
MASTER THESIS

Michal Vavrek

Evolution Management in NoSQL
Document Databases

Department of Software Engineering

Supervisor of the master thesis: Doc. RNDr. Irena Holubová, Ph.D.

Study programme: Software Systems

Study branch: Software Engineering

Prague 2018

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In Prague on May 11, 2018 Michal Vavrek

i

Title: Evolution Management in NoSQL Document Databases

Author: Michal Vavrek

Department: Department of Software Engineering

Supervisor: Doc. RNDr. Irena Holubová, Ph.D., Department of Software Engi-
neering

Abstract: NoSQL databases are widely used for many applications as a technology
for data storage, and their usage and popularity rises. The �rst aim of the thesis
is to research the existing approaches and technologies for schema evolution in
NoSQL databases. Next, we introduce an approach for schema evolution in multi-
model databases with a uni�ed interface for the most common data models. The
proposed approach is easy to use and covers the common migration scenarios.
We have also implemented a prototype, optimized its read/write operations, and
demonstrated its properties on real-world data.

Keywords: NoSQL, Evolution Management, Multi-model Databases

ii

First of all I would like to express my gratitude to my supervisor Doc. RNDr.
Irena Holubová, Ph.D. for her helpful advice, guidance, corrections and prompt
responses, whenever I needed. Then I would like to thank Prof. Dr. Stefanie
Scherzinger for helpful comments and advice. Last but not least, I would like to
thank to my parents Franti²ek and Hana, my girlfriend Anna, brother Jan, all the
other family members and friends for their support, encouragement and especially
for patience.

iii

Contents

1 Introduction 4
1.1 Structure of the Thesis . 5

2 De�nitions, Terms and Used Technologies 6
2.1 XML . 6
2.2 JSON and BSON . 6
2.3 NoSQL Databases . 7

2.3.1 Key/value Databases . 8
2.3.2 Document Databases . 9
2.3.3 Column-Family Databases 9
2.3.4 Graph Databases . 10
2.3.5 Data Model and Query Model 11

3 Existing Approaches and Technologies 12
3.1 Basic Approach . 12
3.2 NoSQL Schema Evolution in Standard ORM 12

3.2.1 Objectify . 13
3.2.2 Morphia . 16
3.2.3 Hibernate OGM . 16
3.2.4 MongoRepository . 17
3.2.5 Mongoid Evolver . 19

3.3 Managing Schema Evolution in NoSQL Data Stores 19
3.3.1 NoSQL Schema Evolution Language 20
3.3.2 NoSQL Database Programming Language 23
3.3.3 NoSQL Schema Evolution Strategies 23

3.4 Datalog-Based Protocol for Lazy Data Migration 26
3.4.1 Datalog-Based Model . 26
3.4.2 Data Migration Protocols 29

3.5 ControVol . 31
3.5.1 Schema Migration Warnings 31
3.5.2 Quick Fixes . 32
3.5.3 Recognized Annotations . 33

3.6 KVolve . 33
3.7 CLeager . 36
3.8 Schema Evolution in XML-based Databases 37

3.8.1 DaemonX Framework . 39
3.9 Summary . 40

1

3.9.1 Target Database of the Schema Evolution 41
3.9.2 Timing of the Schema Evolution 41
3.9.3 Provided Functionalities for Schema Evolution 41
3.9.4 General Approach . 42

4 Multi-model Databases 45
4.1 Architecture of MMD . 46
4.2 Examples of MMDs . 48
4.3 Pros and Cons . 49
4.4 Open Challenges for MMDs . 49

5 Our Approach 51
5.1 Schema Evolution in MMDs . 51

5.1.1 Operations for Schema Evolution in MMDs 53
5.1.2 Multi-model Schema Evolution Language 56
5.1.3 Semantics of the MMSEL 64
5.1.4 Reference Evolution in MMDs 78

6 Implementation 88
6.1 Third Party Tools and Technologies 88
6.2 Architecture . 88

6.2.1 Model-independent Layer 88
6.2.2 Model-speci�c Layer . 89
6.2.3 Database Layer . 89

6.3 Application Usage . 89

7 Experiments 90
7.1 Experiment Plan . 90

7.1.1 Proof of Concept . 90
7.1.2 Real-world Data Experiments 92

7.2 Execution of the Proof of Concept Experiments 95
7.3 Execution of IMDb Data Experiments 104

7.3.1 Intra-model Operations Experiments 104
7.3.2 Inter-model Operations Experiments 110

8 Conclusion 120
8.1 Remaining Open Challenges in Multi-model Schema Evolution . . . 120

8.1.1 Query Evolution in the MMD 121
8.1.2 Schema Evolution in Graph Model 121
8.1.3 Lazy Implementation of Multi-model Schema Evolution . . . 121
8.1.4 Transactions in MMDs . 121

2

8.1.5 Reference Evolution in MMDs 122
8.1.6 Validation of Operations copy and move 122

Bibliography 123

List of Figures 129

List of Tables 132

A Attachments 134
A.1 DVD Content . 134

3

1. Introduction

Today, NoSQL databases [54] are widely used for many applications as a technology
for data storage, and their popularity rises. NoSQL databases can be divided into
multiple categories based on the provided data model: a key/value, a document,
a graph, and a column-family. Most of NoSQL databases are schema-less. That
means, we can store any structure of data in the database. In the same collection,
we can have entities with various sets of properties. This fact gives developers
freedom to add or remove properties on the �y without changes of the database
schema. The database can freely evolve with new requirements of the application.
The problem is, that it is not exactly true. The schema is always given by the
application, because it has to be able to retrieve data and correctly load them
to the application memory. As the application evolves the schema of persisted
entities is evolving together with it. To keep the application and the database in
sync we need a way to migrate persisted data.

With the increasing popularity of NoSQL databases, the need for schema evolu-
tion management tools rises, because manual migrations could be hard to manage
by developers. It requires knowledge of the database, its query language, and
when the database is scaled, then also its architecture, and the script itself. The
script is created by developers so it has to be properly tested to avoid mistakes
and ensure that all needed entities will be correctly migrated. The topic of the
schema evolution is well-known mainly in the context of SQL databases. There are
complex solutions for schema migration which in some cases include even query
migration [58].

The original aim of this thesis was a research of existing approaches and tech-
nologies for schema evolution in NoSQL databases, and introducing a general
approach for it. Nowadays, most of the databases (not only NoSQL) are extended
to multi-model databases (MMDs). This fact is also predicted in Gartner's re-
search [20]. They state that most of the modern databases will become multi-model
and the schema evolution in MMD is an unresolved problem. In our research, we
have not found any general approach for them so we have decided to focus the
thesis on schema evolution in MMDs.

Introducing a general approach for schema evolution in MMDs which could be
implemented in any MMD, and would be easy to work with, and which would yet
cover common migration scenarios is very hard, if not impossible. To reach our
goal, we decided to limit our focus on core migrations which are more common
than complex ones and exclude query migration. Restrictions keep an introducing
approach enough powerful to cover common migrations and it forms the basis for
future works.

We introduce a language which provides a set of core migration operations that

4

covers most common scenarios. The set allows developers to migrate data between
entities from di�erent models in the same way as between entities from the same
model without any limitations. To ensure it, the operations have to be imple-
mentable in any data model of the MMD. It means, that the language provides a
uni�ed interface for all models which is simple enough to be implementable, but
provides enough power to ensure all core migration operations.

1.1 Structure of the Thesis

The thesis is structured as follows.

� Chapter 1 introduces the goal of the thesis and describes its structure.

� Chapter 2 de�nes basic terms, which are used in the rest of the thesis. It also
brie�y introduces the XML, JSON, NoSQL databases and schema evolution.

� Chapter 3 compares existing approaches to schema evolution in NoSQL
databases.

� Chapter 4 introduces multi-model databases, their structure, sample usage
and multiple examples of real-world projects.

� Chapter 5 contains the main part of the thesis. In this chapter we describe
conclusions of the existing research and propose our solution.

� Chapter 6 describes important details of the implementation of the prototype
and used technologies.

� Chapter 7 contains the description of the experiments we executed, the re-
sults and their discussion.

� Chapter 8 summarizes the work and proposes suggestions for future work.

5

2. De�nitions, Terms and Used

Technologies

This chapter contains descriptions of the most important terms and constructs
which we use throughout the thesis.

2.1 XML

XML (Extensible Markup Language, [67]) is a markup language designed for data
storage and exchange. It is a markup language which means that XML documents
are basically plain text documents augmented by certain marks that provide the
structure and indicate the meaning of individual parts. XML de�nes rules for
encoding documents in human and machine-readable format.

Figure 2.1 shows and example of an XML document which contains a tea
record encoded as an XML document. Such a tea record has a root element tea
with attribute with name id. The element name has a text content `Silver Needle'.

2.2 JSON and BSON

JSON (JavaScript Object Notation, [31]) is a lightweight data-interchange format.
It is easy for humans to read and write and it is easy for machines to parse and
generate. It is based on a subset of the JavaScript Programming Language [17].

JSON is built on two structures: a collection of key/value pairs and an ordered
list of values (i.e. array). These structures are universal and supported in almost
all modern programming languages. JSON supports the following set of basic
types: Number, String, Boolean, Array, Object and null. Figure 2.2 shows a
JSON document which consists of several keys. The �eld id has a value which

<?xml ve r s i on=" 1 .0 " ?>
<tea id="0">

<name>S i l v e r Needle</name>
<type>white</ type>
<pr i c e>10</ p r i c e>
<country>China</ country>
<!−− Comment: other items were omitted −−>

</ tea>

Figure 2.1: XML Example

6

{
" tea " : {

" id " : 0 ,
"name" : " S i l v e r Needle " ,
" type" : "white " ,
" s upp l i e r s " : ["Oxal i s " , "Ahmad"] ,
" d e s c r i p t i o n " : {

" preparat ion " : "70−75" ,
" c o l o r " : " yel low−green "

}
}

}

Figure 2.2: JSON Example

is of type Number, the value of the �eld suppliers has type Object, the type of
description is Array and the �eld type is of type String.

BSON (Binary JSON, [5]) is a binary format in which zero or more ordered
key/value pairs are stored as a single entity. In general BSON is a binary-encoded
serialization of JSON-like documents. BSON is designed to have a minimum spa-
tial overhead which is useful for network transfers. However, the BSON repre-
sentation can sometimes be bigger than the corresponding JSON �le because of
additional information for data traversability. BSON contains additional data like
length of strings for faster traversal. It is designed to be fast to decode and encode.

2.3 NoSQL Databases

Traditional technologies like relational database management systems are usually
not able to handle the size and velocity of modern applications which resulted in
new technologies for batch processing, scaling, distributing and interactive pro-
cessing of data. NoSQL is commonly translated as `not only SQL' which are next
generation databases mostly addressing some of the points: being non-relational,
distributed, open-source and horizontally scalable [54]. The horizontal scalability
means adding/removing nodes to a distributed database system.

NoSQL databases provide mechanisms for storage and retrieval of data that
is modeled in other ways than traditional relations. There is no single formal
de�nition and the de�nitions vary. The original intention was modern web-scale
databases. The movement began in early 2009 and is growing rapidly. Often
more characteristics [54] apply such as: schema-free, easy replication support,
simple API, eventually consistent � not ACID (atomicity, consistency, isolation,
durability), a huge amount of data, fault-tolerant architecture and more.

7

There are several data models used in NoSQL systems. They di�er in key/-
value, document, column-family and graph databases. The �rst three models are
oriented on aggregates. An aggregate is a unit of related data with a complex
structure. We usually want to treat this data as one unit. Relational database
management systems and graph databases have no concept of aggregates within
their data model. These are considered aggregate ignorant. An aggregate ignorant
model allows us to look at data in di�erent ways so it is good when there is not a
primary structure for manipulating data.

In general, NoSQL systems follow the de�nition of our data model. The graph
model is questionable but later in the thesis, we will show that is can �t the
de�nition too. All of them are able to store entities which consist of properties
with values.

In the following sections we brie�y describe each category of NoSQL database
type.

2.3.1 Key/value Databases

This is the simplest type of NoSQL databases. It provides an associative array
(a dictionary) addressed by a primary key. We would model it with two columns,
e.g. id and value in a relational database. Id column stores the keys and the
value contains the associated values. The structure of value can vary in di�erent
key/value databases. Most of them support structured values like ,e.g., arrays.
Key/value databases usually support only basic operations: getting the value for
the speci�ed key, inserting the value for a key and deletion of a key/value pair.
The simplicity provides great performance and great scalability, however it does
not support complex queries.

The two most commonly used key/value databases [15] are Redis [60] and
MemcachedDB [40]. Redis is an open-source in-memory key/value database with
optional durability which supports di�erent kinds of abstract data structures, such
as string, arrays, maps, etc. MemcachedDB is open-source in-memory key/value
database built on top of non-persistent memcached technology. MemcachedDB
adds a persistent functionality. It provides a large distributed hash table across
multiple machines and it is designed to store small chunks of arbitrary data
(strings, objects). The di�erence between them is in complexity and provided
functions for data manipulation. Parts of Redis were built in response to lessons
learned from using MemcachedDB. Redis has more features than MemcachedDB
and is, thus, more powerful and �exible.

This type of databases is commonly used for [61] storing session information of
web applications, user pro�les and preferences, shopping cart data etc. It is fast,
as it works with a single object that contains all relevant information.

8

2.3.2 Document Databases

The main concept of document databases are documents which are stored, re-
trieved and managed. Documents are usually in JSON or XML format and they
have hierarchical tree structure self-describing the contents. The databases are
usually schema-less so the schema is de�ned by an application and can di�er.
Document databases contrast strongly with relational databases which are strongly
typed during database creation and thus every instance of the data has the same
format and it is often di�cult to change the schema. Document databases get the
type information from the data itself. They store the related data together and
allow instances of the data to be di�erent. This property makes it easier and more
�exible to deal with changes. This fact also optimizes the space management,
because each instance of data contains only required data. In case of relational
databases, to add a new information to one instance of data we would have to add
a new column with a default value to all instances and set the required value to
the one instance.

The two most used document databases [15] are MongoDB [42] and Couchbase
[10]. MongoDB is a open-source JSON-like document database with a focus on
scalability and �exibility. It supports data indexing, queries and real time data
aggregation. Couchbase (originally called Membase) is an open-source distributed
JSON-like document database. It is designed to be scaled from a single machine to
large-scale deployments in many machines. Couchbase also provides compatibility
with memcached technology, so it can be used as a key/value database too.

Document databases are useful for [61] event logging, content management sys-
tems, blogging platforms, e-commerce applications, real-time analytics and more.

2.3.3 Column-Family Databases

This type of NoSQL databases is column-oriented. A column family is a collection
of similar rows. Each row is a collection of columns associated with a key, i.e. it
is a tuple (key/value pair), where the key is mapped to a set of columns. Column
is a basic unit which consists of a triple: name-value pair and a timestamp. Data
in a single column family are related and they are mostly accessed together by
an application. In relational databases, a column family would be a table, each
key/value pair being a row. In relational databases, each row must have the same
columns whereas in column-family databases, this is not a necessary condition.

