDs. The
list of attributes is a union of all the lists of attributes in the nodes of the
Document Trees with the matching element name. The list of NIDs contains
all the NIDs of nodes in all the Document Trees with the matching element
name. The left-right ordering of sibling nodes denotes the left-right ordering
of subelements of a single parent element.

Edges in the Spanning Graph model hierarchical relationships between
the elements. The edges are uniquely identified by an EID. Each edge is
assigned with an edge list that identifies the parent nodes in the Document
Trees where the parent-child relationship exists.

The Spanning Graph construction is an iterative algorithm over a set of
Document Trees. At the beginning the Spanning Graph is an empty graph.
At each iteration step a Document Tree is merged into the intermediate
Spanning Graph. The Final Spanning Graph is obtained when all Document
Trees from the given set have been merged into the Spanning Graph.

In a merging step of the algorithm the root node of the Document Tree
is merged into the root node of the intermediate Spanning Graph and then
all its child nodes are recursively merged with appropriate nodes from the
intermediate Spanning Graph. Merging of two nodes is based on determining
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Figure 4.2: Spanning Graph for Document Trees in Figure 4.1

a best order of their child nodes with preserving a primary tree order. For this
purpose DTD-Miner uses the longest common subsequence approach. When
a Document Tree node is merged with an appropriate Spanning Graph node,
the edge list and the node list must be updated. Figure 4.2 shows a Spanning
Graph for the Document Trees shown in Figure 4.1.

Heuristic Rules

To obtain a DTD from the Spanning Graph a set of heuristic rules must
be applied on the edges of the Spanning Graph. The heuristic rules are as
follows:

Define Optionality: The element represented by the node Nc is op-
tional, if (Np, Nc) edge list ⊂ Np node list where Np is a parent of Nc. For
example, element <description> in document Nokia.xml in Figure 3.1 is op-
tional for element <model>, because in the Spanning Graph in Figure 4.2
(model,description) edge list = {4} ⊂ model node list = {3, 4, 16}. Hence, the
edge is marked as optional in the Spanning Graph.

Merge Repeat: Element represented by node Nc has zero or more oc-
currences, if there exists a pair of distinct adjacent sibling edges (Np, Nc)
and (Np, Nc+1) in the Spanning Graph, so that Nc = Nc+1. In this case the
edges are merged into a single edge in the Spanning Graph with the edge list
as the union of the edge list of the two edges. If the edge list of the newly
created edge equals to the Np node list, the edge is marked as oneOrMore.
Otherwise, the edge is marked as zeroOrMore. For example, element <model>

has one or more occurrences within element <mobile>, because there are two
distinct adjacent sibling edges (mobile,model) in the Spanning Graph in Fig-
ure 4.2 and the union of edge lists of the two edges = {1, 14} = mobile node
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list = {1, 14}. Hence, the new edge is marked as oneOrMore in the Spanning
Graph.

Define Group: Firstly the sequence of child edges is split into groups.
A group is a subsequence of adjacent edges, where all edge lists are identical.
In the next step the algorithm merges two adjacent groups with common sub-
sequence. Two groups have common subsequence, if the second group starts
with the first element and the first group ends with the last element of this
subsequence. For example, groups {a, b, c, d}, {b, c, d, e} have common sub-
sequence {b, c, d}. These two groups are merged into a new one {a, b, c, d, e}
with the corresponding DTD fragment (a(bcd)e). Finally, the optionality of
the group and each individual element of the group must be specified. The
group is marked as oneOrMore, if the union of edge lists equals to the node
list of parent node. Otherwise, the group is marked as zeroOrMore. The
optionality of an individual element depends on the optionality of the ele-
ment or elements from the source groups. An element which has no repetition
mark is marked as required. If only one of the merged elements has repetition
mark or both elements have the same mark, then the merged element has
this mark too. If elements have different repetition marks, then the merged
element has the zeroOrMore mark.

Conclusion

The DTD-Miner method ommits a very useful operator |. XML fragments
like <A/><B/> and <B/><A/> lead to the DTD fragment (A?BA?) instead of
(AB|BA). This fragment is too general and does not follow the clear meaning
of the source XML fragments. Hence, for more complicated XML documents
this method returns too complicated and too general DTD to be further
useful.

4.1.2 XTRACT

The XTRACT system described in [4] generates a set of candidate DTDs in
a generalization and a factoring module and then chooses the best DTD in
an MDL module using a Minimum Description Length (MDL) principle. An
input sequence I represents one element name from the document collection.
I contains all subelement sequences of element with the given name from all
documents in the collection. Like the DTD-Miner, it uses a set of heuristic
rules to generalize and, thereby, simplify the final DTD.
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Generalization Module

This module infers a set Sg of generalized DTDs. For each input sequence in
the parameter I the Generalize procedure outlined in Algorithm 1 inde-
pendently infers a number of DTDs and adds them to Sg including the input
sequence itself. Therefore, I ⊆ Sg.

Algorithm 1 Generalize
Input: A set of subelement sequences I
Output: A set of generalized DTDs Sg

for each sequence s in I do
add s to Sg

for r := 2, 3, 4 do
s′ := DiscoverSeqPattern(s, r)
for d := 0.1x|s′|, 0.5x|s′|, |s′| do

s′′ := DiscoverOrPattern(s′, d)
add s′′ to Sg

end for
end for

end for
return Sg

Algorithm 2 DiscoverSeqPattern
Input: An sequence s and a factor r
Output: The sequence s with replaced symbols

repeat
let x be a subsequence of s with the maximum number (≥ r) of contiguous repetitions
in s
replace all (≥ r) contiguous occurrences of x in s with a new auxiliary symbol Ai =
(x)∗

until s no longer contains ≥ r contiguous occurrences of any subsequence x
return s

The Algorithm 2 DiscoverSeqPattern replaces sequences of the form
xxx...x in the input sequence s with the regular expression (x)∗, more pre-
cisely with an auxiliary symbol. There is one-to-one correspondence beetwen
the auxiliary symbol and the regular expression, thus, the auxiliary sym-
bol represents this regular expression in every other candidate DTDs. The
parameter r determines the minimum number of continuous repetitions of
subsequence x in s required for replacing. If there are more replacing candi-
dates, the candidate with most repetitions is chosen.

The Algorithm 3 DiscoverOrPattern first uses Algorithm 4 Parti-
tion to partition the input sequence s. Then it replaces each subsequence
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Algorithm 3 DiscoverOrPattern
Input: A sequence s and a factor d
Output: The sequence s with replaced symbols

s1, s2, . . . , sn := Partition(s, d)
for each subsequence sj in s1, s2, . . . , sn do

let the set of distinct symbols in sj be a1, a2, . . . , am

if m > 1 then
replace subsequence sj in sequence s with a new auxiliary symbol Ai =
(a1| . . . |am)∗

end if
end for
return s

si from the Partition result with the auxiliary symbol for the regular ex-
pression (a1 | a2 | . . . | an) where symbols a1, a2, . . . an are all symbols from
si. The Partition procedure splits the input sequence s into the smallest
possible subsequences s1, s2, . . . , sn such that for any occurrence of a symbol
a in a subsequence si, there does not exist another occurrence of a in some
other subsequence sj within a distance d.

Algorithm 4 Partition
Input: A sequence s and a factor d
Output: Partitions s1, s2, . . . , si of sequence s

i := start := end := 1
si = s[start, end]
while end < |s| do

while end < |s| and a symbol in si occurs to the right of si within a distance d do
end := end + 1
si := s[start, end]
if end < |s| then

i := i + 1
start := end + 1
end := end + 1
si := s[start, end]

end if
end while

end while
return s1, s2, . . . , si
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Example:
I = {aaaab, abab, acc, ab}
1) s = aaaab each of the r and d parameter leads to the a∗b pattern.
2) s = abab r = 2 leads to the (ab)∗ pattern, r ≥ 3 and d ≥ 2 leads to the

(a|b)∗ pattern.
3) s = acc r = 2 leads to the ac∗ pattern.
4) s = ab this sequence is not generalized.

Finally Sg = I ∪ {a∗b, (ab)∗, (a|b)∗, ac∗}

Factoring Module

The Factoring module factors two or more candidate DTDs in Sg into a new
one and inserts it into set Sf . Unlike the generalization, factoring leaves the
semantics of candidate DTDs unchanged, but reduces the size of the DTD
and, thus, it is a better candidate than the source one. The set of candidate
DTDs Sf also contains all the candidate DTDs in Sg.

Example:
From the set of DTD patterns Sg the Factoring module generates a a(c∗|b)
pattern.
Sf = Sg ∪ {a(c∗|b)}

MDL Module

The MDL module is the most important module in XTRACT system. The
MDL module chooses a set of candidate DTDs S from Sf and creates the
final DTD D, which is an or of candidate DTDs in S. The final DTD D
must cover all input sequences in I and must minimize the MDL cost.

The MDL cost is based on a length in bits needed to describe the DTD
and a length in bits of DTD encoded sequences. Minimization of the MDL
cost leads to the DTD which is simple enough and covers enough details at
the same time. The following function computes the number of bits needed
to describe the DTD itself:

Definition 4.1.1 Let Σ be the set of subelement names that appear in se-
quences in I. Let Ω be a set of metacharacters |,∗ , +, ?, (, ). Let the length of
a DTD viewed as a string in Σ ∪ Ω, be n. Then, the length of the DTD in
bits is ndlog(|Σ| + |Ω|)e.
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Example: MDL computation
Σ = {a, b, c}; |Σ| = 3 → dlog(3 + 6)e = 4.

Costs of the DTD fragments from Sf :
aaaab 5 × 4 = 20 (ab)∗ 5 × 4 = 20
abab 4 × 4 = 16 (a|b)∗ 6 × 4 = 24
acc 3 × 4 = 12 ac∗ 3 × 4 = 12
ab 2 × 4 = 8 a(c∗|b) 7 × 4 = 28
a∗b 3 × 4 = 12

Functions presented below encode a given sequence according to the given
DTD and compute the code length.

A) seq(D, s) = ε if D = s

Note that the DTD D is a sequence of symbols from Σ and does not contain
any symbols from Ω.

B) seq(D1...Dk, s1...sk) = seq(D1, s1)...seq(Dk, sk)

If D can be split into k regular expressions, such that each subsequence si

matches the corresponding regular expression Di, then the result of this step
is the concatenation of particular seq(Di, si) results.

C) seq(D1|...|Dm, s) = iseq(Di, s)

If s matches the regular expression Di, then the result of this step is the
concatenation of the index i and the result of seq(Di, s). Note that the index
i must be encoded by dlog(m)e bits.

D) seq(D∗, s1..sk) =

{
kseq(D, s1)...seq(D, sk) ifk > 0

0 otherwise

If s can be split into k subsequences, each matching the regular expression
D, then the result is the concatenation of k and particular seq(D, si) results.
Note, that since there is no way to determine repetition count during decod-
ing, k must be encoded with its length. In this case k is encoded as size of
encoded k( dlog(k)e times 1) followed by 0 followed by binary encoded k.
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Example:
Sequences from I encoded by DTD fragments from Sf :
{aaaab, abab, acc, ab} DTD fragments from Sf trivially encode themselves
with empty string. a∗b:
seq(a∗b, aaaab) =B seq(a∗, aaaa)seq(b, b) =D

4seq(a, a)seq(a, a)seq(a, a)seq(a, a)seq(b, b) =5×A 4εεεεε = 4 =bin 1110100
similarly other sequences:
seq(a∗b, ab) = 101

(ab)∗:
seq((ab)∗, abab) = 11010
seq((ab)∗, ab) = 101

(a|b)∗:
seq((a|b)∗, aaaab) = 111010100001
seq((a|b)∗, abab) = 11101000101
seq((a|b)∗, ab) = 1101001

ac∗:
seq(ac∗, acc) = 11010

a(c∗|b):
seq(a(c∗|b), acc) = 011010
seq(a(c∗|b), ab) = 1

Finally the set of candidate DTDs S, is found by using expression

min
S⊂Sf

{
∑
s∈S

c(s) +
∑
i∈I

min
s∈S

d(s, i)}

where c(s) is code length of the DTD fragment s and d(s, i) is length of
seq(s, i). Since finding the subset is an NP-hard problem, XTRACT system
uses randomized and approximation algorithms to obtain at least a subopti-
mal result.

Example:
There are several subsets of Sf to demonstrate MDL cost computing:
S1 = a∗b, abab, acc, ab = 12 + 16 + 12 + 8 + 7 = 48 + 7 = 55
S2 = a∗b, (ab)∗, acc = 12 + 20 + 12 + 7 + 5 + 3 = 44 + 15 = 59
S3 = (a|b)∗, acc = 24 + 12 + 12 + 11 + 7 = 36 + 30 = 66
S4 = aaaab, abab, acc, ab = 20 + 16 + 12 + 8 = 56

The best subset is S1. This example does not demonstrate that DTD
fragments generated by generalization and factoring modules are strong
candidates for the final DTD. This feature takes effect only on longer and
more complicated input sequences, starting on sequence aaaab which is only
sequence represented by DTD fragment different from itself. Aim of this
example is to demonstrate and explain computing of XTRACT system.
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Figure 4.3: An example of PTA for I = {a, ab, aa, aba, bba, bbb}

4.1.3 sk-ANT

The sk-ANT algorithm presented in [22] by Wong and Sankey is one of gra-
matical inference methods. This method first constructs a Prefix Tree Au-
tomation (PTA) from a given set of input strings and generalize it by merg-
ing states of the automaton. To determine which states should be merged,
sk-ANT combines an Ant Colony Optimization (ACO) heuristic with an sk-
strings method.

Prefix Tree Automaton

The PTA is constructed as follows. Let I is the set of input strings. With
the first string from I, the automaton simply accepts this first string. Then,
for each of the rest of the strings in I, the string shares as many states as
possible. When a symbol is found, that does not match a valid transition, a
new path is inserted into automaton that matches the rest of the string. An
example is shown in Figure 4.3. The numbers in the parentheses represent
frequencies of the state finalities and transitions. This allows the automaton
to be used as a Probabilistic Finite State Automaton (PFSA).

The PTA represents the language that accepts exactly the input strings.
Hence the goal is to generalize the language by merging states of the automa-
ton.

Minimum Message Length

A Minimum Message Length (MML) is a measure of an inferred expression
quality. Since expressions are encoded in a PFSA during computation, a
PFSA must be encoded to determine its code length. The MML is expressed
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as follows:

MML(A) =
N∑

j=1

{
log2

(tj − 1)!

(mj − 1)!
∏mj

i=1(nij − 1)!

}
+M(log2 V + 1) + M ′ log2 N − log2(N − 1)!

where N is the number of states in the PFSA, V is the cardinality of the
alphabet plus one, tj is the number of times the j -th state is visited, mj is
the number of arcs from the j -th state (plus one for final states), m′

j is the
number of arcs from the j -th state (no change for final states), nij is the
frequency of the i -th arc from the j -th state, M is the sum of all mj values
and M ′ is the sum of all m′

j values.

Ant Colony Optimization

In this technique artificial ants browse the search space and leave pheromones
on solutions they go through. The pheromones stand for a positive feedback
and measure a quality of solution the ant found. The algorithm operates over
several iterations to allow the positive feedback of the pheromones to take
effect. The pheromone placement is delayed until the end of an iteration. In
the next iteration, higher quality solutions are more likely to be chosen by
ants. When a certain number of iterations end without improvement to the
best solution, the algorithm terminates.

In Algorithm 5 the ACO algorithm is outlined. The parameter ams (ant
move selector) is the way of how ants select state pairs to merge. An original
algorithm showed in Algorithm 6 acts as follows. In loop over all merging
possibilities first computes a heuristic value for the given merge at line 3 and
at the line 5 the algorithm computes a weighting value from the heuristic
value and the pheromones of the given merge. At line 8 a merge is randomly
selected according to the weighting value.

The heuristic, weighting and pheromones functions are attributes and,
hence, can be customized. However, the following functions are implemented:

h =
−δMML(A,merge) + MML(A)

MML(A)

where δMML(A,merge) represents a change in the MML of A that would
result from merge,

p =
averageMML

mmlOf(a.solution)

where averageMML is an average for all ants in the iteration, and

value = pα + hβ
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Algorithm 5 ACOOptimizer
Input: A PTA PTAR+, a positive integer stagLimit, and an ant move selector ams
Output: A generalized form of the input PTA.
1: bestSolution := PTAR+

2: stagCount := 0
3: while stagCount < stagLimit do
4: ants := makeAnts(antCount, PTAR+, ams)
5: liveCount := antCount
6: improvement := false
7: while liveCount > 0 do
8: for ant in ants do
9: ant.step()

10: if and.dead() then
11: if mmlOf(ant.solution) < mmlOf(bestSolution) then
12: bestSolution := ant.solution
13: improvement := true
14: end if
15: liveCount := liveCount − 1
16: end if
17: end for
18: end while
19: updatePheromones(ants)
20: if not improvement then
21: stagCount := stagCount + 1
22: else
23: stagCount := 0
24: end if
25: end while
26: return bestSolution

where α and β are parameters of the function and are used as an exponential
weight of heuristic and pheromone values respectively.

The sk-strings Method

This method is used for determining an equivalence of states of PTA. It is
based on k -tails heuristic, which is a relaxed form of the Nerode equivalence
relation. The Nerode relation says, that a pair of states are equivalent if they
are indistinguishable in the strings that follow them. The k -tails relaxes this
to only accepting tails up to a length k. The sk -strings method uses in
addition PFSA and consideres only the top s percent of the most probable
k -strings. The k -strings differ from k -tails in that they do not have to end
in a final state. The probability of a k -string is the product of probabilities
of transitions that k -string must pass to be accepted by the automaton.
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Algorithm 6 antMoveSelector
Input: A set of all state pairs merges, an ant heuristic heuristic, an ant weighting func-

tion weighting and a pheromone table pheromones.
Output: A state pair representing the chosen merge.
1: choices := []
2: for merge in merges do
3: h := heuristic(merge)
4: p := pheromones[merge]
5: value := weighting(h, p)
6: choices.add((value,merge))
7: end for
8: return stochasticChoice(choices)

There are five variants implemented (AND, OR, LAX, STRICT and
XEN). Since the sk -ant algorithm uses the AND heuristic, only this heuristic
will be described in this work. The Algorithm 7 provides the description of
the AND heuristic.

sk-ANT

Finally the two methods are combined into sk -ANT heuristic which uses the
best features of both. The sk -ANT heuristic is actually the modification of
ACO with ams algorithm improved. The sk-antMoveSelector in Algorithm
8 differs from the Algorithm 6 in using the skCriterion function outlined
in Algorithm 7. This criterion may be weakened when it becomes too strict
(see lines 11-12). Note that if the criterion is weak enough to let all merges
pass, the algorithm will behave identically to the original version.
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Algorithm 7 sk-strings: andCriterion
Input: A real number s in [0, 1], a positive integer k, and a pair of states s1 and s2.
Output: A boolean, true if s1 and s2 are sk -AND equivalent.
1: tails := k -strings of s1, sorted by decreasing order of probability
2: total := 0
3: for tail in tails do
4: total := total + tail.probability
5: if δ(s2, tail.string) = ∅ then
6: return false
7: end if
8: if total ≥ s then
9: tails := k -strings of s2, sorted by decreasing order of probability

10: total := 0
11: for tail in tails do
12: total := total + tail.probability
13: if δ(s1, tail.string) = ∅ then
14: return false
15: end if
16: if total ≥ s then
17: return true
18: end if
19: end for
20: return true
21: end if
22: end for
23: return false

Algorithm 8 sk-antMoveSelector
Input: A set of all state pairs merges, an ant heuristic heuristic, an ant weight-

ing function weighting, a pheromone table pheromones and an sk -strings criterion
skCriterion.

Output: A state pair representing the chosen merge.
1: choices := []
2: while choices.size() = 0 do
3: for merge in merges do
4: if skCriterion(merge) then
5: h := heuristic(merge)
6: p := pheromones[merge]
7: value := weighting(h, p)
8: choices.add((value,merge))
9: end if

10: end for
11: if choices.size = 0 then
12: skCriterion.weaken()
13: end if
14: end while
15: return stochasticChoice(choices)
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4.2 XSD Based Solutions

Some of the existing works have focused on the XSD inference. However,
only a couple of them infers schema, that cannot be expressed by a DTD.
This section describes two such approaches - iXSD and Schema Miner.

4.2.1 iXSD

An algorithm iXSD has been introduced by Bex et al. in [3]. This algorithm
is the first of known approaches, that generates output in XML Schema
instead of DTD and goes behind the DTD expressive power by supporting
XML types. The iXSD is a typical grammar-inferring approach.

In [3] the authors provide several observations important for grammatical
inference methods for XML Schema constructs.

Observation 4.2.1 The class of all XSDs cannot be learned from positive
examples only.

This means that no matter how many examples from a target XSD D
are provided, there is no algorithm that will always retrieve D given only the
examples. Due to this observation, a subclass of XSDs must be identified
that at once can be learned from positive examples only and covers sufficient
amount of XSDs occurring in practice.

Observation 4.2.2 In more than 98 % of the XSDs occurring in practice,
the content model of an element depends only on the label of the element
itself, the label of its parent and (sometimes) the label of its grandparent.

An XSD whose content models depend only on labels up to the k -th
ancestor is called k-local.