The two most commonly used column-family databases [15] are Cassandra [7]
and HBase [25]. Cassandra is a scalable high-performing column-family database
providing high availability without a single point of failure. Cassandra supports
SQL-like query languege: Cassandra Query Language [8](CQL) which adds ab-
straction layer that hides the native syntax. HBase is optimized for Hadoop [2]

9

(a) Data in a relational database.

id name price type

0 Silver Needle 10 white
1 Longjing 15 green

(b) Representation of data in a relational database.

0;Silver Needle;10;white
1;Longjing;15;green

(c) Representation of data in a column-family database.

0;1
Silver Needle;Longjing

10;14
white;green

Figure 2.3: Second meaning of column-family databases de�nition.

operations and random, realtime read/write access to data. It provides a fault-
tolerant way of storing large quantities of sparse data (small amounts of informa-
tion caught within a large collection of empty or unimportant data).

Column-family databases are suitable for [61] event logging, content manage-
ment systems, blogging platforms etc.

We use the mentioned de�nition of the column-family database from the
NoSQL world we are targeting but we have to mention also a second meaning of
the column-family databases: The column-family databases store data in a
column form instead of in rows as relational databases. Figure 2.3 shows an
example of representing a table in this kind of column-family databases. This
approach has a better performance for aggregation functions which are executed
on top of multiple columns. Another bene�t of this representation is if we need
to change a value of a column for all rows.

2.3.4 Graph Databases

Graph databases store entities and relationships between them. Basic concepts
are nodes and edges. Nodes can have properties (like, e.g., name) and edges have
types (like, e.g., `is ancestor of'). In a relational database we can model a single
type of relationship whereas adding a new type of relationship requires changes in
the existing schema. Nodes in graph databases can have many di�erent types of
relationships. The number of these relationships is not limited and relationships

10

can be easily added or removed.
The two most commonly used graph databases [15] are Neo4j [52] and Gi-

raph [21]. Neo4j is a graph database which provides ACID-compliant (Atomicity,
Consistency, Isolation, Durability) transactions with native graph storage. It uses
the Cypher Query Language [12] which is a declarative query language designed for
expressive and e�cient querying and updating of a property graph. Giraph is de-
signed for processing of graphs on big data. It uses the MapReduce programming
model [33] to data processing.

Graph databases are suitable for [61] connected data like social networks. An-
other area where this type of database is useful are routing, dispatch and location-
based services.

2.3.5 Data Model and Query Model

For purpose of the thesis, we use a de�nition of a data model and a query model
introduced in [63].

Data Model

The data model stores objects which are called entities. Each entity belongs to a
kind, which is a group of semantically similar objects. Each entity has a unique
key and value. The key is a tuple of its kind and identi�er and value is a list
of properties. Each entity property consists of a name and a value. The list of
properties is an unordered set of properties with a unique name. The properties
may be scalar, array of values or consist of nested entities.

For better understanding, we use the following representation for entities of the
data model:

(kind, id) = {list of properties}

Query Model

We can manipulate entities based on their key and we can query all entities of
a particular kind. We assume that a data store supports conjunctive queries
with equality comparisons. This functionality is commonly provided by relational
stores, document stores and column-family stores alike.

11

3. Existing Approaches and

Technologies

This chapter presents an overview of existing approaches and technologies to man-
aging the evolution of NoSQL databases. We are interested in recommended/best
practices, scienti�c studies and existing solution for data evolution of NoSQL
databases.

3.1 Basic Approach

The most popular and widely used way how to manage data evolution is coding and
managing a set of transforming/migrating scripts. The developer has to create each
script manually and apply it on each environment separately based on application
version and his knowledge about the application.

This approach requires a good knowledge of the application, its architecture,
and target NoSQL database, i.e., the a syntax of the used language, the database
cluster topology, a possible database downtime, etc. These factors are potential
sources of complications. For example, a script can contain errors or can convert
data to an invalid format. That is the reason why this problem began to be studied.

One of the �rst references to schema evolution in NoSQL databases is pre-
sented in [68]. The problem is simpli�ed to storing new versions of a record and
ignores the needs for managing changes. The book states that NoSQL document
databases support schema-less structures and thus accommodate �exible and con-
tinuing evolution. It presents the problem on CouchDB [1], where we can use
default �eld _rev with a hash of revision to map versions from the database to
the application.

Generally, we can apply the recommended version �eld for storing a version of
a record. Each record can be extended by its version number that can be queried.
The migration script can be created safer if it uses the �eld, because migration
will be applied only on records with a speci�c version �eld. Unfortunately, the
rest of the mentioned negative aspects like a good knowledge of the application
and speci�c database remain.

3.2 NoSQL Schema Evolution in Standard ORM

Many standard ORMs (Object-Relational-Mappings) provide some basic function-
ality for schema evolution. We will introduce one of the most popular ORMs
and explain their features for schema evolution. Sometimes ORMs for document

12

databases are called Object-Document-Mappers (ODM) or Object-NoSQL Map-
pers, so we will make no di�erence between them.

3.2.1 Objectify

Objectify [55] is a Java data access API speci�cally designed for the Google Cloud
Datastore [23]. The usage of Objectify is based on annotated Java classes and the
database access point object ObjectifyService.ofy. Persisting classes have to
be annotated as @Entity and contain property @Id as follows:

@Entity
pub l i c c l a s s Person {

@Id Long id ;
S t r ing name ;
S t r ing City ;

}

The ObjectifyService.ofy service provides standard ORM functions like
save, load or delete. The following example shows a few basic operations with
entity Person:

import s t a t i c com . goog lecode . o b j e c t i f y . Ob j e c t i f yS e r v i c e . o fy ;

// Creates and saves a new en t i t y
Person person = new Person ("Michal " , "Prague") ;
o fy () . save () . e n t i t y (person) . now() ;

a s s e r t person . id != nu l l ; // id was generated automat i ca l l y

// Loads the en t i t y
Person person1 = ofy () . load () . type (Person . c l a s s) . id (person . id) . now() ;

// Modi f i e s i t
person1 . City = "Tabor" ;
o fy () . save () . e n t i t y (person1) . now() ;

// De l e t e s i t
o fy () . d e l e t e () . e n t i t y (person1) . now() ;

Objectify has constructions for managing schema evolution. They allow a pro-
grammer to create scripts for migrating entities via annotated migration functions
or it migrates entities at run-time. Bellow, we describe possible migrations and
relevant operations when an entity is loaded and saved:

� Adding or removing �elds � Fields can be added/removed to/from a class
without any other code. The added �eld will be left with its default value
when the class is initialized. For the removed �eld, the data in the database

13

@Entity
pub l i c c l a s s AppUser {

@Id Long id ;
@AlsoLoad ("phone")
St r ing phoneNumber ;
i n t birthDay ;
i n t birthMonth ;
i n t b irthYear ;

void import (@AlsoLoad (" b i r thdat e ") S t r ing b i r thdat e) {
// Date format dd−MM−YYYY
Str ing [] b i r thdateArray = b i r thdat e . s p l i t (" ") ;
birthDay = In t eg e r . pa r s e In t (b i r thdateArray [0]) ;
birthMonth = In t eg e r . pa r s e In t (b i r thdateArray [1]) ;
b i rthYear = In t eg e r . pa r s e In t (b i r thdateArray [2]) ;

}
}

Figure 3.1: Example of data transformation for AppUser entity in Objectify.

will be ignored when the class is initialized and persisted then the entity will
be saved without the �eld.

� Renaming �elds � Fields can be also renamed by annotation @AlsoLoad.
Objectify loads an entity from the database and the old renamed property
is loaded to the annotated property during class initialization. For example,
in Figure 3.1 class AppUser has renamed the �eld phone to phoneNumber.
If both �elds exist, Objectify throws an exception. When the class is saved,
only phoneNumber is overwritten.

A possible problem can occur with queries, because they do not know about
the renaming. If we �lter data by phoneNumber, we get only the migrated
entities and if we �lter by phone, we get only the old ones.

� Transforming data � Objectify also allows developers to transform the
data through the migration function. The function must contain a single
parameter with annotation @AlsoLoad. For example, Figure 3.1 shows how
we can perform transformation of �eld birthDate of class AppUser. When
the entity is saved again, it will have only properties birthDay, birthMonth
and birthYear.

If birthDay, birthMonth, birthYear and birthDate exists in the database, the
results of migration are unde�ned.

� Moving �elds � In the same way as data transformation above we can move

14

@Entity
pub l i c c l a s s Bir thdate {

@Id Long id ;
i n t birthDay ;
i n t birthMonth ;
i n t b irthYear ;

}

@Entity
pub l i c c l a s s AppUser {

@Id Long id ;

@IgnoreSave i n t birthDay ;
@IgnoreSave i n t birthMonth ;
@IgnoreSave i n t birthYear ;

Key<Birthdate> userBirthDate

@OnLoad void onLoad () {
i f (birthDay != nu l l | | birthMonth != nu l l | | b i rthYear !=

nu l l) {
t h i s . userBirthDate = ofy () . save () . e n t i t y (new Birthdate (

birthDay , birthMonth , b irthYear)) . now() ;
o fy () . save () . e n t i t y (t h i s) ;

}
}

}

Figure 3.2: Example of moving �elds for AppUser entity in Objectify.

15

a �eld from one class to another. For example, in Figure 3.2 birthdate �elds
are moved to a separate class Birthdate.

In general, Objectify provides a functionality for data manipulation:

� @AlsoLoad � loads a �eld with a given name and allows the developer to
transform the data in methods.

� @Ignore � allows the developer to use �elds that are not loaded or saved to
the database.

� @IgnoreLoad � allows the developer to have save-only �elds.

� @IgnoreSave � allows the developer to load data without saving them again.

� @OnLoad � allows the developer to execute an arbitrary code after all �elds
have been loaded.

� @OnSave � allows the developer to execute an arbitrary code before an entity
is written to the database.

As shown above, Objectify provides powerful tools for schema evolution. The
developer can add, remove, rename, transform or move properties as he wants.
However, the developer still must write migration functions, manage changes man-
ually and mainly cannot create a migration between more than two versions of an
entity.

3.2.2 Morphia

Morphia [48] is a lightweight type-safe library for mapping Java objects to/from
MongoDB. Morphia also uses annotations of Java classes and provides the same
functions for data evolution management like Objectify. Morphia does not have
more powerful functions than Objectify so we will not describe them again.

3.2.3 Hibernate OGM

Hibernate Object/Grid Mapper (OGM) [26] provides Java Persistence (JPA) sup-
port for NoSQL databases. It uses a standard ORM engine and persists entities in
a NoSQL datastore instead of a relational database. OGM supports the following
databases via database-speci�c dialects:

� Key/Value: In�nispan [29] and Ehcache [18]

� Document: MongoDB

16

us ing System . Co l l e c t i o n s . Generic ;
us ing MongoRepository ;
us ing MongoDB. Bson . S e r i a l i z a t i o n . At t r ibute s ;

pub l i c c l a s s Customer : Entity // I nh e r i t from Entity !
{

pub l i c s t r i n g FirstName { get ; s e t ; }

[BsonIgnore]
pub l i c s t r i n g LastName { get ; s e t ; } // Ignore lastname

[BsonElement (" sx" , Order = 1]
pub l i c s t r i n g Sex { get ; s e t ; } //Load sx to property Sex

[BsonIgnore I fNu l l]
pub l i c L i s t<Product> Products { get ; s e t ; } // Ignore when there

are no items in l i s t
}

Figure 3.3: Example of a MongoRepository entity object.

� Graph: Neo4j

And a few more are in progress, namely Redis, CouchDB, and Cassandra.
Hibernate OGM supports several ways for querying and returning Hibernate

managed objects, namely:

� JP-QL (Java Persistence Query Language) which is converted into native
backend queries,

� database native queries,

� full-text queries, using Hibernate Search (transparent indexer for fast full-
text geolocation search) as index engine.

OGM provides the same annotations for data evolution management as Mor-
phia and Objectify (i.e., @IgnoreSave, @IgnoreLoad, and @OnLoad).

3.2.4 MongoRepository

MongoRepository [47] is an implementation of a Repository pattern [41] on top of
the o�cial MongoDB C# driver [44]. The repository pattern separates the logic
that retrieves the data and maps it to the model. The repository pattern wraps
the functionality of ODM.

17

pub l i c c l a s s CustomerRepository : MongoRepository<Customer> {

pub l i c Li s t<Customer> GetCustomersWithOpenInvoices () {
// . . .

}

pub l i c Customer GetCustomerWithLongestName () {
// . . .

}
}

Figure 3.4: Example of a MongoRepository repository object.

MongoRepository works with two types of classes. The �rst are Entity classes
(for an example see Figure 3.3) which represent a database entity and the second
one are Repository classes (for an example see Figure 3.4). The developer can
access database entities through the prepared repository. The mentioned examples
show a Customer entity and its repository.

MongoRepository also provides a few tools for schema evolution. In particular,
we can add one of the following serialization attributes to class properties:

� BsonIgnoreAttribute � The property will not be initialized when the entity
is loaded.

� BsonIgnoreIfNullAttribute � The property will not be initialized during
the entity loading if the value is null.

� BsonIgnoreExtraElementsAttribute � If the entity contains extra prop-
erties which are not presented in class de�nition, the mapper will ignore
them.

� BsonElement � Loads the de�ned entity to the property. The developer can
use this functionality to rename entities.

Finally, if there is no way to use the attributes, the developer can code his own
map function and de�ne mapping rules. For example, the mapping function for
loading the entity sx to property Sex from Figure 3.3:

BsonClassMap . RegisterClassMap<Customer>(cm => {
cm.AutoMap() ;
cm .GetMemberMap(c => c . Sex) . SetElementName (" sx") . SetOrder (1) ;

}) ;

The provided functions are not as powerful as Objectify functions. For example,
we cannot easily specify rename operation because MongoRepository does not

18

ODM G
o
og
le
D
at
as
to
re

M
on
go
D
B

R
ed
is

N
eo
4j

C
ou
ch
D
B

C
as
sa
n
d
ra

Objectify (Java) 3 7 7 7 7 7

Morphia (Java) 7 3 7 7 7 7

Hibernate OGM (Java) 7 3 3 3? 3? 3?

MongoRepository (C#) 7 3 7 7 7 7

Mongoid (Ruby) 7 3 7 7 7 7
? Currently under development.

Table 3.1: Supported databases for ODMs.

provide the functionality @AlsoLoad as Objectify. The developer can still create
migration scripts as we showed before and manage simple schema evolution.

3.2.5 Mongoid Evolver

Evolver [46] is a database schema evolution tool for Mongoid [45] which is a
Ruby ODM framework for MongoDB. Project Evolver is focused on schema
evolution in MongoDB, but unfortunately has no commit since 19th January
2013 or any other activity. The current documentation is very poor and its
author did not reply to our questions about Evolver functionalities. So we cannot
analyze Evolver in more detail.

To sum up, we prepared summary tables where we can see basic information
about all mentioned ODMs. In Table 3.1 we can see all supported databases for
each described ODM and its programming language. Next Table 3.2 shows a list
of functionalities for schema evolution for the ODMs.

3.3 Managing Schema Evolution in NoSQL Data

Stores

In [63], S. Scherzinger, M. Klettke and U. Störl introduce a cornerstone of many
other studies � the general language for schema evolution in NoSQL databases
and the NoSQL Database Programming Language (NoSQLDPL). They also

19

ODM A
ls
o
lo
ad

Ig
n
or
e

Ig
n
or
e
lo
ad

Ig
n
or
e
sa
ve

O
n
lo
ad

O
n
sa
ve

Objectify 3 3 3 3 3 3

Morphia 3 3 3 3 3 3

Hibernate OGM 3 3 3 3 3 3

MongoRepository 7 3 7 7 7 7

Mongoid ? ? ? ? ? ?

Table 3.2: Schema evolution function for ODMs.

classify schema evolution into two strategies eager and lazy. Speci�cally, the
work is focused on document and column databases.

3.3.1 NoSQL Schema Evolution Language

The language is based on the fact that NoSQL databases are schema-less, so there
is no explicit schema. The structure is de�ned by individual application classes in-
terpreted by object mappers. Mappers commonly map class names to entity kinds
and class members to entity properties. Thus, each application de�nes somewhat
consistently structured data without a �xed schema. In an agile setting, there are
applications, which evolve rapidly their features, their classes and also their data.
Under these assumptions, the authors de�ne a set of declarative schema migra-
tion operations. The set covers a large share of the common schema evolution
operations.

Figure 3.5 shows the syntax of the NoSQL Schema Evolution Language
(NoSQLSEL) in Extended Backus-Naur Form (EBNF). As we can see, the op-
erations can contain conditionals and even joins for speci�c data selection. This
grammar contains two terminals: the property kinds (derived from kname) and
the property names (pname). The language also uses property version (mentioned
in Section 3.1) for detection of the current version of an entity.

Below, we show the evolution operations using a simple example. The language
provides three basic operations which allow us to manage heterogeneous entities
of the same kind:

� Operation add � Adds a property to all entities of a given kind. For
example, operation add person.visit = 0 adds a visit-counter visit to all
entities person initialized to 0.

20

evo lut ionop : := add | d e l e t e | rename | move | copy ;

add : := "add" property "=" value [s e l e c t i o n] ;
d e l e t e : := " d e l e t e " property [s e l e c t i o n] ;
rename : := "rename" property " to " pname [s e l e c t i o n] ;
move : := "move" property " to " kname [complexcond] ;
copy : := "copy" property " to " kname [complexcond] ;

s e l e c t i o n : := "where" conds ;
complexcond : := "where" (jo incond | conds | (jo incond "and" conds)) ;

jo incond : := property "=" property ;
conds : := cond {"and" cond } ;
cond : := property "=" value ;

property : := kname " ." pname ;
kname : := i d e n t i f i e r ;
pname : := i d e n t i f i e r ;

Figure 3.5: Syntax of the NoSQLSEL in EBNF.

key (person, 42)
name John Doe
e-mail john@doe.mail
version 1

key (person, 42)
name John Doe
e-mail john@doe.mail
visit 0
version 2

� Operation delete � Removes a property from all entities of a given kind.
For example, operation delete person.phone deletes property phone from
all entities person.

key (person, 42)
name John Doe
e-mail john@doe.mail
phone 00420777000000
version 1

key (person, 42)
name John Doe
e-mail john@doe.mail
version 2

� Operation rename � Changes the name of the property for all entities
of a given kind. For example, operation rename person.mail to e-mail
renames property mail to e-mail for all entities person.

21

key (person, 42)
name John Doe
mail john@doe.mail
version 1

key (person, 42)
name John Doe
e-mail john@doe.mail
version 2

And there are also two dedicated functions for schema refactoring that a�ect
two kinds of entities. These operations assume 1:N relationship between the af-
fected entities. In case of N:M relationship the result of them is not de�ned. The
problem of N:M relationship is that it cannot be de�ned as a safe operation. If
there is an N:M relationship speci�ed as a cross product then the execution order
in�uences the migration result so the result is not predictable before execution of
the operation.

The operations are:

� Operation move � Moves a property from one entity kind to another entity
kind. For example, operation move person.e-mail to comment where
user.name = comment.owner moves property e-mail from persons to all
their comments.

key (person, 42)
name John Doe
e-mail john@doe.mail
version 1

key (person, 42)
name John Doe
version 2

key (comment, 1991)
topic Charles University ...
text It is the ...
owner John Doe
version 1

key (comment, 1991)
topic Charles University ...
text It is the ...
owner John Doe
e-mail john@doe.mail
version 2

� Operation copy � Copies a property from one entity kind to another entity
kind. For example, operation copy person.e-mail to comment where
user.name = comment.owner copies property e-mail from persons to all
their comments.

key (person, 42)
name John Doe
e-mail john@doe.mail
version 1

key (person, 42)
name John Doe
e-mail john@doe.mail
version 2

22

key (comment, 1991)
topic Charles University ...
text It is the ...
owner John Doe
version 1

key (comment, 1991)
topic Charles University ...
text It is the ...
owner John Doe
e-mail john@doe.mail
version 2

3.3.2 NoSQL Database Programming Language

Based on the NoSQLSEL the authors develop a generic NoSQLDPL. The language
de�nes the typical operations on entities in NoSQL databases, and it is particularly
modeled on the basis of the interfaces to the Google Datastore [23] and applies to
document and column databases. We will not describe the language details. We
will just introduce the main function.

Figure 3.6 de�nes language functions. In particular, Rule 3.1 creates a new
entity with key κ. Initially, an entity does not have any properties. To set prop-
erties, we use Rule 3.2. The next Rule 3.3 adds a new property n with value v to
the entity with key κ. Rule 3.4 adds a nested property as a property. Conversely,
Rule 3.5 removes property n from the entity with key κ. Rule 3.6 persists the
entity with key κ and replicates this entity to the database. Persisting of an entity
replaces any other entity with the same name. Rule 3.7 deletes the entity with key
κ from the database. Rule 3.8 retrieves an entity by its key from the database.
Rule 3.9 retrieves all entities from the database that are of the speci�c kind c. We
can also query with predicate ∅, as described by Rule 3.10.

3.3.3 NoSQL Schema Evolution Strategies

Next, the work introduces two main categories of NoSQL schema evolution strate-
gies called eager migration and lazy migration.

The di�erence between the migrations is in the time when the migration is
executed and the scope of a�ected entities.

Eager Migration

The eager migration is a batch job which migrates all a�ected entities. In such
batch jobs, entities are fetched one-by-one from the database into an application
where they are modi�ed (migrated) and then written back to the database. The
problem of the eager migration is when migrations happen while the application
is in use and the data could be changed during the evaluation. Or the application
should be suspended.

23

[[new(κ)]](ds, as) = (ds, as[κ 7→ ∅]) (3.1)

[[new(κ, π)]](ds, as) = (ds, as[κ 7→ π]) (3.2)

[[setProperty(κ, n, v)]](ds, as ∪ {κ 7→ π}) = (ds, as ∪ {κ 7→ (π[n 7→ v])}) (3.3)

[[setProperty(κ, n, κ′)]](ds, as ∪ {κ 7→ π} ∪
{κ′ 7→ π′}) = (ds, as ∪ {κ 7→ (π[n 7→ π′])}

∪ {κ′ 7→ π′})
(3.4)

[[removeProperty(κ, n)]](ds, as ∪ {κ 7→ π}) = (ds, as ∪ {κ 7→ (π[n 7→ ⊥])}) (3.5)

[[put(κ)]](ds, as ∪ {κ 7→ π}) = (ds[κ 7→ π], as ∪ {κ 7→ π}) (3.6)

[[delete(κ)]](ds, as) = (ds[κ 7→ ⊥], as) (3.7)

[[get(κ)]](ds ∪ {κ 7→ π}, as) = (ds ∪ {κ 7→ π}, as ∪ [κ 7→ π])
(3.8)

[[get(kind = c)]](ds, as) = (ds, as[{κ 7→ π

| κ 7→ π ∈ ds ∧ kind(κ) = c}])
(3.9)

[[get(kind = c ∧ ∅)]](ds, as) = (ds, as[{κ 7→ π

| κ 7→ π ∈ ds ∧ kind(κ) = c

∧ [[∅]](κ 7→ π)}])
(3.10)

Figure 3.6: NoSQL Database Programming Language [63]

24

pub l i c c l a s s Person {
@Id Long id ;
@AlsoLoad ("name") St r ing fullName ;

}

Figure 3.7: The Java class which represents entity Person.

Scripts written in the language migrates all entities of given kind κ with spec-
i�ed version v to the version v + 1 at once as a batch job.

The version property added to all entities makes the migration robust in case of
interruptions. NoSQL data stores commonly o�er very limited or none transaction
support. So a large-scale migration cannot be performed as an atomic action.
By restricting migrations to all entities of a particular version (using the where-
clause), scripts may correctly recover from interrupts and migrate all remaining
entities with version v.

Lazy Migration

The lazy migration allows co-existence of entities of the old and new schema.
Whenever an entity is read into the application space, it can be migrated. E�ec-
tively, this will migrate only hot data that is still relevant to users. In other words,
the lazy migration transforms only currently used data. However, each migration
requires a custom code which should be evaluated when the entity is read. The
lazy migration is a potential point of risk, because the data can by corrupted be
incorrect application of migration scripts and there may be no way to undo the
changes.

The NoSQLDPL can also implement common functions for lazy migration. The
authors extend the language by self-explanatory constructs, such as if-statements
or local variables and operation hasProperty(κ, n) that tests whether the entity
κ has a property by name n.

We will show a simple example from the paper which is adapted from Objectify
documentation. Java class Person is mapped to database entity person. The entity
has property id which is marked @Id and in earlier version it has property name,
which is now renamed to fullName. Legacy entities do not yet have property
fullName. When the entity is loaded into the application memory, the object
mapper migrates property name to the fullName. Next time when the entity is
persisted, its new version with property fullName will be stored. Figure 3.7 shows
an implementation of class Person.

In the NoSQLDPL @AlsoLoad will be implemented as shown in Figure 3.8. The
implementation checks if the entity has the property name and eventually sets the
value of property name to the fullName. Finally, property name is removed.

25

Key p := (" Person " ; id) ;
i f hasProperty (p , name) do

setProper ty (p , fullName , getProperty (p , name)) ;
removeProperty (p , name)

od

Figure 3.8: The implementation of @AlsoLoad in the NoSQLDPL.

The authors do not explore lazy migration to a greater detail and leave it open
for a future work. The current state of the language has one important limitation.
It does not support nesting and unnesting of entities during migration operations.

3.4 Datalog-Based Protocol for Lazy Data Migra-

tion

In [66], S. Scherzinger, U. Störl and M. Klettke extend their work [63] (described
in Section 3.3.1) about schema evolution in NoSQL databases. In the paper they
propose a Datalog-based model:

� The model formalizes all structural variants of persisted entities in non-
recursive Datalog with negation. The authors model a core set of migration
operations for adding, removing, renaming, copying and moving properties.

� The model provides alternative evaluation strategies. Rule capturing put-
and get-calls from the application are executed eagerly but rules capturing
migration can be executed eagerly or lazily.

� The model leverages the rich body of work on Datalog evaluation algorithms.
It also introduces a lazy migration protocol where all get-calls returns up-to-
date entities. This feature allows to safely employ lazy migration in NoSQL
application development, and deploy releases without downtime.

3.4.1 Datalog-Based Model

Datalog is a state-of-the-art formalism for data exchange [16]. The authors declare
schema mapping and updates in Datalog and model the application accessing
entities in a straightforward manner. Function kind(id, p1, ..., pn) represents the
current schema of a given kind. Each entity has a unique id and properties named
p1,...,pn. The kind works like a placeholder for the name of the kind and this
invariant is used in all next de�nitions below. For example, entity Person with
properties name and email has kind function: Person(id, name, email).

26

The next function put(kind(id, p1, ..., pn)) persists an entity and get(kind, id)
loads an entity having a speci�ed identi�er id.

Internally, the authors timestamp all entities and simulate a logical clock. The
clock tracks the last update under the assumption that all actions are executed
eagerly. The authors distinguish two kinds of Datalog rules for maintaining the
state of the database. Residual rules model changes, such as writing an entity.
A fact derived from a residual rule always holds true even in the presence of
future actions. Transient rules compute intermittent facts required for the query
predicate. These facts do not hold true in future and can be timely discarded.

The authors de�ne a set of functions and a terminology. We will introduce
them in a nutshell:

� For each action ai an action tuple is de�ned as follows:

AT (ai) = (∆i, Ri, Ti, pi)

where ∆i is a set of Extensional Database (EDB) facts (i.e., entities put to
the data store), Ri/Ti are residual/transient rules, and pi is a query predicate
which is empty for put-calls.

� A Datalog query is de�ned as follows:

Qn = (Πn, pn)

where Πn is a Datalog program which consists of rules R1 ∪ ... ∪Rn ∪ Tn.

� A data instance Dn consists of all entities put to the data store, i.e., Dn =
∆1 ∪ ... ∪∆n

� An application of Datalog program Πn to a data instance Dn is de�ned as
Πn(Dn). It is a set of Intensional Database (IDB) facts that form logical
consequences of Πn ∪Dn.

� A function ResDB(a) is a computation of residual entities after executing
actions a1, ..., an:

ResDB(a1) = R1(∆1)

ResDB(an) = Rn(ResDB(an−1) ∪∆n)

� The Datalog program can be de�ned incrementally:

Πn(Dn) = Tn(ResDB(an))

27

� For put-calls let ts be a new timestamp. We de�ne AT , where the residual
rule tracks which entities have become legacy entities, as:

∆ = {kind(id, p1, ...pn, ts)},
R = {legacykind(id, ts) : −kind(id, p1, ..., pn, ts),

kind(id, s1, ...sn, nts), ts < nts.},
T = ∅,
p = empty query

� For get-calls which request an entity, kind(id, p1, ...pn) := get(kind, id), we
consider ts be a new timestamp. We de�ne AT :

∆ = ∅,
R = {legacykind(id, ts) : −kind(id, p1, ..., pn, ts),

kind(id, s1, ...sn, nts), ts < nts.},
T = {latestkind(id, ts) : −

kind(id, p1, ..., pn, ts), not legacykind(id, ts).,

getkind(id, p1, ..., pn) : −
kind(id, p1, ..., pn, ts), latestkind(id, ts).}

p = getkind(id, p1, ..., pn)

These basic operations are capable to work with one application release. There-
fore, the functions work with one schema version. The paper de�nes function
kind[r](id, p1, ..., pn) for the release r. The new release r + 1 introduces a new
schema version kind[r+ 1](id, p1, ..., pm). We always compile the residual rules for
each kind occurring in the database:

legacykind[r](id, ts) : −
kind[r](id, p1, ...pn, ts),

kind[r](id, s1, ...sn, nts), ts < nts

latestkind[r](id, ts) : −
kind[r](id, p1, ...pn, ts), not legacykind[r](id, ts).

For each new release, we also declare a new schema version for other kinds
kind′[r](ID,A1, ..Ak) that are not a�ected by the new schema version. We declare
the function as a residual function with new timestamp ts:

28

kind′[r + 1](id, a1, ..., ak, ts) : −
kind′[r](id, a1, ..., ak, ots), latestkind

′[r](id, ots).

Now, we have speci�ed all required functions for the schema evolution oper-
ations. Figure 3.9 shows the residual rules for the schema evolution operations.
The rules for adding, removing and renaming properties are straightforward and
trivial. In copying and moving properties, the functions always assume a 1:N rela-
tionship between the source and the target kind. The reason why authors assume
the 1:N relationship is because then the result of the migration does not depend
on the order of update of entities. However, if the relationship is N:M between
the source and the target kind, then the execution order in�uences the migration
result. The authors want safe migrations, so they assume the 1:N relationship.