Observation 4.2.3 More than 99 % of the XSDs in practice consist of ele-
ments with content models as regular expressions in which each element name
occurs only once. Such regular expressions are called Single Occurrence Reg-
ular Expressions (SOREs) and can be learned from positive examples only.

SOREs also satisfy the W3C specification constraint, that all content
models in an XSD must be deterministic.

In the light of these observations, Bex et al present an algorithm iLOCAL
that can infer any k -local and single occurrence XSD from a “sufficiently
large” set of XML documents.

An iXSD algorithm is a concatenation of the iLOCAL algorithm and an
algorithm Reduce that unifies equivalent and “sufficiently similar” types.
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<accounts >

<administrators >

<administrator >

<name >John Smith </name >

<email >john.smith@email.com </email >

</administrator >

</administrators >

<users >

<user >

<name >Jack Black </name >

<email >jack.black@email.com </email >

</user >

<user >

<name >John Doe </name >

<email >john.doe@email.com </email >

<setting >

<name >theme </name >

<value >blue </value >

</setting >

<setting >

<name >pagesize </name >

<value >100</value >

</setting >

</user >

</users >

<sessions >

<user >

<session_id >VE3DT56gY7HJ4BW23De4 </session_id >

<setting >

<name >pagesize </name >

<value >50</value >

</setting >

</user >

</sessions >

</accounts >

Figure 4.4: XML Examples: a fragment from users.xml

Basic Definitions

Before iLOCAL and Reduce algorithms may be described in detail, several
definitions should be defined.

Definition 4.2.1 An XML fragment is sequence < a1 > f1 < /a1 > . . . <
an > fn < /an > of elements where a1, . . . , an are element names and
f1, . . . , fn are XML fragments.

Definition 4.2.2 If f is an XML fragment, then paths(f) is the set of all
labeled paths starting at a root element in f .

Example:
For the XML document in Figure 4.4:
paths(f) = {λ, accounts, accounts administrators, accounts users,
accounts sessions, accounts administrators administrator, . . . }
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Definition 4.2.3 strings(f, p) is a set of all strings of element names oc-
curring below an occurrence of path p in f .

Example:
For the XML document in Figure 4.4:
strings(f, λ) = {accounts}
strings(f, accounts) = {administrators users sessions}
strings(f, accounts users user) = {name email, name email setting
setting}
. . .

Definition 4.2.4 An XSD is a triple D = (T, ρ, τ) consisting of a finite set
of types T; a mapping ρ from T to regular expressions r as given by the syntax

r ::= λ|a|r, r|r + r|r∗|r+|r?

where λ denotes the empty string and a ranges over element names; and a
mapping τ that assigns a type to each pair (t, a) with the element name a
occurring in ρ(t).

The function τ(t, a) uniquely identifies an element type for the element a
occurring in the type definition of the type t.

Example:
For the XML document in Figure 4.4:
τ(root, accounts) = accounts
τ(users, user) = user1
τ(sessions, user) = user2

The mapping ρ(t) stands for the ordinary regular expression over element
names without type definition in the definition of t.

Example:
For the XML document in Figure 4.4:
ρ(user) = name, email, setting∗

Definition 4.2.5 F (D, t) is a set of all XML fragments of type t in D.

Definition 4.2.6 Let p|k stand for the path formed by the k last element
names of a path p (If length(p) ≤ k then p|k = p). Two paths p and q are
k-equivalent if p|k = q|k.

If length(p) < k, p is k -equivalent to itself only.
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Figure 4.5: Example of SOA - accepting the same language as the SORE
name, email, setting∗

Definition 4.2.7 A pair (D, s) with D being an XSD and s being a type in
D is called k-local if for all k-equivalent p and q such that τ(s, p) → t and
τ(s, q) → t′ : t = t′.

For example, if D is an XSD for document in Figure 4.4, (D, root) is not
1-local, because p = account users user and q = account sessions user are
1-equivalent, and τ(root, p) → user1 and τ(root, q) → user2. (D, root) is
then 2-local.

Definition 4.2.8 A regular expression r is single occurrence (SORE) if ev-
ery element name occurs at most once in it. An XSD is single occurrence
(SOXSD) if it contains only single occurrence regular expressions (SOREs).

Definition 4.2.9 Let in and out be two special symbols, distinct from the
element names, that will serve as the initial and final state, respectively. A
single occurrence automaton (SOA) is a graph A = (V,E) where all states in
V − {in, out} are element names, and E ⊆ (V − {out})× (V − {in}) is the
edge relation.

An example of SOA is outlined in Figure 4.5.

Definition 4.2.10 L(A) is a set of all strings accepted by the SOA A.

The iLOCAL Algorithm

The goal of the iLOCAL algorithm is to infer a k -local SOXSD for a given
k and a finite corpus of XML fragments C. The algorithm is outlined in
Algorithm 9.

At the first line, iLOCAL constructs a type p|k for each path p in paths(C).
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Algorithm 9 iLOCAL
Input: a natural number k and corpus C
Output: a k -local SOXSD (D, t) such that C ⊆ F (D, t)
1: Let the set of types T consist of all p|k with p ∈ paths(C)
2: Initialize the mappings ρ and τ to empty
3: for each type p|k in T do
4: add p|k 7→ ToSore(iSOA(k -strings(C, p|k))) to ρ
5: end for
6: for each path pa in paths(C) do
7: add (p|k, a) 7→ (pa)|k to τ
8: end for
9: return (D, t) with D = (T, ρ, τ) and t = λ

Algorithm 10 The iSOA algorithm
Input: a finite set of sample strings S
Output: a SOA A such that S ⊆ L(A)
1: Let V be the set of states consisting of all element names occurring in S plus the initial

state in and final state out.
2: Initialize E := ∅
3: for each string a1 . . . an in S do
4: add the edges (in, a1), (a1, a2), . . . , (an, out) to E
5: end for
6: return A = (V,E)

Example: Type inference
k = 2
C = XML fragment from Figure 4.4

T consists of the following types:
λ, accounts,
accounts administrators, administrators administrator,
accounts users, users user,
accounts sessions, sessions user,
administrator name, administrator email,
user name, user email,
user setting, user session id

At lines 3-5 iLOCAL constructs the content models for previously com-
puted types. Here k -strings(C, p|k) stands for the set of all strings in C that
occur below paths that are k -equivalent to p:

k − strings(C, p|k) :=
∪

{strings(f, q)|f ∈ C, q ∈ paths(f), p|k = q|k}.

The Algorithm 10 iSOA learns a SOA A from a finite set of sample strings
S.
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Example: SORE inference
k = 2
p|k = accounts users
k -strings(C, p|k) := {name email, name email setting setting }
iSOA(k -strings(C, p|k)) := SOA in Figure 4.5
ToSore(iSOA(k -strings(C, p|k))) :=name, email, setting*

Minimization

Because iLOCAL tends to generate more types than necessary, in the worst
case, iLOCAL(C, k) may return an XSD with O(nk) types where n is the
number of different element names occurring in C, the number of generated
types must be reduced. Here minimization is done by Algorithm 11 Mini-
mize. The algorithm minimizes an XSD D by unifying equivalent types in
D. Here s is equivalent to t if F (D, s) = F (D, t).

Algorithm 11 Minimize
Input: an XSD D = (T, ρ, τ) and type r ∈ T
Output: (D, r) with redundant types in D removed
1: while there are distinct types s and t in T with t 6= r and F (D, s) = F (D, t) do
2: replace each (s′, a) 7→ t in τ by (s′, a) 7→ s
3: remove t 7→ ρ(t) from ρ and t from T
4: end while

The Minimize algorithm may fail to unify types which should be unified,
when iLOCAL runs on incomplete corpora. Hence, minimization algorithm is
needed, that not only unifies equivalent types, but also unifies ’similar’ types.
The algorithm Reduce does so by adapting D such that F (D, s) = F (D, t),
for all types s and t that are similar enough.

To define a similarity for types in an inferred XSD, iSOA algorithm must
be adapted, such that for each edge (a, b) of the automaton A learned for
a sample S the support suppA(a, b) is kept. The suppA(a, b) is the number
of strings in S for which (a, b) needed to be added to the edges of A. An
example is outlined in Figure 4.6.

The similarity of two types s and t then can be defined as follows. Let
dist(A,B) be the normalized edit distance between the support-annotated
SOAs A = (V,E) and B = (W,F ):

dist(A,B) :=

∑
(a,b)∈E−F suppA(a, b)∑

(a,b)∈E suppA(a, b)
+

∑
(a,b)∈F−E suppB(a, b)∑

(a,b)∈F suppB(a, b)
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Figure 4.6: The SOAs for a) accounts users user and b) accounts

administrators administrator with support.

Intuitively, dist(A,B) counts the number of edges present in A but not
in B and the number of edges present in B but not in A, weighted by the
support these edges have in the original sample.

Example:
A = the SOA in Figure 4.6 a)
B = the SOA in Figure 4.6 b)∑

(a,b)∈E−F suppA(a, b) = 3∑
(a,b)∈E suppA(a, b) = 8∑
(a,b)∈F−E suppB(a, b) = 0∑
(a,b)∈F suppB(a, b) = 3

dist(A,B) = 3
8 + 0 = 3

8

The edit distance distD(s, t) between the types s and t is then defined as

distD(s, t) = max
(s′,t′)∈reachD(s,t)

dist(soa(s′), soa(t′))

The algorithm Reduce is outlined in Algorithm 12. There are two more
functions that must be defined.

Definition 4.2.11 For an XSD D = (T, ρ, τ), let elemsD(t) denote the set
of all element names a for which τ(t, a) is defined. The set reachD(s, t) of
pairs of types jointly reachable from (s, t) is the least set containing (s, t)
such that (s′, t′) ∈ reachD(s, t) and a ∈ elemsD(s′)∩ elemsD(t′) implies that
(τ(s′, a), τ(t′, a)) ∈ reachD(s, t).

Intuitively, reachD(s, t) is the set of all pairs (s′, t′) for which there exists
a path p such that τ(s, p) → s′ and τ(t, p) → t′.

The algorithm merges types whose edit distance is less than the parameter
ε. In the first phase, lines 4 - 15, the selected types s and t are transformed
so that F (D, s) = F (D, t) and hence, will be merged in Minimize. It does
so by adjunction of soa(s′) with soa(t′) at line 6. All states and edges in
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Algorithm 12 Reduce
Input: an inferred XSD (D, r) = iLOCAL(k,C) for some k and C, and a similarity

threshold ε
Output: (D, r) with similar types in D merged and redundant types removed
1: let (T, ρ, τ) = D
2: initialize M := {(s, t) ∈ T 2|0 < distD(s, t) < ε}
3: while M is non-empty do
4: for each (s, t) ∈ M do
5: for each (s′, t′) ∈ reachD(s, t) do
6: set soa(s′) := soa(s′) ] soa(t′)
7: set soa(t′) := soa(s′)
8: for each a in elemsD(t′) − elemsD(s′) do
9: add (s′, a) 7→ τ(t′, a) to τ

10: end for
11: for each a in elemsD(s′) − elemsD(t′) do
12: add (t′, a) 7→ τ(s′, a) to τ
13: end for
14: end for
15: end for
16: recompute M := {(s, t) ∈ T 2|0 < distD(s, t) < ε}
17: end while
18: for each type t in T do
19: replace each t 7→ ρ(t) in ρ by t 7→ ToSore(soa(t))
20: end for
21: Minimize(D, r)

soa(t′) that are not in soa(s′) are added to soa(s′) and supports are updated
with

suppsoa(s′)]soa(t′)(a, b) := suppsoa(s′)(a, b) + suppsoa(t′)(a, b).