3.4.2 Data Migration Protocols

The authors choose an algorithm for Datalog evaluation which provides put- and
get-calls eager evaluation. As we have mentioned, schema migration can be exe-
cuted eagerly or lazily. We assume that put- and get-calls are always evaluated
eagerly, and therefore in an incremental bottom-up approach.

The de�ned functions and rules only generate non-recursive Datalog with nega-
tion, Datalog¬non−rec. This fact allows us to evaluate rules bottom-up, in the order
of their dependencies, or simpler, the timestamps assigned to them.

Eager Migration

Since the residual rules for data migration are within Datalog¬non−rec, they may
also be evaluated bottom-up and incrementally. A simple straightforward opti-
mization for the eager approach is discarding all legacy entities. We can consider
kind[i](id, p1, ..., pn, tsi) and kind[j](id, s1, ..., sn, tsj), we may discard the entities if
tsi < tsj. Actually, many NoSQL databases follow an append-approach with put-
calls and timestamps entities. A database has a store-internal garbage collector
that discards legacy entities no longer needed.

Lazy Migration

Lazy migrations are triggered by get-calls and evaluated top-down. They derive
only necessary facts from the residual rules. The lazy migration approach needs
to hold on to legacy entities in several versions (until they are no longer needed).
Thus, the approach needs a special-purpose garbage collector. The collector needs

29

Let kind[r](id, p1, ..., pn) be the current schema, ts be a new timestamp associ-
ated with release r. For operation copy and move let kindS[r](id, s1, ...sn) and
kindT [r](id, t1, ..., tm) be the current source and target schema.

� add kind.pn+1 = v, where pn+1 is a new property name with default value v:

kind[r + 1](id, p1, ...pn, v, ts) : −
kind[r](id, p1, ..., pn, ots), latestkind[r](id, ots).

� delete kind.pi:

kind[r + 1](id, p1, ..., pi−1, pi+1, ..., pn, ts) : −
kind[r](id, p1, ..., pn, ots), latestkind[r](id, ots).

� copy kindS.si to kindT where kindS.id = kindT .tj:

kindT (idT , t1, ..., tm, si, ts) : −
kindT [r](idT , t1, ..., tm, tsT), latestkindT [r](idT , tsT),

kindS[r](idS, s1, ..., sn, tsS), latestkindS[r](idS, tsS),

kindT (idT , t1, ..., tm, null, ts) : −
kindT [r](idT , t1, ..., tm, tsT), latestkindT [r](idT , tsT),

not kindS[r](idS, s1, ..., sn, tsS),

ids = tj.

� move kindS.si to kindT where kindS.id = kindT .tj, with the same rules as
for copy and the following rule:

kindS[r + 1](id, s1, ..., si−1, si+1, ..., sn, ts) : −
kindS[r](id, s1, ..., sn, ots), latestkind[r](id, ots).

Figure 3.9: Residual rules for migrations declared in the schema evolution lan-
guage

30

pub l i c c l a s s Player {
@Id Long id ;
S t r ing name ;
In t eg e r l e v e l ;

}

Figure 3.10: Java object mapper class Player with property level.

to hold on to residual rules until they, cannot be used anymore, since all matching
entities have meanwhile been garbage collected.

To sum up, the Datalog rules de�ne clear semantics for data migration and a
pair of correct evaluations (eager and lazy). These evaluations guarantee to obtain
correct results. So far, the Datalog rules were not implemented in any distributed
system. One of the reasons for it is reliability of assigning global timestamps in
the distributed system which is crucial for the solution.

3.5 ControVol

ControVol [9] is a framework for controlled schema evolution in NoSQL application
development which was presented by S. Scherzinger, T. Cerqueus and E. Cunha de
Almeida [64]. ControVol is integrated into an IDE and statically checks Java object
mapper class declarations against schema evolution history. It obtains information
about history from the code repository. The plugin works with Objectify, Morphia
or Hibernate OGM NoSQL mappers.

As the authors mention, ControVol is the �rst tool of its kind speci�cally
designed for NoSQL data stores.

ControVol framework is a plugin for Eclipse IDE and it is capable of detecting
schema evolution problems (mismatched data and schema) as a warning or also
suggest quick �xes which can be automatically resolved by a developer. The core
of the framework is its static type checking tool which checks if object mapper
class declarations are compatible. ControVol requires access to code repository
(Git), and thus it knows the history of all released class de�nitions. With this
knowledge the framework checks each change of object mapper class declaration
against the schema evolution history oh the class.

3.5.1 Schema Migration Warnings

ControVol is capable to detect a schema migration warning. For example it can
be caused by renaming of a property of a class declaration in Figure 3.10 to a
class declaration in Figure 3.11 when an application uses Objectify. The property

31

pub l i c c l a s s Player {
@Id Long id ;
S t r ing name ;
In t eg e r rank ; // l e v e l i s renamed

}

Figure 3.11: Java object mapper class Player with property rank.

level is renamed to rank. The authors use the notation inspired by the Machivelli
system [6]. From the old object declaration (Figure 3.10) we derive the following
mapping function:

Playera : {[[login : String, name : String, level : Integer]]}
→ {[[login : String, name : String, level : Integer]]}

The domain of this function speci�es the set of safely loaded entities (i.e., no
data loss or exception during class initialization). The codomain speci�es persisted
entities according to the object mapper class declaration. The mapper excepts the
only player of the same type with properties login, name and level.

For the newer version according to the class declaration in Figure 3.11 we
derived a similar mapping function which expects a property rank (instead of
level):

Playerb : [[login : String, name : String, rank : Integer]]

→ [[login : String, name : String, rank : Integer]]

Now the legacy players cannot be safely loaded according to the new class
declaration because they are persisted with property level. As we can see, the
codomain of Playera and the domain of Playerb do not match. However, the
application can load the persisted entities without run-time exception. The mapper
initializes new property rank to zero and ignores old level one.

ControVol detects inconsistency of the older class codomain and the newer class
domain as a potential pitfall and reports a warning in the Eclipse IDE.

3.5.2 Quick Fixes

ControVol is also capable to suggest so-called quick �xes to resolve warnings,
which can be applied automatically (a few mouse clicks) by Eclipse IDE. For the
example from Section 3.5.1 ControVol proposes these three quick �xes:

� Add Objectify annotation @AlsoLoad("level") to property rank that ex-
plicitly renames level to rank.

32

pub l i c c l a s s Player {
@Id Long id ;
S t r ing name ;
@AlsoLoad (" l e v e l ") In t eg e r rank ;

}

Figure 3.12: Java object mapper class Player with property level renamed to
rank.

� Add annotation @Ignore to property level that makes clear that level is
removed.

� Restore property level which prevents losing its value (both properties level
and rank will co-exist).

3.5.3 Recognized Annotations

A developer can use annotations (i.e., from Objectify) without ControVol help, so
the framework must type check the annotations. ControVol checks all standard
Objectify annotations (described in Section 3.2.1).

For instance, let us consider class declaration from Figure 3.12. The derived
mapping function is:

Playerc : [[login : String, name : String, level : Integer]]

→ [[login : String, name : String, rank : Integer]]

Playerc : [[login : String, name : String, rank : Integer]]

→ [[login : String, name : String, rank : Integer]]

This object mapper class declaration loads both legacy and current player
entities alike. ControVol does not report any warnings.

3.6 KVolve

KVolve is an extension to the key/value NoSQL database Redis developed and
presented by K. Saur, T. Dumitras, and M. W. Hicks [62]. The authors use
the terminology from the NoSQL Distilled [61] book and introduce a mechanism
for incremental migration of key/value format records. The term incremental
migration is a synonym for lazy migration (de�ned in Section 3.3.1).

The aim of KVolve is an implementation of lazy migration to Redis using
an added version �eld vers which enables to detect possible migrations. The
implementation of KVolve is a separate C library that is compiled into Redis

33

Figure 3.13: Control Flow for Redis and KVolve

itself. The authors choose this approach as a solution with the best performance
and it should be easy to maintain: KVolve adds the version �eld vers to the data
structure and extends standard Redis request processing. KVolve supports 36
Redis commands and all of the main data structures (string, set, list, hash, and
sorted set). The supported commands are the most commonly used ones. KVolve
works by pre-processing incoming commands from the client before passing them
to Redis.

KVolve processes incoming command in 4 steps. We will describe them on an
example of command set Kx value as depicted in Figure 3.13:

1. The client issues command set Kx value.

2. Redis calls extension KVolve function kvProcessCmd(c) to pre-process the
command (which might involve changes of data and version �eld).

3. Redis follows standard execution with processCmd function (which depends
on the choice of command � in our example procSet is called because the
client requested set command), and adds the object to the database, includ-
ing changes to the version �eld set during the KVolve pre-processing.

4. Redis responds to the request, that it executed the set request.

The kvProcessCmd(c) function controls the migration. The function works
based on the version hash table. The table contains information about the entity

34

void update_function (char ** key , void ** value , s i z e t * va l l en)
{
j son t * root , * ar r , * e l e , * p r i c e ;
i n t i ; double pval ; json_error_t e r r o r ;
root = json_loads ((char *) *value , 0 , &e r r o r) ;
a r r = json_object get (

json_object_get (root , " order ") , " orderItems ") ;
f o r (i = 0 ; i < json_array_size (a r r) ; i++){

e l e = json_array_get (arr , i) ;
p r i c e = json_object_get (e l e , " p r i c e ") ;
j son_object_set (e l e , " d i s countedPr i c e " ,
j son_rea l (json_real_value (p r i c e) − 3 . 0)) ;
j son_object_set (e l e , " f u l l P r i c e " , p r i c e) ;
j son_object_del (e l e , " p r i c e ") ;

}
* value = json_dumps (root , 0) ; // Set the updated value
* va l l en = s t r l e n (* value) ; // Set the updated va l l ength

}

Figure 3.14: Example of update function for JSON for KVolve

migrations and maps a namespace 1 to a record that involves current and previous
versions and update functions that move data from one version to the next. It
also contains information about client connections which declare an interest in the
current version of this namespace (declares a head version).

The developer must specify migration rules which are speci�ed as update func-
tions from the old key/value format to the new one. KVolve does not support
migrations in which a new key/value is created from several old key/values. These
functions need to be created by a developer and uploaded to KVolve. Therefore,
KVolve introduces the following function:

kvolve_upd_spec (
old_namespace ,
new_namespace ,
o ld_vers ion ,
new_version ,
migration_func)

The developer can specify the migration rule by executing a new Redis function
kvolve_upd_spec and migrate namespace order from version 0 to 1 by the function
from Figure 3.14:

kvolve upd spec (" order " , " order " , 0 , 1 , 1 , update_function) ;

1Namespaces are commonly used in key/value stores and conceptually divide the kinds of
objects in the database.

35

KVolve stores the information to the version hash table. Now when the client
requests a record from order namespace of version 1, KVolve executes the up-
date_function and returns the record.

In general we can describe three situations when the client calls get K com-
mand. Function kvProcessCmd(c) gets the object through the version hash table
and checks the version �eld vers of the record against the current client connection
version vershead in the table:

� vers < vershead � KVolve migrates the record to the head version and stores
the updated record. The old version of the key K is freed.

� vers = vershead � KVolve does nothing.

� vers > vershead � KVolve raises an exception and does not return any record.
Outdated clients will not be permitted to reconnect with the old version of
the software.

To sum up, KVolve can lazily migrate an object to its new version by the given
update functions. The functions can use only the old key or value, and cannot
use any other data in the database. KVolve can return older version of data if
the data are not migrated yet and a client connection requests the older version.
Otherwise, if the version of stored data is bigger than a requested version, it closes
the connection with an exception.

3.7 CLeager

CLeager is a tool for eager schema evolution in NoSQL document stores which
was presented by S. Scherzinger, M. Klettke and U. Störl [65]. The CLeager
framework o�ers a new and declarative alternative for eager data migration based
on the NoSQLSEL which was introduced in Section 3.3.1.

The authors developed it as a stand-alone application which provides a console
for migrations written in the language. The developer types a migration script into
the CLeager console, and it executes the migration as MapReduce jobs, making
use of massive parallelization of the Google Cloud Platform infrastructure. The
MapReduce jobs can do schema modi�cation operations, such as adding, deleting,
renaming, moving or copying properties in batch.

Figure 3.15 shows an example of the CLeager console and a migration of Player
entity. The migration adds a property account with a value free to all Player
entities in a database.

CLeager has no relation/connection with the target application or an appli-
cation code. When the developer wants to make changes in the class de�nition
mapper, he must create them manually and also execute the CLeager migration.

36

de f map(St r ing key , JSON value) {
i f va lue i s a Player ob j e c t
then value . addProperty (" account " , " f r e e ") ;
put (key , va lue) ; // P e r s i s t i n g the change .

}
/* A map job i s s u f f i c i e n t . */

Figure 3.15: Adding a property in the CLeager console and the MapReduce job
for adding the property

3.8 Schema Evolution in XML-based Databases

A special kind of NoSQL databases is an XML database. For them, there already
exist frameworks for schema evolution management. The works are not focused
just on databases, but they are commonly focused on schema evolution of XML
data.

In [58] the authors introduce principles of an evolution management framework.
The main goal of the framework is to help a designer with the following problems:

� to make the required change easily and correctly,

� to identify all a�ected parts of the system,

� to make the respective changes of the a�ected parts semantically correct,

� to express the changes also syntactically correctly regarding the selected
format,

� to integrate new schemas and discover relations to the current ones.

In the authors' previous papers, they introduce an idea of a �ve-level evolution
management framework. In Figure 3.16 we can see the architecture of the frame-
work. It is partitioned vertically and horizontally and in both cases its components

37

Figure 3.16: A �ve-level XML evolution architecture of DaemonX and eXolutio.
The picture also shows scope of both Xcase and DaemonX frameworks.

are related and interconnected. The vertical partitioning identi�es three views of
the system. The authors depicted them as the most common and representative
views:

� Blue part (•) � Covers an XML view of the data processed and exchanged
in the system.

� Green part (•) � Represents a storage view of the system, e.g. relation
view of the data.

� Yellow part (•) � Represents a processing view of the data, e.g. a chain
of Web Services described using BPEL scripts.

The horizontal partitioning de�nes �ve levels. Each level represents a di�erent
view of an XML system and its evolution:

� Platform-Independent Level � contains Platform-Independent
Models (PIMs). A schema in the PIM models real-world concepts and
relationships between them without any details of their representation in,
e.g., an XML data model. The authors use UML class diagrams for
representation of the PIM.

� Platform-Speci�c Level � containsPlatform-Speci�c models (PSM). A
schema in the PSM describes how a part of the reality modeled by the PIM
schema is represented. The PSM is created for each, e.g., XML schema.
The authors use UML class diagrams extended for the purposes of XML
modeling. The extension is needed because the standard UML constructs
do not support several speci�cs of XML (such as hierarchical structure or
distinction between XML elements and attributes).

38

� Schema Level � represents schemas that describe the structure of the in-
stances, e.g. XML schemas or SQL/XML Data De�nition Language (DDL).

� Operational Level � represents operations over the instances, e.g. XML
queries over the XML data expressed in XQuery [70] or SQL/XML [24]
queries over relations.

� Extensional Level � represents the particular instances that form the im-
plemented system such as, e.g., XML documents, relational tables or Web
Services that are components of particular business processes.