The figure 4.7 shows the adjunction of the SOAs in Figure 4.6. Lines 18-
20 converts the updated SOAs into SOREs. Finally, the Minimize algorithm
is called at line 21.

Conclusion

The iXSD algorithm acts with the power of XSD. It constructs content mod-
els for element types instead of element names. The algorithm has two at-
tributes. The attribute k defines size of context in which types are identified,
ε determines the sensitivity of Reduce algorithm. In the next work, Bex et
al focuses on finding the best value of k.
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Figure 4.7: Adjunction of the SOA in Figure 4.6 a) with the SOA in Figure
4.6 b)

4.2.2 Schema Miner

Another way how an XSD can be inferred from a given set of XML docu-
ments was presented in [14] (in Czech, with shorter English version [15]). In
this thesis Vošta presents a merging state algorithm based on the sk-ANT
heuristic (see Subsection 4.1.3) with some additional improvements suited
for an XSD, especially for inferring unordered sequences <xs:all>.

The main body of the algorithm consists of four steps. Firstly, the Doc-
ument Tree T is created from each document D from the input set of XML
documents ID. The Document Tree was presented in Subsection 4.1.1 and
an example is shown in Figure 4.1. Then, from the set of document trees IT

a Dependency graph G is constructed as outlined in Algorithm 13.

Definition 4.2.12 A Dependency Graph is a directed graph G = (V,E),
where V represents a set of nodes that corresponds to element names in all
input documents, and E is a set of edges s.t. (A, B) ∈ E if and only if there
exists an input document, where element B is a direct subelement of A.

Algorithm 13 createDependencyGraph
Input: A set of Document Trees IT

Output: A Dependency Graph G
1: G := empty graph
2: for each T in IT do
3: element := T.root
4: if not exists a node for T.root in G then
5: create node element in G
6: end if
7: insertDependencies(G,T.root)
8: end for
9: return G
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Algorithm 14 insertDependencies
Input: A Dependency Graph G and an element element
Output: An edited Dependency Graph G
1: node := node for element in G
2: for each direct subelement of element do
3: if not exists a node for it in G then
4: create node subelement in G
5: end if
6: targetNode := node for subelement in G
7: create an edge in G for (node, targetNode)
8: insertDependencies(G, subelement)
9: end for

In the next two steps the main inference algorithm is used. Firstly, the
clustering of elements determines element types, then each type is general-
ized. In the final fourth step, the generalized types are transformed into the
XSD syntax.

Clustering of Elements

In this step elements with the same name are clustered according to their
similarity. Hence, a similarity measure must be specified.

Definition 4.2.13 An element tree Te is a subtree of the Document Tree T
where element e is the root of Te.

As a similarity measure a modified idea of tree edit distance is used. The
edit distance of trees Te and Tf (dist(Te, Tf )) is expressed as the number
of edit operations needed to transform Te into Tf . Since the classical tree
edit distance measure, with only insert node and delete node edit operations
allowed, is not suited for recursive trees, the set of allowed edit operations
should be extended. The basic example is shown in Figure 4.8. These Docu-
ment Trees have the same XML schema and the optimal edit distance hence
should be 0. But having only operations insert node and delete node, the
edit distance is 4.

The allowed edit operations for recursive trees are thus as follows.

• Insert - a single node n is inserted to the position given by parent node
p and ordinal number expressing its position among subelement of p

• Delete - a leaf node n is deleted

• Relabel - a node n is relabeled
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Figure 4.8: Tree edit distance of recursive element trees

• InsertTree - a whole subtree T is inserted to the position given by
parent node p and ordinal number expressing position of its root node
among subelements of p

• DeleteTree - a whole subtree rooted at node n is deleted

To determine the Tree edit distance for given trees Te and Tf , all possible
edit sequences have to be evaluated and the best one chosen. Since there can
be a lot of such possibilities, a set of constraints was specified.

Definition 4.2.14 A sequence of edit operation is allowable if it satisfies the
following two conditions:

1. A tree T may be inserted only if T already occurs in the source tree Te.
A tree T may be deleted only if it occurs in the destination tree Tf

2. A tree that has been inserted via the InsertTree operation may not sub-
sequently have additional nodes inserted. A tree that has been deleted
via the DeleteTree operation may not previously have had children nodes
deleted.

Clustering algorithm itself is in this work a modification of mutual neigh-
borhood clustering (MNC) algorithm [7]. Firstly elements are separated into
the clusters according to their context (a path from root to the given ele-
ment). Next, representative elements are chosen for each cluster. The MNC
algorithm calculates only with the representative elements. Two elements Te

and Tf are placed into the same group (and their clusters are merged), if

dist(Te, Tf ) ≤ distMIN‖(dist(Te, Tf ) ≤ distMAX&MN(Te, Tf ) ≤ F )

where distMIN represents minimum distance, distMAX represents maximum
distance, F is a factor and the mutual neighborhood MN(Te, Tf ) is defined
as follows:
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Definition 4.2.15 Let Te and Tf be two element trees, where Te is i-th clos-
est neighbor of Tf and Tf is j-th closest neighbor of Te. Then mutual neigh-
borhood of Te and Tf is defined as MN(Te, Tf ) = i + j.

Schema Generalization

For schema generalization a modification of sk-ANT heuristic (described in
Section 4.1.3) is used. Note that sk-ANT heuristic combines the ACO prin-
ciple with the sk-string method as a selector of states to be merged. Vošta in
his thesis modifies ACO heuristic with adding a temporary negative feedback
which enables to search a larger subspace of possible generalizations. The
negative feedback is assigned after each step of an ant. At the end of each
iteration, all negative feedbacks are zeroed.

The next modification of the sk-ANT heuristic is related to the generating
of a set of possible movements. Here, apart from the sk-string method, two
other methods are applied.

The k,h-context method says, that two states tx and ty are identical,
if there exist two identical paths of length k terminating in tx and ty. In
addition, also h preceding states in these paths are then identical. This
method hence inserts such states to a set of merge candidates.

The second additional method is focused on inferring unordered sequences.
Replacing a set of ordered sequences of elements with a single unordered se-
quence represented by the & operator can be considered as a special kind
of merging states. The currently recommended version 1.0 of XML Schema
specification [18, 19] allows to specify an unordered sequence of elements,
each with the allowed occurrence of (0,1). The new specification 1.1, cur-
rently in the phase of a working draft, allows the number of occurrence of
items of the sequence to be (0,∞). In this algorithm Vošta focuses on the
latter possibility, since it will probable soon become a recommendation.

First-Level Candidates

For the purpose of identification of subgraphs representing the allowed type
of unordered sequences, common ancestors and common descendants must
be defined.

Definition 4.2.16 Let G = (V,E) be a directed graph. A common descen-
dant of a node v ∈ V is a descendant d ∈ V of v s.t. all paths traversing v
traverse also d.
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Figure 4.9: An example of common ancestors and descendants

Definition 4.2.17 Let G = (V,E) be a directed graph. A common ancestor
of a node v ∈ V is an ancestor a ∈ V of v s.t. all paths traversing v traverse
also a.

Example:
Considering the graph in Figure 4.9.
Common descendants of node 3 are nodes 6 and 7.
Node 1 has no common descendants since paths traversing node 1 terminates
in nodes 7 and 9.
Common ancestor of node 6 is node 1.

Note that there can occur paths which traverse a but not v. Hence the
definition of common ancestor must be restricted as follows:

Definition 4.2.18 Let G = (V,E) be a directed graph. A common ancestor
of a node v ∈ V with regard to a node u ∈ V is an ancestor a ∈ V of v s.t.
a is a common ancestor of each direct ancestor of v occurring on path from
u to v.

Example:
Considering the graph in Figure 4.9.
Common ancestor of node 6 with regard to node 2 are nodes 2 and 3.

With the definitions, subgraphs can be identified which are considered as
first-level candidates for unordered sequences. Using definition of common
descendant, the candidate subgraph contains node v as an input node, its
common descendant d as an output node and all nodes occurring on paths
from v to d. Similarly for common ancestor, where a is an input node and
v is an output node. A node nin is an input node of block representing a
first-level candidate if

47



1. its out-degree is higher than 1,

2. the set of its common descendants is not empty, and

3. at least one of its common descendants, denoted as nout, whose set of
common ancestors with regard to nin contains nin.

The first condition ensures that there are at least two paths leading from
nin representing at least two alternatives. The third condition ensures that
there are no paths entering or leaving the block otherwise than using nin or
nout. For example in Figure 4.9 the only first-level candidate is subgraph
consisting of nodes 3, 4, 5, 6.

Second-Level Candidates

Second-level candidates represent an unordered sequence and, hence, they
are candidates for merging of states. To determine Second-Level Candidates
each First-Level Candidate must be checked for fulfilling conditions of an
unordered sequence. Vošta does so by comparing the similarity of the first-
level candidates with Pn automata. Pn automaton accepts each permutation
of n items having all the states fully merged. The maximum path length lmax

in the candidate graph denotes the size of the permutation. The candidate
graph is then compared with Plmax graph using an edit-distance algorithm.
Note, that the candidate graph must be always a subgraph of Plmax . Hence,
the edit operations can be reduced to the following operations:

• Adding an edge between two existing nodes, and

• Splitting an existing edge into two edges, i.e. adding a new node and
an edge.

From all the possible edit sequences the one with the lowest total cost is
chosen.

4.3 Conclusion

In this section the main schema inference methods were described. The older
approaches focused on inference of a DTD [11, 4, 22], latest works are mainly
focusing on inferring of an XSD and its additional features [3, 14].

The grammatical inference method iXSD [3] described in Subsection 4.2.1
tries to identify subclasses of XSDs that can be learned from positive example

48



only and present theoretically complete algorithm that can infer any XSD
from the subclass being given only positive examples. This method goes
behind the expressive power of the DTD by using element types instead of
element names in determining element groups. This is a basic way of how to
use the power of XML Schema in schema inference.

The same approach of using element types is also used in heuristic method
[14] presented by Vošta described in Subsection 4.2.2. This method firstly
determines element types and then for each type infers the regular expression
describing the content. Here Vošta extended regular expression by the new
permutation operator & which corresponds to the unordered sequences of
XML Schema.

In the schema inference features of the XML Schema language other than
element types and unordered sequences have not been implemented yet. Fea-
tures waiting for the implementation are mainly inheritance, substitution
groups or globally defined groups. This work is focusing on these features in
the next chapters. In particular there will be shown how user interaction can
help with finding difficult constructs such as inheritance to get more exact
XSD.
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Chapter 5

Proposed Algorithm

5.1 Motivation

XML Schema is a very complex language. It allows a user to define schema
of documents more precisely and in more detail than the DTD. For example
XML Schema has large range of built-in data types and allows a user to define
his own types. It allows to define an element with the same name but different
structure or it uses a sort of inheritance to define relations between element
types. However, Some constructs of the XML Schema language are only
“syntactic sugar” which do not go behind the expressive power of the DTD
and lead only to more concise schema. For example, unordered sequences
represented by the all element reduce the size of final XML schema by listing
elements available in the unordered sequence (a&b&c) instead of explicitly
specifying all permutations of elements (a(bc|cb)|b(ac|ca)|c(ab|ba)). Since the
XML Schema language has a large variety of constructs, it is not rare that a
regular expression can be expressed by more XML Schema constructs. The
easiest example is a use of unordered sequences instead of a choice from a set
of permutations. The large scale of XML Schema constructs together with
the difficulty of their inference is the cause of the fact that there is still no
XML Schema inference method that deals with its full expressive power.

In this chapter possibilities of how to use XML Schema constructs in
the process of inference an XSD from a given set of XML samples will be
discussed. The main aim of the discussion is to show how user interaction can
be integrated into the process of schema inference to obtain a more precise
and realistic schema. When a user participates in the decision process in
the right place, the algorithm should give better results in a shorter time.
The questions are, where the right places are, how a user should interact and
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<bicycles >

<bicycle >

<wheel/>

<wheel/>

</bicycle >

<bicycle >

<wheel/>

<wheel/>

</bicycle >

</bicycles >

Figure 5.1: XML Examples: a fragment from bicycles.xml

what knowledge should a user have. Next to the discussion, the implemented
inferring algorithm will be described.

5.2 Inferring Algorithm

The proposed algorithm, called Schema Builder, is based on the Schema
Miner method (see Subsection 4.2.2) presented by Vošta in [14]. This algo-
rithm was chosen because it is heuristic, which suits well with user inter-
action, it infers XSDs and focuses also on two constructs of XML Schema
language - element type and unordered sequences. However, Schema Builder
adds ability to define the same type for elements with the different name but
similar structure and ability to define inheritance between two types.

The algorithm is split into three steps. In the first step elements from
input documents are clustered according to their types. The second step of
the algorithm infers a finite state automata accepting all input strings for
each cluster from the first step. The last step takes a finite state automata
and converts it to the XML Schema language.

5.2.1 User Interaction and Participation Measure

User interaction is a very wide concept. A user can participate in the inferring
process at various places and can have different XML and XML Schema
knowledge. A user can also participate in every decision to obtain the optimal
result, or put up with a suboptimal result to save his work.

The algorithm allows a user to control the participation measure by set-
ting proper initial parameters and, thus, choose a configuration which leads
to the optimal relation between user participation measure and the quality
of inferred XML schema.

For example having an XML fragment from Figure 5.1, a user can set,
that if an element repeats two or more times, the repetition should be un-
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<xml version ="1.0" encoding ="ISO -8859 -1" standalone ="no"?>

<mail >

<from >

<name >...</name >

<address >...</ address >

</from >

<to>

<name >...</name >

<address >...</ address >

</to>

<subject >...</ subject >

<body >...</body >

</mail >

Figure 5.2: XML Examples: mail.xml

bounded. But this configuration yields to the bicycles with more than two
wheels, which is incorrect. On the other hand, if a user sets the minimal rep-
etition parameter to three, <bicycles> element will have only two <bicycle>

subelements and this is also incorrect. Solution is to mark the repetition of
<bicycle> subelements manually.

The concrete ways of how a user can direct the participation measure will
be discused later in appropriate subsections.

The next issue is also a fallibility of a user. A user can do mistakes
which yield in invalid schema or schema which does not match with the
input XML documents. An inferring algorithm should control decisions of
the user and warn him if he does something wrong. But sometimes should
control mechanisms yield to an unacceptable complexity and thus is better
to trust the user.

5.2.2 Clustering of Elements

XML Schema is a type based language. Each element must have a type.
Vošta in his thesis focuses only on inferring different types for elements which
have the same name but different structure. He clusters elements according to
their names and then splits these clusters when there are different structures
for elements with the same name. The following algorithm can also define
the same type for elements which have different names but similar structure.
This yields to a higher complexity, since Vošta does not compare elements
with different names. The following example shows, how the computation
differs.
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Example:
Having XML file from Figure 5.2:
Clusters using Schema Miner:
mail mail from mail.from
to mail.to subject mail.subject
body mail.body name mail.from.name, mail.to.name

address

mail.from.address, mail.to.address

Candidates for further split are name and address. The treeEditDis-
tance for mail.from.name and mail.to.name is 0, cluster remains unchanged.
Similarly for the address cluster.
Number of comparisons = 2
Number of clusters = 7

Clusters using Schema Builder:
mail mail.subject
mail.from mail.to
mail.from.name mail.to.name
mail.from.address mail.to.address
mail.body

The algorithm compares clusters each to each. The following cluster pairs
have the treeEditDistance equal to the 0 and should be merged:
mail.from, mail.to
mail.from.name, mail.to.name
mail.from.address, mail.to.address

Number of comparisons = 19
Number of clusters = 6

Definition 5.2.1 A type cluster of the type T is a set CT of XML elements
which have the same XSD type. A string of the XML element E is a sequence
of names of subelements of E with preserved order. The type strings ST is a
set of strings of each E ∈ CT

Algorithm 15 mergeTypes
Input: A set of Clusters C
Output: A set of Clusters C after merge process
1: for each pair T1, T2 in C do
2: distance := treeEditDistance(T1.representant, T2.representant);
3: if distance < MAX DISTANCE then
4: merge(C, T1, T2);
5: end if
6: end for
7: return C
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The proposed algorithm, outlined in Algorithm 15, works as follows: In
the first step, elements are clustered according to their context. Firstly, el-
ements with the same name and with the same path from root will have
the same type, since the XML Schema does not allow different types for
element names within the same context. Once elements are clustered ac-
cording to their context, the algorithm should determine, if there are clus-
ters which are similar enough to have the same type. As a similarity mea-
sure, treeEditDistance outlined in Algorithm 16 is used. The proposed
treeEditDistance algorithm is similar to the algorithm described in Section
4.2.2. Some changes will be discused later.

If no clusters will be merged, algorithm must do n2

2
comparisons, where

n is the number of the initial clusters. But when merging will be forced,
number of comparisons may rapidly decrease. From the above example, when
clusters mail.from and mail.to are merged, contexts of subelements become
equal and, thus, clusters mail.from.name, mail.to.name and mail.from.address,

mail.to.address should be also merged and cannot be compared anymore.

Algorithm 16 treeEditDistance
Input: a pair of trees T1, T2

Output: A tree edit distance as integer in range 0 - 100
1: distance := nodeDistance(T1.root, T2.root, T1.root, T2.root, true);
2: return (distance ∗ 100)/(T1.size + T2.size);

Tree Edit Distance

As mentioned before, the treeEditDistance algorithm is a modified algo-
rithm described in Section 4.2.2. The main difference is that in Schema
Builder two trees with roots with the different names can be compared (for
example mail.from and mail.to elements and their subtrees). When the roots
have different names, recursive computation cannot be applied.

Example:
Comparing two clusters mail.from and mail.from.name:
nodesList1 = {name, address}
nodesList2 = {}
Let’s iterate over the nodesList1
name found in the second tree (the root itself), their distance is 0
address not found in the second tree, distance is 1

The result with the recursion on the elements with different names al-
lowed is 1, the result with such recursion disabled is 2.
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Algorithm 17 nodeDistance
Input: node1, node2, root1, root2, recursively as boolean
Output: A distance between node1 AND node2 as integer

nodesList1 := sortChildNodes(node1);
nodesList2 := sortChildNodes(node2);
distance := 0;
while nodesList1.hasMoreElements AND nodesList2.hasMoreElements do

child1 = nodesList1.actual;
child2 = nodesList2.actual;
if child1.name == child2.name then

distance+ = nodeDistance(child1, child2, root1, root2, recursively);
nodesList1.next;
nodesList2.next;

else if child1.name < child2.name then
if recursively AND node1.name == node2.name then

subtreeDistance = subtreeDistance(child1, root1, root2);
topDistance = topDistance(child1, node2, root1, root2);
distance+ = min(subtreeDistance, topDistance);

else
distance+ = child1.size;

end if
nodesList1.next;

else
if recursively AND node1.name == node2.name then

subtreeDistance = subtreeDistance(child2, root2, root1);
topDistance = topDistance(child2, node1, root2, root1);
distance+ = min(subtreeDistance, topDistance);

else
distance+ = child2.size;

end if
nodesList2.next;

end if
end while
while nodesList1.hasMoreElements do

child1 = nodesList1.actual;
if recursively AND node1.name == node2.name then

subtreeDistance = subtreeDistance(child1, root1, root2);
topDistance = topDistance(child1, node2, root1, root2);
distance+ = min(subtreeDistance, topDistance);

else
distance+ = child1.size;

end if
nodesList1.next;

end while

55



Algorithm 18 nodeDistance - continue
while nodesList2.hasMoreElements do

child2 = nodesList2.actual;
if recursively AND node1.name == node2.name then

subtreeDistance = subtreeDistance(child2, root2, root1);
topDistance = topDistance(child2, node1, root2, root1);
distance+ = min(subtreeDistance, topDistance);

else
distance+ = child2.size;

end if
nodesList2.next;

end while
return distance;

Algorithm 19 subtreeDistance
Input: child to explore, root1 child’s root, root2 root to find in subtree
Output: a minimum distance for the recurse
1: elementsList := findInSubtree(child, root2);
2: for each element in elementsList do
3: min := min(min, nodeDistance(element, root2, root1, root2, false));
4: end for
5: return min;

The presented example shows that the unchanged algorithm does not
work for this purpose, since it decrease a distance by applying the recursion
when it should not be applied. The worst case is comparing an element
with its child, when the element contains only the child or its repetition. In
this case the algorithm computes distance as 0 and thus clusters should be
merged.