Change propagation in the de�ned hierarchy of models can be done semi-
automatically. In [36] the authors introduce an algorithm for automatic revali-
dation of XML documents according to changes in the respective XML schema.
The algorithm can validate two versions of a document (with structural modi�ca-
tion) automatically; user interaction is required only where necessary (e.g. when
a content must be added, etc.). The paper introduces a mechanism for generating
an XSLT change script which can be applied to the old version of a document.

In the de�ned hierarchy there is no need to provide a mapping between PSMs,
but only from every PSM to PIM. The paper de�nes two kinds of propagation:

� Upwards Propagation (UP) � For instance, if the change occurs in an
XML schema, it is propagated to PSM schema and PIM schema.

� Downwards Propagation (DP) � Propagates changes from upwards prop-
agation back to the a�ected all PSMs and bellow to the related parts of the
system.

In their previous paper [51] the authors compares previously developed a
schema evolution framework eXolutio and a framework XCase. XCase was the
�rst framework which implements the described ideas and eXolutio follows the
ideas and more generalizes them. DaemonX is the next step in the author's
e�ort. In the following text, we will focus on the DaemonX framework.

3.8.1 DaemonX Framework

DaemonX implements the described �ve-level architecture. The framework is a
plug-in-able tool for data and process modeling. The plug-ins are managed by the
application core and de�ne speci�c functionality like evolution processes between
models.

The evolution process is managed by the DaemonX's evolution manager. The
manager controls all evolution plug-ins which de�ne upwards/downwards propa-
gation from source to target model. The evolution plug-ins de�ne so-called evo-
lution references which de�ne relationships between source and target models.

39

The evolution process starts with an analysis of an operation done in a source
modeling plug-in. The result of the analysis is a collection of operations (from the
evolution plug-in) which must be processed in the target models. These changes
can be an input of another evolution plug-in (transitively related models).

The �rst DaemonX release contains the following model plug-ins:

� PIM Model � models the problem domain,

� XSEM [71] PSM Model � models XML data,

� UML Class Model � models general data structures,

� Relational Model � models relational data,

� BPMN [32] Model � models business processes.

And the release also contains the following evolution plug-ins:

� UML to UML,

� PIM to XSEM PSM,

� XSEM PSM to PIM,

� PIM to relational model.

DaemonX provides a GUI for system designers where they can use modeling
plug-ins for data modi�cations. The framework also provides undo-redo support
that allows them to safely revert changes. The undo-redo operation is not sup-
ported for each operation, so the GUI visualizes the operation with a di�erent
color.

To sum up, the authors of DaemonX created an extendable framework for
schema evolution. The framework can be use for common systems and the pre-
sented version supports mainly XML systems. The user of the framework does not
need to create migration scripts, because the framework is able to generate and
semi-automatically apply them.

3.9 Summary

The tools and approaches that we mentioned in previous sections show us that
there is no general approach to schema evolution for all NoSQL databases. The
mentioned approaches cover di�erent areas of databases and provide di�erent func-
tionality for schema evolution management. We can compare them from many
perspectives but the following ones are more important to us to see their crucial
di�erences.

40

3.9.1 Target Database of the Schema Evolution

As we mentioned at the beginning of this section, there is no general approach to
schema evolution. We can divide the approaches to several categories by their tar-
get database. On one hand, we introduced technologies which are closely bound to
the speci�c databases and, on the other hand, we mentioned the schema evolution
language for NoSQL databases. These are completely di�erent approaches to the
problem.

We can divide them into two groups � tools which are bounded to speci�c
database(s) (Objectify, Morphia, Hibernate OGM, MongoRepository, Mongoid
Evolver, KVolve, ControVol) and tools and papers which solve schema evolution
at an abstract layer without any speci�c database (DaemonX, NoSQLSEL). The
�rst group contains well-de�ned approaches to the schema evolution which can be
used by developers immediately but the provided functionalities are weaker and
do not provide an extensive bene�t to them. The second group provides powerful
functionalities but the approaches are mainly theoretical and not ready for massive
production usage, because they usually have just a prototype implementation.

3.9.2 Timing of the Schema Evolution

An important di�erence between the approaches is the time when the migration
is executed. There are two main ways how to execute it � eagerly (CLeager)
and lazily (KVolve). Also, there are abstract frameworks like DaamonX which do
not care about the execution time, they solve the evolution in data models. The
rest of tools like Objectify prove methods to perform the migration but time and
correctness of the migration fully depends on a developer.

3.9.3 Provided Functionalities for Schema Evolution

The most important di�erence for developers is the list of provided functional-
ities. The introduced approaches and tools cannot be easily compared by their
functionalities, because they deal with di�erent abstract layer of schema evolution
processing/management. Another problem of the comparison is that a part of
them is a real-world solution and the rest of them is mainly a theoretical work.

At the end of Section 3.2 we compared all the mentioned standard ORM tools so
we are not going to compare them again but we choose Objectify as a representative
example of the ORM tools for the following comparison. The other representative
example will be CLeager because it is an implementation of the NoSQLSEL.

Firstly, we compare these two representatives, because we need to �nd a map-
ping or similarities between the their operations. For recapitulation, here are the
lists of them:

41

Objectify

@AlsoLoad
@Ignore
@IgnoreLoad
@IgnoreSave
@OnLoad
@OnSave

CLeager

add
delete
rename
move
copy

We do not want to introduce a proper mapping algorithm between their oper-
ations but we want to �nd out if one can exists. CLeager is using a well de�ned
language so we will try to �nd a theoretical way how to map Objectify functions.
The operations add and delete are trivial, we can introduce a new �eld or remove
an old one anytime without any annotations. To implement operation rename,
we can use function @AlsoLoad. This function allows us to implement any data
transformation with loaded data as renaming or the data transformation. Opera-
tions move and copy can be implemented using function @OnLoad. We can see the
usage of these functions in Figure 3.1 and Figure 3.2. Other Objectify functions
can be used during data processing, but they are not required for the basic set of
functions for data evolution in a database.

ControVol is based on suggestions and quick �xes for mismatched data and
schema against standard ORMs so we cannot compare operations as add or remove,
because it is not the purpose of the tool.

KVolve works based on migration scripts which are uploaded directly to Redis
database. It means that a developer can implement any transformation in language
C with one exception. The developer cannot implement migration from several
keys to one new key. KVolve uses a key/value database so operation add/remove
does not make sense but the developer is able to move, copy or rename data.

DaemonX uses PIM to PSM (and back) transformations so the provided op-
erations depend on the used models. In case of XML, it uses semi-automated
migrations. When DaemonX detects an ambiguous migration, the developer is
asked for an assistance. The result is that the developer is able to do any trans-
formation on PIM and propagate it to XML PSM or back to the PIM.

3.9.4 General Approach

As we mentioned before, currently there does not exists a general approach for
NoSQL databases. The team of S. Scherzinger, M. Klettke and U. Störl intro-
duced a few papers about the NoSQLSEL (see Section 3.3.1). The language is a
good way how to introduce one common approach applicable to schema evolution.
The authors introduced three basic operations add, delete and rename, and two
dedicated operations move and copy. This set of �ve operations is powerful to
manage standard schema evolution.

42

The language is focused on document databases and described mainly for
JSON/BSON databases. The authors excluded key/value databases because they
do not have any schema, so the evolution of schema and data is the responsibility of
applications. The current de�nition of the language also does not support column
and graph databases. The authors explain the challenges of column databases, but
they do not explain the absence of graph databases. We understand the lack of
support for the other types of NoSQL databases, because document databases are
the most popular part of NoSQL and also the most commonly used ones. We can
see this fact on the web page [15] which show us the most popular database en-
gines. Figure 3.17 shows us a list of top 30 engines. Relational databases dominate
in the list but if we exclude them, document databases will be the most popular
ones.

The focus on JSON/BSON databases is not a critical limitation. We can easily
propose an extension to XML databases, because they are based on a hierarchical
data model too.

To sum up, a developer is able to execute basic operations like add, delete,
rename, move, or copy with any introduced tool or theory. A di�erence in provided
operations is mainly in the way how they are provided, i.e. whether the developer
is able to modify code, model, or implement migration function.

43

Figure 3.17: The most used database engines [15]

44

4. Multi-model Databases

Most standard databases use a single model for storing data. The used model
determines how the stored data can be used (i.e. queried, stored, organized or
manipulated) and the single-model databases are well-optimized for their model.

Figure 4.1: An example of data model for an e-shop application

On the other hand, a lot of modern applications work with di�erent types of
data. A typical example of a modern application is an e-shop which sells products.
This kind of application has to store at least information about users and prod-
ucts and it has to allow a user to buy products online through a shopping cart.
Figure 4.1 shows data models for the application data and examples of possible
databases for each kind of data. A problem for developers of the application is that
they need three di�erent databases. They need the knowledge of each of them and
they have to integrate, manage and maintain three database technologies. This
approach of using a variety of appropriate data models for di�erent parts of the
application is called polyglot persistence and it is described by Martin Fowler
in [19]. In a nutshell, polyglot persistence is an idea which describes advantages
and disadvantages of using multiple database technologies for storing divergent
types of data based upon the way data are being used by an application.

The idea of polyglot persistence is one of the main reasons why there is a rising
popularity of Multi-Model Databases (MMD). The MMDs provide a uni�ed
platform for applications which need to work with multi-model data. They provide
most of the standard database functions such as the ability to query across all the
models, indices or transaction support. Currently, there is no uni�ed set of models
which is supported by all MMDs. A typical set of supported models is a subset of
the following data models:

� relational,

45

� column,

� key/value,

� document,

� graph.

This set covers most of the requirements of modern applications. The relational
and column model can store tabular data in a structured form, the key/value model
is suitable for hash tables, the document model stores semi-structured or object-
like data, and the graph model is intended mainly for highly referential data.

The MMDs are the way to solve the polyglot persistence problem and o�er
advantages of data modeling and managing without disadvantages of using di�er-
ent database technologies for each kind of data. The MMDs provide all models
(a particular subset) in one database with uni�ed query language and API for all
supported models.

However, the key problem of the multi-model approach is that it increases
system complexity for database operations. For example, the database has to pre-
process all operations to serve them to the target model or manage all cross-model
operations and all problems like transactivity.

4.1 Architecture of MMD

Problems of cross-model operations can be partially solved by the architecture of
the database. In general, there are two main ways how to support di�erent models:

� Complex engine � The database transforms all supported data types to
a single core model. Its engine has to pre-process all operations for the
core model. For example, a document store (supporting JSON documents),
a key/value store, and a graph store can all be successfully represented as
JSON documents. Documents are straightforward, key/value pairs are stored
in �at documents, and graph needs an extension which stores documents for
each vertex and a document for each edge. An example of MMD which uses
a complex engine is CouchBase [10].

� Layered architecture � The database supports di�erent models via dif-
ferent layers on top of an engine. Data are stored in the relevant model.
Each data model has its own component which communicates with the en-
gine. An example of MMD which is based on layered architecture is Oracle
Database 12c [4]. It distinguishes between relational data, XML data, and
BLOBs (stored as documents). Each of the models is stored separately and

46

(a) A diagram of a MMD with a complex engine.

(b) A diagram of a MMD with a layered architecture.

Figure 4.2: A diagram of both types of MMDs.

using an own processing engine. On top of them, Oracle Database 12c uses
a layer which can control all operations with data in the speci�c engines and
properly split/merge operations and their data.

Figure 4.2 shows a schema of a MMD with complex engine and a MMD with
layered architecture.

We decided to focus on the layered architecture because there is no need to
introduce generic approach for speci�c complex engines. The engines often use
one model to store all supported models, so they can use schema evolution for
the single model and on top of it use transformation logic to support the required
models. The top level transformation can di�er based on the used model and has
to be adjusted for the speci�c case.

The layer-based approach allows us to visualize our ideas easily and does not
mix models together. Figure 4.3 shows two main layers of the layer-based approach:
model-speci�c layer and model-independent layer. The engine of MMD is

47

Figure 4.3: Schema of layer-based MMD with support of key/value, relational,
graph, document and column models.

located in the model-independent layer. It is a facade for functions of the database
as queries and distributes queries and commands to the respective models. Also,
it collects data from them and creates the �nal result for the user. Each model
from the model-speci�c layer provides the full functionality of the given kind of
database.

Note that the concept of MMD in not new. We can �nd �rst notes about
polyglot persistence and the idea of MMD in distributed database management
systems (DBMS) which were studied in the early 80s and early 90s or in the idea
of federation of relational engines [35].

4.2 Examples of MMDs

In [34] Jiaheng Lu and Irena Holubová study the current MMDs and introduce a
detailed classi�cation of them. They cite an article published by Gartner [20] that
currently, all leading databases are going to become multi-model. Mainly they
aim to support relational and NoSQL models. Table 4.1 shows examples of MMDs
with the respective lists of supported models.

48

MMD S
Q
L

K
e
y
/
v
a
lu
e

D
o
c
u
m
e
n
t

G
r
a
p
h

T
e
x
t

O
th
e
r

ArangoDB [3] 7 3 3a 7 7

CouchBase [10] 3 3 3a 7 7

CrateDB [11] 3 7 3c 7 7

MarkLogic [38] 3 7 3ab 3d 3
binary,

geospatial

OrientDB [57] 3 3 3a 3 3
binary,

geospatial,
reactive

Datastax [14] 3 3 7 3 7
a A JSON model.
b An XML model.
c A Lucene model.

d RDF plus OWL/RDFS.

Table 4.1: Examples of MMDs with the supported models.

4.3 Pros and Cons

The main advantage of an MMD is a single system for all required models. Devel-
opers have just one database to maintain, just one adapter for their application
and also they have to learn details just about one database (such as query syntax,
architecture or topology). The next advantage of MMDs is the cost of scaling-
up. In the case when an application requires scaling of databases, developers can
scale just the MMD technology instead of scaling all databases separately (scale a
relational database, a document database, etc.).

The main disadvantage is the current state of the art of the databases. They are
still relatively new and still being developed. The result is that they are immature
and there are a lot of unsolved issues and challenges.

4.4 Open Challenges for MMDs

The biggest challenges of MMDs are as follows:

� Inter-model queries � The problem of queries in MMDs are references
between di�erent models. Each model has its own query engine and the
challenge is how to connect these engines.

� Inter-model transactions � Transactions can be easily managed in par-
ticular models but an inter-model transaction is challenging mainly because
of rollbacks and transaction persistence.

� Schema and model evolution � We have already mentioned challenges for
NoSQL databases. Schema evolution in MMDs has to deal with inter-model

49

evolution, inter-model references, and di�erences between schema evolution
in each model.

50

5. Our Approach

This chapter describes our general approach for schema evolution in MMDs. We
introduce a schema evolution language for MMDs and its set of supported opera-
tions, their meaning, and implementation in most common data models.

Currently, there exists no uni�ed approach how to manage schema evolution
in MMDs. We can �nd several approaches how to manage schema evolution in
separate models, but to the best of our knowledge, there seems to exists no general
approach to combined models.

In Chapter 3 we described several ways how to manage schema evolution in
JSON and XML models. The XML model and the JSON model are both hierar-
chical so �rst, we will consider just JSON model as a representative of them.

In the context of NoSQL databases, we have found out that there is no general
schema evolution approach in key/value databases except for KVolve which is a
speci�c solution for Redis database. We cannot ignore them in MMDs because of
cross-model schema evolution.