User Interaction

User interaction suggests itself in the place of determining wheather to merge
types or not. There are two possible methods based on the participation
measure. The former method is not to compute the treeEditDistance but
to ask a user for every pair of types. The latter method is to ask a user only
if the treeEditDistance is under some defined bound. The former method
returns exactly the required type clusters and thus the result is optimal. But
this approach forces a user to do up to n2

2
decisions, where n is the number

of clusters before the merging step. On the other hand, the latter method
uses a heuristic rule and, thus, the result is only suboptimal. But, a user
must interact only when the pair is a serious candidate for merging. An
improvement would be a two-bound approach: If the distance falls below
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Algorithm 20 topDistance
Input: child to find, node to start search in, root1 child’s root, root2 node’s root
Output: a minimum distance for the recurse
1: elementsList := findInTopPath(child, node, root2);
2: for EACH element IN elementsList do
3: min := min(min, nodeDistance(child, element, root1, root2, false));
4: end for
5: return min;

the first bound, the types will be merged automatically. If the distance falls
between the first and the second bound, a user will be asked.

The next improvement can be a method, that reduces a number of user
decisions by using semantic methods. When two element names are seman-
tically close to each other, the elements are merge candidates and user must
decide, whether to merge or not. For example, having documents from Fig-
ures 5.2 and 5.3, mail and multiple mail are semantically close and could have
the same type.

From the above, Schema Builder have implemented user decisions accord-
ing to the treeEditDistance result. In the configuration phase, a user will
set a layer1 and a layer2 constants with an integer, where 0 <= layer1 <=
layer2 <= 100 and a mergeTypesUI constant with one of the following
values:

• USERS DECISION - This means, that every merging step must be
decided by the user.

• TED ONE LAYER - When the treeEditDistance <= layer1, the merge
must be decided by the user. Otherwise the types will not be merged.

• TED TWO LAYERS - When the treeEditDistance <= layer2, types
will be merged. Otherwise as in the TED ONE LAYER option.

• BUILDERS DECISION - When the treeEditDistance <= layer2,
types will be merged. Otherwise the types will not be merged.

The merging algorithm then acts as described in the proper option.

5.2.3 Type Inheritance

Determining type inheritance automatically is a very complex issue, which
can be easily solved by using user interaction. A user can decide if one type
will be restricted or extended from the other. But the problem is how to
determine if the given extension or restriction is valid. For example elements
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<xml version ="1.0" encoding ="ISO -8859 -1" standalone ="no"?>

<multiple_mail >

<from >

<name >...</name >

<address >...</ address >

</from >

<to>

<name >...</name >

<address >...</ address >

</to>

<to>

<name >...</name >

<address >...</ address >

</to>

<to>

<name >...</name >

<address >...</ address >

</to>

<subject >...</ subject >

<body >...</body >

</multiple_mail >

Figure 5.3: XML Examples: multiple mail.xml

mail and multiple mail from Figures 5.2 and 5.3 seem to be good candidates
for inheritance. A user can determine, that the multiple mail element type
can be extended from the mail element type by adding a multiple occurrence
to the element to. However, extended element type is validated by concate-
nating a content model of parent element with a content model defined in
the extended type. And this condition cannot be satisfied in this case, since
additional to elements occur in the middle of an input string.

Solution would be, that in the phase of schema generalisation, if a valid
schema cannot be inferred, a user will determine whether to merge the given
types or to separate them completely. The further improvement would be
analysing merge candidates whether the extension or restriction can be ap-
plied.

Another issue is where to place this part of the algorithm. One way is to
place it next to the decision whether to merge types or not. This question
can provide some additional options. When a user does not want to merge
the types, he can mark, that one type is inherited from the other. But
there is a problem with determining inheritance of types in the type merging
phase. What to do, when inheritance is marked and one of parent and child
type should be merged with another type? Considering the situation in the
following example:
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Example:
Having a set of types:
mailType incoming.mails.mail
multipleMailType incoming.mails.multipleMail - extended from
mailType
mailType2 outgoing.mails.mail
multipleMailType2 outgoing.mails.multipleMail - extended from
mailType2
mailType3 trash.mails.mail
multipleMailType3 trash.mails.multipleMail

1) merge mailType and mailType2
2) merge multipleMailType and multipleMailType3
3) merge multipleMailType and multipleMailType2

Lets put aside the inheritance validity issues. The first case is clear.
The newly created type should be a parent for types multipleMailType and
multipleMailType2. In the second case, a type with extension assigned should
be merged with a type without inheritance. Here a newly created type can
but also can not be extended from the mailType. In the third case two
types with a different parent are merging. There are several possibilities.
Inheritance can be removed from one or both child types or the parent types
must be also merged.

The second way, which solves the problem, is to place the inheritance
part after the type merging phase. Here type clusters will never change and
the user is prevented from doing complicated decisions.

Implementation

Schema Builder places the type inheritance fragment after the type merging
phase, where all type clusters are determined. A user can pair subtypes with
supertypes with the proper inheritance type. The algorithm provides the
user for every type a set of strings, that the type must accept. This can help
the user with his decision.

5.2.4 Schema Generalisation

When type clusters are determined and the inheritance marked, a schema of
each element type must be inferred. A content model can be represented by
a regular expression or an equivalent deterministic finite state automaton.
In Schema Builder, a content model is represented by a schema automaton,
which is a special type of FSA. Thus, the problem of schema generalisation
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is transformed to the problem of finding the best schema automaton that
accepts at least the set of strings ST for the type T .

Definition 5.2.2 A Schema automaton (SA) is an extended finite state au-
tomaton. It is a hextuple (Σ, S, Sx, s0, δ, F ), where:

• Σ is the input alphabet (a finite, non-empty set of element names),

• S is a finite set of basic states,

• Sx is a finite set of extended states,

• S0 is an initial state, S0 ∈ S ∪ Sx,

• δ is the state-transition function δ : S ∪ Sx × Σ ∪ {λ} → S ∪ Sx

• F is a set of final states, F ⊆ (S ∪ Sx)

Schema automaton behaves similarly like a deterministic FSA. The only
difference is that Schema automaton contains in addition a set of extended
states. An extended state sx represents a subautomaton SAx which accepts
a part of the input string. When the sx state is reached, the SAx automa-
ton continues in input processing. The subautomaton consumes as much
symbols as possible and returns processing to the parent automaton. Every
extended state has a helper state. Helper state is a basic state with only one
transition point to it, the lambda transition from the extended state. When
the processing is returned from the subautomaton, the automaton moves into
the helper state according to the lambda transition.

Schema automaton has the same expressive power as a FSA. It can be
transformed to the FSA with lambda edges as showed in Figure 5.4. Ex-
tended state has only one transition - lambda transition. The transition is
redirected to the initial state of the subautomaton. All final states of the sub-
automaton has one additional lambda transition to the destination state of
the original lambda transition. The FSA computation now works as follows.
If there is a transition for the given letter, use the transition. Otherwise, if
there is a lambda transition, use the lambda transition. Otherwise, return
true if the actual state is a final state or false if not. The newly created
FSA with lambda edges can be in addition transformed to the FSA without
lambda edges by merging states connected with a lambda edge.

The following types of extended states can be present in the automaton:

Extension state This state is used, when the type is extended from
another. The supertype is represented by a supertype automaton. According
to the specification, the content model of the subtype is a concatenation of
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Figure 5.4: Schema automaton transformed to the FSA. a) up - a subau-
tomaton, down - SA. b) transformed FSA with lambda edges. Here e stands
for λ

the content model of the supertype and the content model defined in the
extension. The extension state stands for the supertype automaton and
is placed in the subtype automaton as an initial state. This construction
ensures the concatenation of the supertype content model and the content
model defined in the rest of the automaton.

Permutation state stands for the all particle in the schema. The sub-
automaton represented by this state models all possible permutations that
the particle can accept.

Group state represents an arbitrary automaton. It stands for the group
particle which can be seen as a reference to the globally defined particle. This
state allows automata to reuse automaton fragments in more places, which
decrease the number of defined states.

SA Construction

Having a type cluster CT , the first step is to construct a schema automaton
from a given set of input strings ST . The schema automaton is constructed
as PTA (see Figure 4.3. If the type is extended from another, the initial
state is an extension state referencing the supertype automaton. Note that
each input string is truncated to conform the rest of the string the supertype
automaton cannot process. The rest of the SA is constructed as usual PTA.

For example in Figure 5.5, the first automaton was created for the type
T having the input string set {ab, ac}, the second automaton was created for
the type S extended from T having the input string set {abd}.

The generated schema automaton represents the type content model. It
accepts all the input strings, but it may not be the best representation for
the content model. The appropriate schema may be too big and not user-
friendly. Hence, the schema must be generalised in a proper way, which
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Figure 5.5: Schema automaton examples

allows an automaton to accept more than only given input strings, but also
reduces the size of the schema and thus it becomes more user-friendly. To
find the optimal schema is the crucial issue. The proposed algorithm is based
on the Schema Miner approach 4.2.2 and it shows, how a user can participate
to obtain the best possible schema.

SA generalisation

The schema represented by the given SA can be generalised by a sequence
of SA modification steps. The sequence is composed from any combination
of the following steps.

States merge. In this step two nodes are merged and all the transitions
are redirected respectively. Note that for each pair of transitions with the
same letter, if the destination nodes are not equal, the destination nodes
must be also merged for the preservation of the determinism. The Algorithm
21 outlines the core of the merging step. Figure 5.6 shows an example of a
states merge.

Permutation substitution. Here a subgraph is localised, that can be
substituted by the permutation state. The Algorithm 22 shows, how the
subgraph is substituted. The subgraph is elimitated by one initial state and
one final state. All transitions that end in the initial state of the subgraph
are redirected to the newly created permutation state. All transitions that
start or end in the final state of the subgraph are redirected to start or end
in the helper state respectively. An example is shown in Appendix B.

Group substitution In this step a subgraph is localised, which can be
extracted for the purpose of the code reusage. The subgraph is substituted
in the same way as a permutation. The only difference is that the group
state is created instead of the permutation state. The group state holds the
reference to the extracted subgraph.
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Algorithm 21 mergeStates
Input: two states si and sj to merge
Output: the generalised schema automaton

sj .redirectTransitions(si)
if sj .final then

si.final = true
end if
for all transitioni , transitionj IN si do

if transitioni.letter == transitionj .letter then
if transitioni.to 6= transitionj .to then

mergeStates(transitioni.to, transitionj .to)
else

si.deleteTransition(transitionj)
end if

end if
end for

Algorithm 22 permutationSubstitution
Input: initial state of the subgraph si, final state of the subgraph sf

Output: the generalised schema automaton
permutationState = permutationState(si, sf );
helperState = permutationState.helperState;
for all backTransition IN si do

backTransition.redirectTo(permutationState);
end for
for all backTransition IN sF do

backTransition.redirectTo(helperState);
end for
for all transition IN sF do

transition.redirectFrom(helperState);
end for

Having the generalisation steps defined, the issue is how to find the se-
quence of the steps which yields to the best schema. Here a user can partici-
pate in two ways. The first way is that he can select the states and the action
without using a heuristic. The second way is that the algorithm helps a user
to find good candidates and he will determine whether to do the proposed
generalisation steps or not.

The help function should be strong enough to make the decision itself.
When the user does not want to accept explicitly all the generalisation steps,
the help function can do the steps automatically until no improvement is
found.

The help function is based on the sk-ANT heuristic presented in Section
4.1.3 and its modification presented in Section 4.2.2. The function finds
the best candidate using the ACO heuristic combined with the sk-strings
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Figure 5.6: States merge example. a) An automaton with two states to
merge. b) States merged, but automaton is nondeterministic. The high-
lighted states must be merged. c) Final automaton.

method, the k-context method and the permutation method as a selector of
states and the MDL as a quality measure.

The permutation method can be simplified, when a user must accept
the generalisation step. In this case it is sufficient to find the first level
candidates. The user then determine if it is the right permutation block and
forces the permutation substitution.

The k-context and sk-strings methods provide only candidates for states
to merge. The permutation method provides candidates for permutation
substitution. The only generalisation step that cannot be determined by the
help function is the group substitution.

The group substitution is the perfect example of user interaction advan-
tages. The problem of finding the equivalent subgraphs in two graphs can
be a theme for another thesis. But a user can mark such subgraphs easily,
especially if he knows what to find.

Inheritance and Validity

When the type C is inherited from the type P , inheritance conditions must
be checked. There are two types of inheritance - extension and restriction.

When the type C is extended, the supertype automaton must accept a
part of each input string. But this condition may not always be fulfilled. If
the condition cannot be satisfied (for example multiple mail extended from
mail), the supertype automaton can be modified respectively, or the inheri-
tance link can be removed.
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When the type C is restricted, input strings of this type must also be
accepted by an automaton of the type P . This can be achieved by adding
all subtype input strings to a supertype input strings set. And because the
generalised schema automaton must accept all the input strings, the super-
type automaton also accepts all subtype input strings after the generalisation
step. According to the XML Schema specification, a restricted type can be
obtained from the supertype only by the occurrence reduction. Thus, the
subtype schema automaton is at the beginning a copy of the supertype au-
tomaton and only allowed edit operations are such operations that reduces
the occurrence. Here, the generalisation does not have any sense.

In both situations the supertype must always been processed before pro-
cessing of its subtypes so that the inheritance conditions could be checked.

Implementation

Firstly, the schema automaton is created as outlined in Algorithm 23. Given
a type T , the schema automaton is initialised. If T is extended, the initial
state is created as an extension state and a helper state is added. Then all
input strings are added to the schema automaton. The nextState method
tries to find the proper transition. The extension state here consumes the
part of the string that can be accepted by the supertype automaton. If no
such part can be accepted, the createSchemaAutomaton fails and the type
will loose the inheritance mark. The schema automaton will then be created
without the extension state.

The proposed algorithm has implemented one optimalization method,
that automatically creates the repetition loops if an input string contains a
sequence of the length greater than a user defined constant REPETITION .
This method is placed within the schema automaton construction. This re-
duces, sometimes significantly, the size of the schema automaton right before
the generalisation starts. Note that it is better not to create a loop from all
the same letters, but to let one letter to create a transition between two dif-
ferent states. For example in the Figure 5.7, the two schema automatons are
shown that are built from strings {aaab, aaaab, c} with the REPETITION
constant set to 3. The first automaton suffers from an overgeneralisation,
since it accepts also all the strings {aaac, aaaac, ...} which is not desired.

Once the schema automaton is created, the generalisation phase starts.
Here, a user can mark two states and merge them, or he can force a help
function which finds one solution and presents it to the user. The last option
is to force an automatic generalisation step or a chain of maximal possible
generalisation steps.
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Algorithm 23 createSchemaAutomaton
Input: type T to create schema automaton for
Output: the schema automaton

schemaAutomaton = newSchemaAutomaton();
if T.isExtended then

schemaAutomaton.initialState = extensionState(T.parent);
helperState = state();
schemaAutomaton.initialState.createLambdaTransitionTo(helperState);

else
schemaAutomaton.initialState = state();

end if
for all string IN T.inputStrings do

actualState = schemaAutomaton.initialState;
while string has more letters do

letter = string.next;
if string has repetition of letter then

actualState.createLoopFor(letter);
else

nextState = actualState.nextState(string);
if nextState == null then

nextState = state();
actualState.createTransitionTo(nextState, letter);

end if
actualState = nextState;

end if
end whileactualState.final = true;

end for
return schemaAutomaton

For the help function the ACO heuristic has been implemented. The ACO
heuristic has been described in Section 4.1.3 and the algorithm is outlined
in Algorithm 5. But the ant move selector uses two additional criteria to
allow a pair of states to be a solution candidate. The k-context criterion
is based on the k-contextual method presented by Ahonen in [1]. The k-
contextual method says, that two states s1 and s2 are identical, if there exist
two identical paths of length k terminating in s1 and s2 respectively.

The permutation criterion uses the permutation method presented by
Vošta in [14]. This method does not produce candidates for merge, but
candidates for the permutation substitution.

The MDL method computes a quality of a given solution. It is outlined
in Algorithm 24. The automaton description length (ADL) is computed as
a number of states plus the number of transitions. The only exception is a
permutation state. The length of a permutation state simulates the chain of
states and edges from all letters in a given permutation state.
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Figure 5.7: Schema automatons with repetition loop. a) overgeneralised
automaton, b) correct automaton.

Algorithm 24 MDL
Input: an automaton A and a set of input strings strings
Output: the computed description length

ADL = 0
for all state IN A.states do

if state is a permutation state then
ADL+ = 2 ∗ state.sizeOfPermutation

else
ADL+ = 1 + state.transitions.size

end if
end for
SDLs = 0;
for all string IN strings do

SDLs+ = computeStringDescriptionLength(string,A);
end for
return ADL + (SDLs/strings.size)

A string s can be represented as a chain of states s0, s1, . . . , sn of the
automaton A that are visited during the acceptation process. Note, that
s0 is an initial state and there is a transition from s0 to s1 with the first
letter of the string s. A code size of the string size(s) =

∑n
i=1 bits(si) where

bits(si) denotes a bit count needed to encode a state si in the chain. This is
dlog2(N)e where N is a number of transitions of the state si−1.

5.2.5 XML Schema Inference

Since the schema automaton is generalised, it must be converted to the XML
Schema content model definition. As mentioned before, the content model
can be represented as a regular expression with one additional operator &
for the all particle. Thus, the problem of converting a schema automaton to
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Figure 5.8: An example of two different state removal sequences. a) the initial
automaton. The highlighted state is a super-final state b) after remove p c)
after remove q,r d) after remove q,r e) after remove p

an XML Schema content model can be viewed as a converting a FSA to a
regular expression.

A summarisation of techniques for converting a FSA to a regular expres-
sion was presented by Neuman in [13]. In this thesis a state removal method
is implemented. This method remove states and replaces them and proper
transitions with transitions that contain regular expression fragments.

The crucial issue is to select the best order of states to remove. Different
removal sequences lead to different regular expressions for the same language.
The example is shown in Figure 5.8. One method is proposed by Han and
Wood in [5]. They present few heuristics that compute the best state for
remove.

The simplest, and also the implemented heuristic orders states by the
weight. The weight of a state is a sum of in-transition weights plus the sum
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Figure 5.9: An example of collapsing transitions. a) an automaton before
collapse b) an automaton after collapse

of out-transition weights plus the loop weight. Where a transition weight is a
length of regular expression of the given transition. The firstly removed state
is the state with the lowest weight. The algorithm is outlined in Algorithm 25.
At first all final states must be connected with one super-final state by lambda
transitions. Then all states except the initial and the super-final state are
removed in the order of the lowest weight. When a state is removed the new
transitions are added that represent all combinations of the back-transition,
the loop-transition and the front-transition. The appropriate regular expres-
sions are simply concatenated. The collapseParallelTransitions function
collapses the parallel transitions as shown in Figure 5.9. The appropriate
regular expressions are joined by the | operator.

Algorithm 25 SAtoRegex
Input: an automaton A
Output: the computed regular expression

superF inalState = state()
for all state IN A.finalStates do

state.createLambdaTransitionTo(superF inalState);
end for
while A.states.size > 2 do

state = A.getLowestWeight();
state.collapseParallelT ransitions();
loop = state.getLoop
for all pair of backTransition and transition do

regex = createRegexFor(backTransition, loop, transition)
A.addTransition(backTransition.from, regex, transition.to)

end for
state.removeAllTransitions();
A.removeState(state)

end while
A.initialState.collapseParallelT ransitions();
loop = A.initialState.getLoop
transition = A.initialState.getTransitionToSuperF inalState();
return createRegexFor(loop, transition);
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Chapter 6

Implementation

Schema Builder has been implemented in the JAVA language in the version
JDK 6.0. It has been implemented as a swing application, using swing GUI
tools. For a XML processing, the built-in Java SAX parser has been used.
The Java language has been selected because of the platform independence,
the swing is used, because it is more user-friendly than the command line
application.

6.1 Architecture

The application is composed of the code itself, third-party packages and the
ant build script.

6.1.1 Third Party Packages

Third-party packages are located in the /lib/ directory. The packages with a
common prefix jung is used for the automata visualization. The colt library,
the concurrent library and the Apache commons libraries are used by the
JUNG visualization tool [8]. The log4j library is used for logging.

6.1.2 Code Structure

The source code is located in the /src/ directory and is divided into packages.
The package structure corresponds to the directory structure in the filesys-
tem. Two main packages splits the source code to the two logical blocks.

The cz.cuni.mff.schemabuilder.swing package contains the GUI definition.
It is a frontend of the application.

On the other hand, the cz.cuni.mff.schemabuilder.core package contains
the core of the application. It contains all data structure definitions, the core
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algorithms and all the code that is not bounded to the GUI. It represents
the backend of the application.

The core package is further divided into the following subpackages:

automaton contains a schema automaton data structure definition and con-
tains all methods that manipulate with the structure.

builder contains class SchemaBuilder, the class that directs the whole compu-
tation. The subpackage algorithms contains implemented third-party
algorithms.

document contains a XML document data structure and the parser that
builds it.

exception contains exception definitions

util contains some useful universal classes

XMLSchema contains a XML Schema data structure

6.2 Implemented Fragments

SchemaBuilder application is an implementation of Schema Builder as pre-
sented in Chapter 5. However, there are parts that have not been imple-
mented yet.

The permuation criterion in ACO heuristic determines only first-level
candidates. A user then decide whether to substitute or not. Finding second-
level candidates is not implemented and, thus, permutation method is not
available for the automatic generalisation.

Besides the automatic permutation substitution, the group substitution
is also unimplemented yet. These two fragments have been left for the future
work.