During our research, we have not found out any approach for schema evolution
in graph databases.

5.1 Schema Evolution in MMDs

In our research, we mentioned DaemonX which has architecture similar to MMD.
We can see a similarity with the PIM/PSM model of DaemonX where data can
be stored in multiple databases or models. However, there is one big di�erence
between DaemonX and MMDs which blocks us to use DaemonX to solve our
problem: The current version of DaemonX does not allow us to store connected
data across models but we can just duplicate them in multiple models.

To demonstrate the di�erence we will use an example from [58]. The authors
of the paper explain DaemonX's evolution management on a model of an e-shop
model design. Figure 5.1 shows PIM which contains the de�nition of entity order
and it also shows three PSMs. The PSMs are targets of the PIM. The authors
execute evolution which moves data attribute address from entity User to entity
Detail and splits this attribute to new attributes country, city, address and post-
Code. They execute the evolution step by step in all three mentioned PSMs. In
this example, we can see that DaemonX is able to handle a complex schema evolu-
tion of all three PSMs but its evolution algorithm is not able to handle migration
which would, e.g., split data between multiple models. For the mentioned example
it means that DaemonX can migrate attribute address only to one speci�c model.
For a better understanding in the context of MMDs we can image that the exam-

51

Figure 5.1: An example of model of eshop design in DaemonX [58].

52

ple is not using the XML and the DB PSMs, but it uses data models as PSMs,
i.e., a document model and a relational model. The sample operation migrates
data inside both models correctly. The problem is that we are not able to move
data between PSMs. DaemonX is not able to remove all attributes address from
the relational model and move them to the document model. It supports only
migrations which do not distinguish target PSM.

With an non trivial e�ort it should be possible to extend DaemonX, but we
decided not to use this way. The main reasons are that we want to focus on a
general solution which can be implemented in any migration tool or MMD and the
current complexity caused by di�erent aim of DaemonX.

In this thesis we aim at a general solution of schema evolution in MMDs and
the following models as the main representatives of MMD models:

� relational,

� column,

� graph,

� key/value, and

� JSON (and XML), i.e. document.

Since we focus on a general approach, we are not going to solve schema evolution
between speci�c models one by one but we introduce a general model-independent
solution.

5.1.1 Operations for Schema Evolution in MMDs

Our �rst goal is to introduce a set of operations for schema evolution in MMDs.
In Section 3.9 we showed that most of the current NoSQL models provide similar
operations for schema evolution. This fact allows us to use the set of operation as
a common API for all speci�c models in the layered model.

Supported Operations by Speci�c Models

Our �rst goal is to de�ne a common set of operations which can be supported by
all data models. Our main requirement is that all functions have to be supported
by the representatives of MMD models. In Section 3.3.1 we described the schema
evolution language for NoSQL databases which covers most of the representatives.
The language contains operations add, delete, rename, move, and copy. It is de�ned
for document, column and key/value models.

53

{
" ver tex " : [

{
" id " : 0 ,
" l a b e l " : "Peter "

} ,
{

" id " : 1 ,
" l a b e l " : "George"

} ,
{

" id " : 2 ,
" l a b e l " : "John"

}
] ,
" edges " : [

{
" id " : 0 ,
" source " : 0 ,
" t a r g e t " : 1 ,
" l a b e l " : " i s f r i e nd o f "

} ,
{

" id " : 1 ,
" source " : 2 ,
" t a r g e t " : 0 ,
" l a b e l " : " hates "

}
]

}

Figure 5.2: An example of representation of a graph model in the document
model.

To cover all our representatives of MMD models we have to introduce an ex-
tension of the language for graph and relational model. We can consider the graph
model as a document model which is created as a set of vertices and edges. A ver-
tex is a document consisting of id and label. The edge is a set of an identi�cator
of a source vertex (source) and an identi�cator of a target vertex (target) and id
and property label. Figure 5.2 shows an example of a graph of relations between
vertices Peter, John, and George which is represented in the document model.

With this representation, we can also use the language for the graph model.
The only one which is remaining is the relational model. However, the whole
NoSQLSEL is derived from the world of relational databases so it is not hard to
extend it towards the relational model. We can consider that entities are repre-

54

sented as rows in a speci�c table and their properties are columns of the table.
Each entity has a unique identi�cation id. Below we show how the operations can
be implemented in SQL:

� Operation add entity.property adds column property to table entity.

ALTER TABLE en t i t y ADD property ;

� Operation delete entity.property deletes column property from table entity.

ALTER TABLE en t i t y DROP property ;

� Operation rename entity.property1 to property2 renames column property1
to property2 in table entity.

ALTER TABLE en t i t y CHANGE property1 property2 ;

� Operation copy entity1.property to entity2.property copies column property
from table entity1 to entity2 as a sequence of commands:

ALTER TABLE en t i t y 2 ADD property ;
UPDATE en t i t y 2

SET property = (
SELECT property
FROM ent i t y 1

WHERE en t i t y 1 . id = en t i t y 2 . id) ;

� Operation move entity1.property to entity2.property copies column property
from table entity1 to entity2 and deletes column property from table entity1 :

ALTER TABLE en t i t y 2 ADD property ;
UPDATE en t i t y 2

SET property = (
SELECT property
FROM ent i t y 1

WHERE en t i t y 1 . id = en t i t y 2 . id) ;
ALTER TABLE en t i t y 1 DROP property ;

Note that we do not focus on e�ectivity of this implementation, because our
goal is to prove that it is possible to implement the language in a relational model.

We will call this extension of the language the Database Schema Evolution
Language (DSEL). To implement schema evolution in the speci�c models we will
use the DSEL for our main goal which is the Multi-model Schema Evolution
Language (MMSEL). We decided to use this language as a commonly supported
set of operations of speci�c models, because as the authors of the NoSQLSEL
mentioned that these operations cover the most common schema migration tasks.

55

Another reason is that the DSEL is easy to implemented in all speci�c data models
because it requires basic database functionality to store entities, remove entities,
�nd entities by a key and conjunctive queries with equality comparisons by a key.

Before we introduce the MMSEL let us recapitulate the DSEL. It contains
three main operations (now applicable on all considered data models):

� The add operation introduces a new property to all entities of a given kind
with a speci�ed default value.

� The delete operation removes a property from all entities of a given kind.

� The rename operation changes the name of a property for all entities of a
given name.

All these operations a�ect all entities of one kind. For schema refactoring of
existing entities we introduce the following operations:

� The move operation removes a property from one kind of entity and adds it
to another one.

� The copy operation copies a property from one kind of entity to another one.

5.1.2 Multi-model Schema Evolution Language

Now we have a common interface supported by all our models so we can introduce
the MMSEL. The functionality and provided operations by the language are crucial
and they are our main goal. The logic of the language is executed in the model-
independent layer which communicates with a model-speci�c layer through the
common interface of the DSEL.

We decided to introduce the same set of operations as is provided by the DSEL,
i.e. operations add, delete, rename, move and copy which will also support equality
conditions by a key and joins (for moving and copying of data). Reasons are
that this set of operations covers the most common cases of schema evolution as
the authors of the NoSQLSEL claim. The second reason is the simplicity of the
language. From the user perspective, the language is self-descriptive and thus easy
to understand even without reading its speci�cation which means that it is easy to
learn it and use. The next reason is that its set of operations follows the common
provided approach of schema evolution which we described in Section 3.9.3. On
the other hand, we know about limitations of the NoSQLSEL which we mentioned
during its presentation. Let us recapitulate quickly them. For operationsmove and
copy the language requires relationship 1:N between the source property and its
targets, otherwise the result of operations is not de�ned. The second limitation is

56

that the language does not de�ne the result of operations that add a new property
to entities with the same key as already exists in the entities and the NoSQLSEL
does not support nesting and unnesting of migrating entities. However, the bene�ts
of the NoSQLSEL still outweigh its limitations and thus we use it for the MMSEL.

The result of this decision is that the MMSEL has the same limitations as the
NoSQLSEL.

Our approach follows the idea of versioning of entities so it uses an extra
numeric property version for all entities to detect their state. The property is
incremented each time an entity is modi�ed during any evolution. Moreover,
the property makes the migration robust in case of interruptions by restricting
migrations to all entities of a particular version. This can be speci�ed using the
where-clause and we may correctly recover from interrupts, even for move and
copy operations.

The extension of the operations for MMDs requires speci�cation of processing
of commands in the model independent layer. The multi-model engine has to
distinguish which models are a�ected by a given operation and propagate the
operations to them. Let us introduce the operations in the layer-based MMD and
specify the respective behavior.

We can divide the operations into two separate groups by the number of a�ected
models:

� Intra-model operations � Operations which a�ect just one model. This is
just operation add. As we can see from the de�nition of this function, it
adds a new property so it cannot create any inconsistency between models
or require data transformation between models. Figure 5.3 shows a simple
activity diagram of processing operation add. In the diagram, we can see
operation add requested by a client. The request is handled by the multi-
model engine and delegated to the speci�c model. In case of operation add
it cannot trigger any other operations.

� Inter-model operations � Operations which can a�ect multiple models.
This is the rest of the mentioned operations: copy, move, delete and rename.
The �rst two inter-model operations can trigger data transfer between mod-
els and all four operations can trigger reference changes in other models. We
will use the following terminology for a�ected models: the source model
is a speci�c model which contains original data and the target model is a
speci�c model which receives the data. Figure 5.3 depicts an activity dia-
gram when the multi-model engine receives operation delete or rename from
a client and delegates it to a speci�c source model. These operations could
trigger reference changes in multiple target models. These changes are han-
dled by the engine. Figure 5.4 depicts an activity diagram when the engine

57

Figure 5.3: Interaction diagram of add, delete and rename operations.

receives operation move or copy from a client. The operation is delegated to
a speci�c source model which contains the original data. The data are loaded
to the engine. The engine sends them to the speci�c target model (which can
be the same as the source model). Both operations can also trigger reference
changes which are handled by the engine.

This classi�cation can simplify our problem because intra-model operations
a�ect only one model. It means that the multi-model engine in model independent
layer propagates intra-model operations to speci�c target models which are already
able to ensure correct data processing because we build the operations on top
of existing operations for speci�c models. Intra-model operations just have to
distinguish the right speci�c model and propagate the given requests.

The set of inter-model operations can a�ect multiple models. When the oper-
ations process entities within the same model (i.e., the source model equals to the
target model), it is the same situation like in the case of an intra-model operation
and the speci�c model can handle the given request. The problem is when entities
should be moved from a source model to a di�erent target model. In this case,
the multi-model engine has to handle the logic. The engine gets all entities of the

58

Figure 5.4: Interaction diagram of move and copy operations.

given kind from the source model and inserts them in the target model. In case of
operation move, it has to delete them from the source model. The second problem
of inter-model operations is propagation of changes to models which reference the
changed entities. This logic has to be handled in the multi-model engine which is
able to track all cross-model references. When the engine detects a change of ref-
erenced entity it also has to manage appropriate changes in the referencing entity.
It can be renaming of a property in case of operation rename or deleting in case
of delete or move.

The problematic of the reference evolution makes the schema evolution more
complex. We have decided to ignore references at this moment and introduce
a solution for schema evolution in MMDs without taking of references. We will
extend our solution with references later. The reason is to make the evolution
language clear and easy to understand. The result of this decision is that operations
rename and delete are intra-model.

Now we have a high-level overview of operations of MMSEL and we can specify
them in more details.

Syntax of MMSEL

Figure 5.5 shows the syntax of the MMSEL in the EBNF. The language allows
us to use equality predicates between keys and joins. The conditions follow the

59

mmevolutionop : := add | d e l e t e | rename | move | copy ;

add : := "add" property "=" value [s e l e c t i o n] ;
d e l e t e : := " d e l e t e " property [s e l e c t i o n] ;
rename : := "rename" property " to " pname [s e l e c t i o n] ;
move : := "move" property " to " kind [complexcond] ;
copy : := "copy" property " to " kind [complexcond] ;

s e l e c t i o n : := "where" conds ;
complexcond : := "where" (jo incond | conds | (jo incond "and" conds)) ;

jo incond : := property "=" property ;
conds : := cond {"and" cond } ;
cond : := property "=" value ;

property : := mname " ." kname [" . " pname] ;
kind : := mname " ." kname ;
mname : := i d e n t i f i e r ;
kname : := i d e n t i f i e r ;
pname : := i d e n t i f i e r ;

Figure 5.5: Syntax of MMSEL in EBNF.

de�nition of the query model from Section 2.3.5. The result is that our language
supports only conjunctive queries with equality comparisons between entity keys
which are commonly provided by data stores. The property models (mname),
the property kinds (kname) and the property names (pname) are terminals in
the grammar. We will formally specify the semantics of all our operations later,
because we want to build an intuition for this language �rst. Let us introduce the
syntax of the language and behavior of each operation. If we compare the MMSEL
with the NoSQLSEL, we extended its logic with the model identi�er to distinguish
the target model and an optional property name because not all models support
properties (e.g. the key/value model). In general, we want to keep the language
as similar as possible to make it easier for a developer to learn a simple extension
of already known language.

To develop an intuition of the language and its operations we provide simple
examples. We use the model of the web application from Chapter 4 which is
depicted in Figure 4.1. It supports relational, key/value and document models.

Example. The original state of our MMD (Figure 5.6) contains a set of users
represented in a relational model, a set of items represented in a document model
and a set of carts represented in a key/value model. Users are stored in table
user(id, name, address), items are teas with compulsory properties name, type
and price. We can also see optional properties country and alias. Shopping-

60

carts are represented as key cart:userId and value corresponding to the list of
pairs productId, quantity. (I.e., we consider that our key/value model supports a
structured value which allows us to store the list of pairs.) The key/value model
also contains other entities like current web application version and the name of
the seller.

Now, we can execute examples of the MMSEL operations:

� Operation add : In the example bellow, we show application of operation
add on an entity in the document model from our web application example.
Operation add document.tea.importer = "Tea Comp." adds property
importer with value Tea Comp. to all entities of kind tea.

{
" tea " : [

{
" id " : 0 ,
"name" : " S i l v e r Needle " ,
" type" : "white " ,
" p r i c e " : 10 ,
" country " : "China" ,
" ve r s i on " : 1

}
]

}

{
" tea " : [

{
" id " : 0 ,
"name" : " S i l v e r Needle " ,
" type" : "white " ,
" p r i c e " : 10 ,
" importer " : "Tea Comp." ,
" country " : "China" ,
" ve r s i on " : 2

}
]

}

We can also specify a selection predicate. Operation add
relational.users.canDeliver = true where relational.users.address
= null adds new column canDeliver on the basis of the value of property
relational.users.address. The rest of the entities have an unde�ned value.

id name address v...
1 Peter Parker 15010... 1
2 John Doe null 1

id ... v... canDeliver
1 ... 2 null
2 ... 2 true

� Operation delete: Operation delete document.tea.country deletes prop-
erty country from all entities tea.

61

(a) Data in document storage.

{
" tea " : [

{
" id " : 0 ,
"name" : " S i l v e r Needle " ,
" type" : "white " ,
" p r i c e " : 10 ,
" country " : "China"

} ,
{

" id " : 1 ,
"name" : "Longj ing " ,
" type" : " green " ,
" p r i c e " : 15 ,
" a l i a s " : "Dragon ' s Well"

} ,
{

" id " : 2 ,
"name" : "Keemun" ,
" type" : " black " ,
" p r i c e " : 11

}
]

}

(b) Data in relational storage.

id name address
1 Peter Parker 15010 NE 36th Street Redmond, WA 98052
2 John Doe null

(c) Data in key/value storage.

key value
cart:1 [1,5;0;2]
cart:2 [2,1]

appVersion teaShop
seller eTea Shop

Figure 5.6: An example of multi-model storage for a web application.

62

{
" tea " : [

{
" id " : 0 ,
"name" : " S i l v e r Needle " ,
" type" : "white " ,
" p r i c e " : 10 ,
" country " : "China" ,
" ve r s i on " : 1

}
]

}

{
" tea " : [

{
" id " : 0 ,
"name" : " S i l v e r Needle " ,
" type" : "white " ,
" p r i c e " : 10 ,
" v e r s i on " : 2

}
]

}

� Operation rename: Operation rename relational.users.name to full-
name renames property name to fullname for all entities tea in the relational
model.

id name address v...
1 Peter Parker 15010... 1
2 John Doe null 1

id fullname address v...
1 Peter Parker 15010... 2
2 John Doe null 2

� Operation copy : To copy a property from one model to a di�erent one we use
operation copy. Operation copy keyValue.appVersion to document.tea
copies property appVersion for all entities tea in the document model.

key value
cart:1 [1,5;0;2]
cart:2 [2,1]

appVersion teaShop
seller eTea Shop

key value
cart:1 [1,5;0;2]
cart:2 [2,1]

appVersion teaShop
seller eTea Shop

63

{
" tea " : [

{
" id " : 0 ,
"name" : " S i l v e r Needle " ,
" type" : "white " ,
" p r i c e " : 10 ,
" country " : "China" ,
" ve r s i on " : 1

}
]

}

{
" tea " : [

{
" id " : 0 ,
"name" : " S i l v e r Needle " ,
" type" : "white " ,
" p r i c e " : 10 ,
" country " : "China" ,
" appVersion" : " teaShop" ,
" ve r s i on " : 2

}
]

}

� Operation move: The last example is operation move: Property seller from
the key/value model is moved to each entity tea in the document model:
move keyValue.seller to document.tea

key value
cart:1 [1,5;0;2]
cart:2 [2,1]

appVersion teaShop
seller eTea Shop

key value
cart:1 [1,5;0;2]
cart:2 [2,1]

appVersion teaShop

{
" tea " : [

{
" id " : 0 ,
"name" : " S i l v e r Needle " ,
" type" : "white " ,
" p r i c e " : 10 ,
" country " : "China" ,
" ve r s i on " : 1

}
]

}

{
" tea " : [

{
" id " : 0 ,
"name" : " S i l v e r Needle " ,
" type" : "white " ,
" p r i c e " : 10 ,
" country " : "China" ,
" s e l l e r " : "eTea Shop" ,
" ve r s i on " : 2

}
]

}

5.1.3 Semantics of the MMSEL

Now, we can implement all multi-model schema evolution operations from Fig-
ure 5.5.

64

Semantics of DSEL

The semantics of the DSEL has to be discussed for each data model. The docu-
ment and column models are de�ned by the implementation of these operations
for NoSQL schema evolution introduced by S. Scherzinger, M. Klettke, and U.
Störl in [63] (see Algorithm 5.1 and Algorithm 5.2). These operations use the
NoSQLDPL. For the graph model, we consider representation as documents so
the NoSQLDPL covers also this model. We therefore need a de�nition for the
key/value and relational models.

Algorithm 5.1: Implementation of NoSQL schema evolution operations
add, delete, and rename for the document and column models [63].

Let c be a kind, let n be a property name, and let v be a property value
from Dom. θ is a conjunctive query over properties.

add c.n = v where θ
foreach element e of get(kind = c ∧ θ) do

setProperty(e, n, v);
setProperty(e, version, getProperty(e, version) + 1);
put(e);

delete c.n where θ
foreach element e of get(kind = c ∧ θ) do

removeProperty(e, n);
setProperty(e, version, getProperty(e, version) + 1);
put(e);

rename c.n to m where θ
foreach element e of get(kind = c ∧ θ) do

setProperty(e, m, getProperty(e, n));
removeProperty(e, n);
setProperty(e, version, getProperty(e, version) + 1);
put(e);

65

Algorithm 5.2: Implementation of NoSQL schema evolution operations
move, and copy for the document and column models [63].

Let c1, c2 be kinds and let n be a property name. Conditions θ1 and θ2 are
conjunctive queries. θ1 has atoms of the form c1.m = v, where m is a
property name and v is a value from Dom. θ2 has atoms of the form
c2.m = v or c1.a = c2.b, where a, b and m are property names. v is a
value from Dom.

move c1.n to c2 where θ1 ∧ θ2
foreach element e of get(kind = c1 ∧ θ1) do

foreach element f of get(kind = c2 ∧ θ2) do
setProperty(f , n, getProperty(e, n));
setProperty(f , version, getProperty(f , version) + 1);
put(f);

setProperty(e, version, getProperty(e, version) + 1);
removeProperty(e, n);
put(e);

copy c1.n to c2 where θ1 ∧ θ2
foreach element e of get(kind = c1 ∧ θ1) do

foreach element f of get(kind = c2 ∧ θ2) do
setProperty(f , n, getProperty(e, n));
setProperty(f , version, getProperty(f , version) + 1);
put(f);

First, we de�ne the operations for the key/value model. In this model, we do
not have any properties as in the document model. We have only keys and values,
i.e. entities and values. As a result, we have to exclude all conditions from this
model because they are irrelevant. In Section 5.1.2 we mentioned that properties
in the MMSEL are optional and we will use it right now. Algorithm 5.3 de�nes
the behavior of these operations for the key/value model.

Let us explain the de�ned functions in the context of key/value model. The
�rst de�ned function in the algorithm is operation add. In the �rst step it creates
a new entity with the given key c1 and value v in an application space. In the
second and last step the created entity is stored in the database. The second
de�ned function is delete which deletes an entity by the given key c1 from the
database. The last de�ned operation rename creates a new entity with the given
key c2 and a value of entity c1 in the application space. Then the entity is stored in
the database and the original entity is deleted. We choose this approach because

66

we can add and remove the entity in all key/value databases, whereas renaming
the key of an entity is not always supported.

Algorithm 5.3: Implementation of NoSQL schema evolution operations
add, delete, and rename for the key/value model.

Let c1, c2 be kinds and v a value from Dom.

add c1 = v
new(c1, v);
put(c1);

delete c1
delete(c1);

rename c1 to c2
new(c2, get(c1));
put(c2);
delete(c1);

The next consequence of missing properties is that the key/value model does
not support operation move. We decided to exclude the operation because we
cannot properly de�ned it without the support of properties in the model. It
could be de�ned in the same way as operation rename, but we do not want to
have two operations with the same behavior. For that reason, operation move in
the key/value model does nothing. To be able to implement the operation with
no functionality, we need to extend the NoSQLDPL. The new function is called
empty. It does not modify the application space or even the database state. It
means the function does not modify any data in application memory, even not
in the database. We formally specify the function later with the implementation
of MMSEL. Now, we introduce the remaining functions for the key/value model
in Algorithm 5.4. Operation move calls the new function empty. The second
operation copy creates a new entity with the given key c2 and value of entity c1
then the entity is put in the database.

67

Algorithm 5.4: Implementation of NoSQL schema evolution operations
move and copy for the key/value model.

Let c1, c2 be kinds and v a value from Dom.

move c1 to c2
empty();

copy c1 to c2
new(c2, get(c1));
put(c2);

The relational model is straightforward because we basically de�ned it in Sec-
tion 5.1.1. Instead of transforming operations to the NoSQLDPL which is derived
from the relational world, we used SQL to show the semantics of each function of
the DSEL in the relational model.

Now, we have all models covered with our common interface language DSEL.
So we covered the whole model-speci�c layer and we can deal with the MMSEL
for the model-independent layer.

Implementation of MMSEL

The core logic of the MMSEL happens in the model independent layer. This layer
is represented by a multi-model engine. The engine has to be able to distinguish
between each model and communicate with them. In our solution the communi-
cation is provided by a uni�ed interface of the DSEL. To be able to distinguish
between the models we introduce the Data Model Set (DMS). The DMS is a set
of data models presented in MMD which implements the DSEL. In our case the
set is: {column, document, key/value, graph, relational}.

The engine has to be able to manipulate with the DMS. The most needed
functionality is to choose the correct model based on its name. For easier access
and management of the set, we introduce a model key δ: δ ∈ DMS. We use
the keys of the DMS for referencing the real-world models in the MMD. To create
an abstract model of the MMD we follow the notation from [63] which uses the
term application state for the current state of the application space. It is a non-
persistent application memory. The second used term is database state which
the current state of the database and it represents all stored data in our database
at the moment. The main di�erence compared to the application state is that the
database state is persistent.

Figure 5.7 de�nes the Multi-Model Database Programming Language
(MMDPL) and its operations over the DMS. The MMDPL implements function

68

Let dms be a DMS, ds be a database state, as be an application state, δ be a
model key, and Ω be a data model. Symbol ⊥ denotes an unde�ned value.

[[empty()]](dms, ds, as) = (dms, ds, as) (5.1)

[[addModel(δ,Ω)]](dms, ds, as) = (dms, ds, as [δ 7→ Ω]) (5.2)

[[putModel(δ)]](dms, ds, as ∪ {δ 7→ Ω}) = (dms [δ 7→ Ω] , ds, as ∪ {δ 7→ Ω}) (5.3)

[[deleteModel(δ)]](dms, ds, as) = (dms [δ 7→⊥] , ds, as) (5.4)

[[getModel(δ)]](dms ∪ {δ 7→ Ω}, ds, as) = (dms ∪ {δ 7→ Ω}, ds, as [δ 7→ Ω]) (5.5)

Figure 5.7: Functions of the MMDPL for managing data models (Part 1)

empty for the key/value model (Rule 5.1). Function empty does not modify the ap-
plication space or the database. In Rule 5.2 we introduce function addModel(δ,Ω)
which creates a new entity in application space with key δ which points to model
Ω. To be able to store the created model we introduce function putModel(δ) in
Rule 5.3. It stores the entity with key δ from application space to the DMS.
Rule 5.4 de�nes function deleteModel(δ) which removes a model with key δ from
the DMS. Now, we have the full control of models in MMD. Our main goal is
the operation getModel(δ) (Rule 5.5) that we need for implementation of the
evolution-management language. This function loads the model by the given key
δ to the application space.

Note that we introduce the functions for the full control of models in the DMS,
but there will be always �ve models and we are not going to create new models or
remove any of them.

We also need to call speci�c schema evolution functions in speci�c models. To
ensure it, we introduce a modi�ed set of functions called MMDPL which extends
the NoSQLDPL with DMS operations (Figure 5.8 and Figure 5.9). The di�erence
is in operations for getting entities from the database and to save them in the
database. The rest of the operations work in the application memory so there
is no need to modify them, we just extend them with the DMS but their logic
remains. Let us describe the changed functions in more detail. Rule 5.11 extends
function put(δ, κ) by parameter δ to distinguish where the entity with the key κ is
stored. For that purpose we introduce function model(κ) which returns a model
where the entity occurs. We use this approach to detect the a�ected model in
all modi�ed functions. In Rule 5.12 we extend function delete(δ, κ) by key of the
model δ which contains the entity with key κ. Rule 5.13, Rule 5.14, and Rule 5.15
add parameter δ to function get. All modi�ed functions get load entity/entities
from the speci�ed model by key δ to the application space. Rule 5.16 is also

69

Let dms be a DMS, ds be a database state, as be an application state, δ be a
model key, and Ω be a data model. Let κ, κ′ be entity keys. Let n, n′ be property
names, and let v be a property value. Symbol ⊥ denotes an unde�ned value. Let
π, π′ be properties, i.e. mappings from property names to property values. kind
: Keys 7→ Kind is a function that extracts the entity kind from a key. model :
Modelkeys 7→ Datamodel is a function that extracts the entity model from a key.
Θ is a conjunctive query, and c is a string constant.

[[new(κ)]](dms, ds, as) = (dms, ds, as[κ 7→ ∅]) (5.6)

[[new(κ, π)]](dms, ds, as) = (dms, ds, as[κ 7→ π]) (5.7)

[[setProperty(κ, n, v)]](dms, ds, as ∪ {κ 7→ π}) =

(dms, ds,as ∪ {κ 7→ (π[n 7→ v])})
(5.8)

[[setProperty(κ, n, κ′)]](dms, ds,

as ∪ {κ 7→ π} ∪ {κ′ 7→ π′}) =

(dms, ds, as ∪ {κ 7→(π[n 7→ π′])} ∪ {κ′ 7→ π′})
(5.9)

[[removeProperty(κ, n)]](dms, ds, as ∪ {κ 7→ π}) =

(dms, ds,as ∪ {κ 7→ (π[n 7→ ⊥])})
(5.10)

[[put(δ, κ)]](dms ∪ {δ 7→ Ω}, ds, as ∪ {κ 7→ π}) =

(dms ∪ {δ 7→ Ω},ds[{κ 7→ π |
model(κ) = δ}], as ∪ {κ 7→ π})

(5.11)

Figure 5.8: Functions of the MMDPL (Part 2)

extended by model key δ to load the property from the speci�ed model.

Now we have the MMDPL and we can focus on implementing of functions of
the MMSEL from Section 5.1.2.

Algorithm 5.5 shows the implementation of operation add. The operation �nds
the correct model and checks if the model exists. In the next step the algorithm
iterates all entities of the given kind c in the model m which match query θ and
inserts property n with value v to them. Also it increments property version for
all a�ected elements and stores them back to the database.

70

Let dms be a DMS, ds be a database state, as be an application state, δ be a
model key, and Ω be a data model. Let κ, κ′ be entity keys. Let n, n′ be property
names, and let v be a property value. Symbol ⊥ denotes an unde�ned value. Let
π, π′ be properties, i.e. mappings from property names to property values. kind
: Keys 7→ Kind is a function that extracts the entity kind from a key. model :
Modelkeys 7→ Datamodel is a function that extracts the entity model from a key.
Θ is a conjunctive query, and c is a string constant.