6.3 Building and Executing

For building the executable jar file, the ant tool is used. The version 1.7
or later is required. To build the jar, execute a command $>ant build.xml.
The generated jar file will be stored in the subdirectory /build/, that already
contains the pre-built executable jar file SchemaBuilder.jar. The jar can be
executed by the command $>java -jar SchemaBuilder.jar. Note, that at least
JRE 6.0 is required.

Appendix B contains a simple user guide with screenshots and examples.
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Chapter 7

Experimental Results

In this chapter, experimental results of SchemaBuilder application are pre-
sented. Sets of documents have been provided as an input to SchemaBuilder
and the results have been analysed and compared with the expected schema.
The documents can be divided according to their origin or complexity. The
documents can be split into real-world XML documents and documents syn-
thetic, created to cover all features of the application. The documents have
various structure and complexity. Four sets of documents have been tested,
which sufficiently cover the abilities of SchemaBuilder. Documents have been
firstly passed through the application without any help from a user, and the
resulting XML Schema has been stored as a test1.xsd. After it, the same
documents have been processed using user interaction. The result has been
stored as a test2.xsd.

7.1 Testing Sets

The following sets of documents have been tested. The tested documents
with inferred XSDs are placed on CD in the directory /data/.

Set 1

Documents in this set have a sort of table structure. In such document,
the root element contains an arbitrary number of a single element with a
sequential structure. SchemaBuilder without user interaction infers XML
Schema from this set of documents correctly. The only difference is setting
the root type to a+ instead of a∗, when it is possible. Actually, this can be
viewed not as a mistake, but as a useful feature. However, a user can simply
edit the proper schema automaton to get the a∗ content model.
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Set 2

DTD describing this set uses all possible constructs. It uses a choice operator,
all occurrence operators and it uses various combinations of the operators.
Having the set of documents, SchemaBuilder without user interaction suffers
from the following behaviour. It does not join some type clusters, that should
be joined and, in some cases, it infers less generalised schema automata than
it should. It is partially caused by the insufficient input examples. Having a
complex automaton, the unoptimal schema inference phase make the content
model big, not readable and in many cases nondeterministic.

User interaction helps to merge type clusters properly and also schema
automata are, if not optimal, then closer to the expected content model.
But even optimal automata are sometimes transformed to non-user-friendly
content model.

Set 3

DTD describing this set does not contain a choice operator, but often contains
∗ operator. The DTD also contains two types, on which inheritance can be
applied. SchemaBuilder behaves similar as on the Set 2. Some type clusters
are leaved unmerged, some content models are wrongly inferred. The biggest
problem is that it cannot infer a content model of the type a∗b∗c∗d∗. The
content model usually consists of many choice particles nested within each
other.

As on the Set 2, the user helps to merge type clusters properly. The user
can also mark inheritance and make more concise content models. The size
of the generated XSD is reduced to 1

3
.

Set 4

It is a set of synthetic XML documents and contains constructs such as
more types for the same element name, one type for different element names,
permutation particle and inheritance. SchemaBuilder without any user in-
teraction suffers from the less generalised schema and it cannot recognise the
all particle and inheritance. User interaction helps to obtain the expected
schema.

7.1.1 Conclusion

User interaction helps mainly in places, where input examples are poor and
do not cover whole possibilities. It also helps a lot in the phase of merging
type clusters and it is the only way of how to infer inheritance. However,
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the results are still not optimal. The biggest problem is when elements are
optional. For example when a content model should be of the form ab∗c∗,
SchemaBuilder infers a content model like (((ab + |a)|ac+)|ab + c+). This
is caused by the implementation of the XML Schema inference phase and
by the fact, that such content models are hardly represented by automata
without lambda edges. The next problem is that expressions like a+ are
sometimes defined as aa∗.

7.2 Types Inference

One of the interesting parts of the computation is, how type clusters are
merged. The clusters are compared mutually and they are merged or not
according to the tree edit distance (TED). Table 7.2 shows, how user in-
teraction can decrease the number of inferred types. When user interaction
(UI) is not used a BUILDERS DECISION merge type is selected. Thus,
two types are merged, if the TED is under layer 2. It has been found, that if
the layer 2 parameter is set to 10, almost all clusters, that should be merged
and no clusters, that should not be merged, are really merged. Thus, the pa-
rameter is set to 10 for each test. When UI is used, TED TWO LAY ERS
merge type is selected. Thus, a user must decide, whether to merge clusters
or not, if TED is under layer 1 but over layer 2. If TED is under layer 2,
clusters are merged automatically. Thus, layer 1 has been looked for, that
makes the set of inferred types to be optimal. In the proposed tests, where
user decisions have been made, the results are optimal. The only exception
is Set 1, where the optimal set has been inferred without user interaction.

Number of types
Set UI Layer 1 Decisions DTD Before After
Set 1 no 0 0 32/7 32 8/7
Set 2 no 0 0 28 48 17/16
Set 2 yes 70 14 28 48 13/12
Set 3 no 0 0 23/11 33 9/8
Set 3 yes 70 5 23/11 33 8/7
Set 4 no 0 0 8 25 10/9
Set 4 yes 40 10 8 25 9/8

Table 7.1: Number of inferred types according to the initial parameters

When the number of types is marked as 32/7, it means, that there are
32 types in common and only 7 types have defined complex content (i.e. an
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element may contain subelements). Note, that in every tests SchemaBuilder
infers exactly one type, that has simple content. Elements in this type have
assigned type xs:string.
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Chapter 8

Conclusion

The aim of this thesis has been finding new possibilities in the automatic
construction of an XML schema for a given set of XML documents. Firstly
the existing solutions have been analysed and some of them described. It has
been found, that no analysed solution focuses on user interaction in a process
of schema inference. Thus this thesis has focused on how user interaction can
help in the process of XML schema inference.

This thesis contains a discussion of possible ways of user interaction and
also an experimental implementation. As a schema description language,
XML Schema has been used, because it contains constructs, that cannot be
easily determined by automatic computation, but a user can recognise them.

As a default algorithm, Schema Miner [14] (see Section 4.2.2) has been
used, because it is heuristic method, which best suits with user interaction.
The type inference phase has been improved by allowing the same type for
different element names and by allowing a user to determine whether to
merge type clusters or not. After the type inference phase, the user can
mark inheritance between types. Inheritance is a construction, which has
not been considered yet in any of the analysed solutions. In the phase of
schema generalisation, the user can mark states to merge or can request for
a help. The algorithm can in addition merge states automatically. In the
final phase, XML Schema is inferred from a given set of type clusters.

Thanks to user interaction, the proposed method gives more concise and
user-friendly XSDs than the method without user interaction. Contrary to
Schema Miner, the proposed algorithm allows to define an inheritace between
types and allows to define the same type for elements with different names.
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8.1 Future Work

The general aim has been fulfilled. The discussion outlines the possible ways
of how a user can help with the schema inference. The experimental imple-
mentation contains almost every algorithm outlined in the discussion. How-
ever, there are several solutions, that have not been implemented or that are
worth improving.

The groups extraction is one of them. The user can mark a subautomaton
and replaces it with an auxiliary group state. The subautomaton is then
represended as a globally defined group, which the auxiliary state references.
An implementation of this feature has been left for the future work.

The XML Schema inference phase constructs a regular expression for a
given schema automaton using the state removal method. This algorithm
is based on the heuristic, which selects the next state to remove. The used
weight heuristic provides better and more concise regular expression than the
random selection. However, it does not always produce a deterministic regu-
lar expression, especially for more complicated automata. Thus, implement-
ing better algorithm with preventing nondeterministic regular expressions
should be an issue for the future work.

There are XML Schema constructs that are not covered by the proposed
method. For example substitution groups or integrity constraints. The inher-
itance is also reduced to identifying inheritance between two existing types.
The improvement would be to define one abstract supertype for a set of sub-
types. Together with the substitution groups it is a useful XML Schema
construct. Finally, the only simple type inferred by the proposed algorithm
is xs:string. Identifying simple types is also left for the future work.
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Appendix A

Content of CD

Part of this thesis is the enclosed CD. CD contains source codes of the experi-
mental implementation together with a documentation and built application.
It also contains experimental data and results. Finally, the text of this thesis
is present. CD has the following structure:

• content.txt A file with this text

• thesis.pdf A PDF file with the text of this thesis

• /impl/ Source codes and libraries of the experimental implementation

• /javadoc/ A generated javadoc documentation.

• /data/ Experimental data and results.
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Appendix B

SchemaBuilder Guide

Execute the application by the command $>java -jar SchemaBuilder.jar. The
following window will be displayed.

Set the application parameters here, then click on “Next”. On the next
window choose XML files.
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The selected files will be used for the inference algorithm. Click on
“Next”, progress bars will be displayed.
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When you choose an interaction during the merge types phase, a modal
dialog may be displayed. The type is identified by its name in bold. In
the white frame a set of elements with paths, that belongs to the type, are
displayed. Click on “Yes” to merge the types, click on “No” not to merge the
types. After the merge types phase the following window will be displayed.
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This is an inheritance panel. On the top of the panel two type lists are
displayed. The lists contain all types inferred by the previous phase. Below
a type list, a name and a parent of the selected type is displayed. Below it a
set of strings, that represents the type is displayed.

You can mark inheritance between types. Select a subtype in the left type
list. Select inheritance type by the option between the two type lists. Select
a supertype in the right type list. Click on “Mark” to mark the inheritance.
When you are done, click on “Done” or “Next”. The following window will
be displayed.
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This is a type panel. Here a schema automaton of a type is displayed.
You can merge states of the schema automaton to generalise and simplify it.

On the top of the panel buttons are located. Use “Help” button if you
want to sign the best candidates to merge. If you want to merge the high-
lighted candidates, click on “Merge highlighted” button. Use “Do auto step”
if you want the application to merge one pair of the best candidates. Use
“Do all possible steps” if you want the application to merge pairs of the best
candidates unless there is no improvement.

Below the buttons a name and a parent of the actual type is displayed.
Below it a schema automaton visualisation is placed. States are labelled
with their IDs, transitions are labelled with element names. An initial state
is filled by cyan and highlighted states are filled by red. Final states are
drawn by green. Extension states are signed by E, permutation states are
signed by P .
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Below the schema automaton, two fields for two state IDs and one action
button are located. Fill the fields with the two IDs of states, which you want
to merge. Then click on “Merge states”. The two states will be merged.
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When schema automaton is generalised sufficiently, click on “Next Type”.
The type panel will show the schema automaton of the next type.
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This automaton is a candidate for permutation. Doing automatic steps
you can get an automaton displayed in the following figure.
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Clicking on “Help” button an application finds the permutation block and
highlights the start and end state. You can click on “Create permutation from
block” button. The result is shown in the following figure.
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Now the automaton is generalised. You can click on “Next type” button.
When are no types left, the XML Schema document will be generated.
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You can save the generated schema by clicking on “Save schema” button.

92