[[delete(δ, κ)]](dms ∪ {δ 7→ Ω}, ds, as) =

(dms ∪ {δ 7→ Ω},ds[{κ 7→ ⊥ | model(κ) = δ}], as)

(5.12)

[[get(δ, κ)]](dms, ds, as) = (dms ∪ {δ 7→ Ω}, ds
as ∪ [{κ 7→ π | κ 7→ π ∈ ds ∧model(κ) = δ}])

(5.13)

[[get(δ, kind = c)]](dms, ds, as) = (dms ∪ {δ 7→ Ω},
ds, as[{κ 7→ π | κ 7→ π ∈ ds ∧ kind(κ) = c

∧model(κ) = δ}])
(5.14)

[[get(δ, kind = c ∧ ∅)]](dms, ds, as) = (dms ∪ {δ 7→ Ω},
ds, as[{κ 7→ π | κ 7→ π ∈ ds ∧ kind(κ) = c

∧model(κ) = δ ∧ [[∅]](κ 7→ π)}])
(5.15)

[[getProperty(δ, κ, n)]](dms ∪ {δ 7→ Ω}, ds,as ∪ {κ 7→ ({n 7→ v} ∪ π) |
κ 7→ ({n 7→ v} ∪ π) ∈ds ∧model(κ) = δ}) = v

(5.16)

Figure 5.9: Functions of the MMDPL (Part 3)

71

Algorithm 5.5: Intra-model operation add of MMSEL

Legend: Let m be a model name, let c be a kind, let n be an optional
property name, and let v be a property value from Dom. θ is a
conjunctive query over properties.

add m.c[.n] = v where θ

if getModel(m) 6=⊥ then
foreach element e of get(m, kind = c ∧ θ) do

setProperty(e, n, v);
setProperty(e, version, getProperty(e, version) + 1);
put(m, e);

Algorithm 5.6 shows implementation of operations delete and rename. The
core idea is the same as the idea of operation add. Both operations check the
existence of the a�ected model m and then call the operation for the speci�c
model. Operation delete removes property n1 and operation rename creates a new
property n2 with value of property n1 from all elements of kind c in model m
which match query θ. Both operations increment property version for all a�ected
elements and store them in the database.

Finally, Algorithm 5.7 de�nes an implementation of inter-model operations
move and copy. Both operations check existence of models m1 and m2. In the
next step both operations duplicate value of property n1 for all elements e of kind
c1 in model m1 which match query θ1 to property n1 of elements f of kind c2 in
model m2 which match query θ2. During the duplication the version property of
f is incremented and elements are stored. Operation move also removes property
n1 from a�ected elements e and increments its version property.

72

Algorithm 5.6: Operations delete and rename of the MMSEL

Legend: Let m be a model name, let c be a kind, let n1, n2 be property
names, and let v be a property value from Dom. θ is a conjunctive query
over properties.

delete m.c.n1 where θ
if getModel(m) 6=⊥ then

foreach element e of get(m, kind = c ∧ θ) do
removeProperty(e, n1);
setProperty(e, version, getProperty(e, version) + 1);
put(m, e);

rename m.c.n1 to n2 where θ
if getModel(m) 6=⊥ then

foreach element e of get(m, kind = c ∧ θ) do
setProperty(e, n2, getProperty(e, n1));
removeProperty(e, n1);
setProperty(e, version, getProperty(e, version) + 1);
put(m, e);

73

Algorithm 5.7: Operations move and copy of the MMSEL

Legend: Let m1, m2 be model names, let c1, c2 be kinds, let n1 be a
property name, and let v be a property value from Dom. θ1, θ2 are
conjunctive queries over properties where θ1 has atoms of the form
m1.c1.n1 = v, where n1 is a property name and v is a value from Dom. θ2
has atoms of the form m2.c2.n2 = v or m1.c1.a = m2.c2.b, where a, b and
n2 are property names.

move m1.c1.n1 to m2.c2 where θ1 ∧ θ2
if (getModel(m1) 6=⊥) ∧ (getModel(m2) 6=⊥) then

foreach element e of get(m1, kind = c1 ∧ θ1) do
foreach element f of get(m2, kind = c2 ∧ θ2) do

setProperty(f , n1, getProperty(e, n1));
setProperty(f , version, getProperty(f , version) + 1);
put(m2, f);

setProperty(e, version, getProperty(e, version) + 1);
removeProperty(e, n1);
put(m1, e);

copy m1.c1.n1 to m2.c2 where θ1 ∧ θ2
if (getModel(m1) 6=⊥) ∧ (getModel(m2) 6=⊥) then

foreach element e of get(m1, kind = c1 ∧ θ1) do
foreach element f of get(m2, kind = c2 ∧ θ2) do

setProperty(f , n1, getProperty(e, n1));
setProperty(f , version, getProperty(f , version) + 1);
put(m1, f);

Optimized Implementation of MMSEL

Note that, we showed the most obvious implementation of the MMSEL which is
easy to understand but less e�ective. Our implementation could be more e�ective
if we used the option to execute schema evolution operations within speci�c mod-
els. The current implementations always load an entity to application memory
which is in the model-independent layer. It means we always have to load an en-
tity even during intra-model operations. We know that all our models implement
DSEL so we can execute inter-model migrations inside a speci�c model. We can
also optimize execution of potentiality inter-model operations. For example, when
operations move or copy migrate data inside the same model, we can call a migra-
tion operation within the speci�c model. For the calling of migration operations

74

in a speci�c model we use a self-explanatory pseudo code. In Algorithm 5.8 we
optimize two intra-model operations add and delete and the inter-model operation
move. The intra-model operations check existence of model m1 and if it exists,
then delegate operation to the speci�c model m1. The algorithm also optimizes
operation move which checks existence of both a�ected models m1 and m2. Then,
in case of the model m1 is equal to m2, the operation is delegated to the speci�c
model, else it executes the same non-optimized logic as we introduced in Algo-
rithm 5.7. In Algorithm 5.9 we show the optimized intra-model operation rename
and the inter-model operation copy. The operations follow the same logic as the
previous optimized operations. In case of the intra-model operation it checks ex-
istence of model m1 and if the model exists, then it delegates the operation to the
speci�c model. The inter-model operations checks existence of models m1 and m2

and then, if they are equal, it delegates the operation copy to the speci�c model.
If they are not equal, non-optimized logic is executed.

75

Algorithm 5.8: Optimized operations of the MMSEL (Part 1)

Legend: Let m1, m2 be model names, let c1, c2 be kinds, let n1 be a
property name, and let v be a property value from Dom. θ1, θ2 are
conjunctive queries over properties where θ1 has atoms of the form
m1.c1.n1 = v, where n1 is a property name and v is a value from Dom. θ2
has atoms of the form m2.c2.n2 = v or m1.c1.a = m2.c2.b, where a, b and
n2 are property names.

add m1.c1[.n1] = v where θ1
if getModel(m1) 6=⊥ then

m1.execute(add c1[.n1] = v where θ1);

delete m1.c1.n1 where θ1
if getModel(m1) 6=⊥ then

m1.execute(delete c1.n1 where θ1);

move m1.c1.n1 to m2.c2 where θ1 ∧ θ2
if (getModel(m1) 6=⊥) ∧ (getModel(m2) 6=⊥) then

if m1 = m2 then
m1.execute(move c1.n1 to c2 where θ1 ∧ θ2);

else
foreach element e of get(m1, kind = c1 ∧ θ1) do

foreach element f of get(m2, kind = c2 ∧ θ2) do
setProperty(f , n1, getProperty(e, n1));
setProperty(f , version, getProperty(f , version) + 1);
put(m2, f);

setProperty(e, version, getProperty(e, version) + 1);
removeProperty(e, n1);
put(m1, e);

76

Algorithm 5.9: Optimized operations of the MMSEL (Part 2)

Legend: Let m1, m2 be model names, let c1, c2 be kinds, let n1 be a
property name, and let v be a property value from Dom. θ1, θ2 are
conjunctive queries over properties where θ1 has atoms of the form
m1.c1.n1 = v, where n1 is a property name and v is a value from Dom. θ2
has atoms of the form m2.c2.n2 = v or m1.c1.a = m2.c2.b, where a, b and
n2 are property names.

rename m1.c1.n1 to n2 where θ1
if getModel(m1) 6=⊥ then

m1.execute(rename c1.n1 to n2 where θ1);

copy m1.c1.n1 to m2.c2 where θ1 ∧ θ2
if (getModel(m1) 6=⊥) ∧ (getModel(m2) 6=⊥) then

if m1 = m2 then
m1.execute(copy c1.n1 to c2 where θ1 ∧ θ2);

else
foreach element e of get(m1, kind = c1 ∧ θ1) do

foreach element f of get(m2, kind = c2 ∧ θ2) do
setProperty(f , n1, getProperty(e, n1));
setProperty(f , version, getProperty(f , version) + 1);
put(m1, f);

Robustness of MMSEL

Our implementation of the MMSEL is also robust because of using the version
property. We can introduce control mechanisms which can recover the database in
case of a failure. The recovery means to �nish the rest of interrupted migrations.
The idea of the implementation is to have a persistent action log which contains
all evolution operations executed in the MMD. The MMD logs all migrations start
and end events with the current version of the migrating entity. The inconsistency
can happen when the MMD is interrupted during execution of the migration (e.g.
a shutdown of the database). The MMD checks if the log contains any start log
without the end. If the log is found we can �nd all entities which are not migrated
using a where condition with the version property number. If the version is the
same as when the start event was logged it means it is not migrated yet.

Last but not least, note that we showed the eager implementation of the lan-
guage, because it is easier to understand this scenario end-to-end. We keep the
lazy implementation as an open challenge.

77

5.1.4 Reference Evolution in MMDs

We introduced operations of the MMSEL which, however, ignore possible refer-
ences in MMD. It is not in the scope of the thesis but we have decided to suggest
an idea of a solution how to integrate reference evolution.

We built our solution of schema evolution in MMDs on top of the NoSQLSEL.
Unfortunately, the authors of the language do not consider references at all, be-
cause most of the NoSQL databases do not support references. Developers rather
use data denormalization which creates duplicity of data or storing a key of the
referenced entity and managing the reference in the application. Actually, the de-
normalization is a recommended approach and a best-practice for often read data.
For the rest it is storing of a key in referencing entites. The recommendations are
by authors of the database (e.g. [59]) or by users (e.g. [13]) to ensure better per-
formance and usability. The former approach creates a full copy of the referenced
data which is completely separated and independent from the source of the data.
Future changes in the source data have to be propagated manually to all copies.
We focus on the latter approach which uses keys as references to other entities.
We can easily manage the stored reference keys and we do not have to copy whole
entities.

First of all, we introduce what we mean by the reference. We consider the
reference as a pointer from a property of a referencing entity to a property of a
referenced entity. So the reference is a relation between two properties of existing
entities: source references target where each one of the source and target indicates
a triple of a model, entity, and property.

We have to describe what can happen during each operation within a model.
We can split operations into two groups by a�ected references: safe and unsafe.
Safe operations do not trigger any reference updates and unsafe operations can.
Let us discuss them one by one:

� Operation add : The operation introduces a new property which cannot be
referenced from any other entity. Add is safe and cannot trigger any reference
changes.

� Operation delete: The operation removes a property which can be referenced
which means that it is unsafe.

� Operation rename: The operation can change the name of a property which
is referenced by another property but the reference remains unchanged. We
just have to make sure that the references are updated to the new key. We
use the key for managing references so operation rename is unsafe.

� Operation move: The operation deletes a property in a source entity and
creates the same property in a target entity. Naturally, the reference still

78

exists and has to be updated to the new entity. In common cases operation
move does not change the meaning of data but it optimizes data structure.
For that reason we keep the references to the moved property unchanged so
they have to be updated. The operation move is unsafe.

� Operation copy : The operation creates a new property with a copied value of
the source property. The copied property is independent and the referencing
entity can still point to the same property. So copy is safe.

Our focus is on unsafe operations which can trigger changes in, i.e., delete,
rename, and move. This fact is valid for the DSEL but also for the MMSEL.
We want to suggest the idea of the solution for the MMSEL and the solution for
the DSEL is kept as an open challenge. We do not want to change the de�ned
behavior of the DSEL because it can theoretically a�ect a function which we used
for the MMSEL and there could be required extra changes. The second reason
is that implementation in the DSEL is considered as an improvement and our
solution can work without it. When the evolution of references in the DSEL is
formally proven, then we will be able to use the same performance improvements
of propagation operations to the speci�c models as we did for operations in the
MMSEL.

We focus our solution on the MMSEL. It means, our suggested solution is done
in the model independent layer for all references which are changed in the same
or di�erent speci�c model.

Now, we have a database representation of references. It can be represented as
a tuple {source, target}. We have to be able to persist the references and thus we
need in MMD at least one model which is able to store the relations in a relation
space. The relation space contains a set of the references. We suggest two simple
ways how to implement the relation space:

� key/value model � When the model supports complex values as arrays, we
can store directly a list of tuples. Let source1 and source2 be keys referencing
properties, target1 and target2 be the keys of referenced properties. Then
the following representation can be used in the key/value model:

key value
__rel {[source1,target1], [source2,target2],...}

� document or relational model � We can use a more complex representation
than in the key/value model. We can aggregate referencing properties for
the same referenced property. In a database, there could be multiple entities

79

mmevolutionop |= r e f e r e n c e ;

r e f e r e n c e : := " r e f e r e n c e " property "by" property [s e l e c t i o n] ;

Figure 5.10: Extension of the MMSEL in EBNF with references.

referencing the same target and this fact increases e�ectiveness because we
can �nd all a�ected properties in a single property. To �t the MMDPL
we represent a reference as an entity with property p which speci�es the
referenced property of the entity, property k key of property in the MMD, and
property s being an array of data about referencing entities (m as a model,
k as a kind, and p as a property). An example of possible implementation
in document model is shown below:

{
"__rel" : {

"document . tea . type " : [
"m" : "document" ,
"k" : "document . tea " ,
"p" : " type " ,
" s " : [{"m" : " r e l a t i o n a l " , "k" : " u s e r s " , "p" : " favTea"} ,

. . .]
] ,
. . .

}
}

We will use the second approach for its better performance and because most
implementations of MMDs support the relational or document model. It is also
easier to work with a structured representation in the MMDPL. On the other
hand, when we need to remove a reference we have to go through all referenced
properties anyway to check if it is not referenced by the removed property. We
de�ne property s as an array (Dom+) and hence we can use standard operations
for arrays, such as operation push to add to the array or delete to remove an
element from the array.

Now we know, how a reference is represented and we are able to persist it.
First of all in Figure 5.10 we de�ne an extension of MMSEL which allows us
to register a reference in a system. Operation reference property1 by property2
registers a reference from property2 to property1. Before we start with de�nition
of the operation let us discuss the behavior. We use an example of the tea shop in
Figure 5.6.

� A sequence of operations reference a property and delete the referenced
property deletes also the referencing property. Operation reference docu-

80

ment.tea.type by relational.users.favTea and operation delete docu-
ment.tea.type delete property type from all entities tea and also property
favTea is deleted.

id name favTea ver.
1 Peter Parker white 1
2 John Doe green 1

id name ver.
1 Peter Parker 2
2 John Doe 2

{
" tea " : [

{
" id " : 0 ,
"name" : " S i l v e r Needle " ,
" type" : "white " ,
" ve r s i on " : 1

} , . . .
]

}

{
" tea " : [

{
" id " : 0 ,
"name" : " S i l v e r Needle " ,
" v e r s i on " : 2

} , . . .
]

}

The example shows us how the reference works and how it is processed during
delete operation.

By default, references can allow us to create a chain of references. For the sake
of simplicity we forbid them because instead of the chain the developer can use a
direct reference to the source property. We can do it because the developer can
achieve the same results with a reference to the �nal values of the chain. Including
of chains will make the solution more complex. For example, there is a problem
of possible circles and also splits and joins in the chain caused when a property
references or is referenced by multiple properties. Because of these reasons, we keep
the chain of references as an open challenge and it is not a part of our suggested
solution.

During our study of reference migration, we discovered that where conditions
make the solution much more di�cult. It is caused by the nature of MMDs which
allow a user to move just a part of properties. This behavior can split, delete or
move completely an existing reference based on the a�ected set of the values. Since
this area is beyond the scope of this thesis we introduce a solution for operations
without conditions and keep it as an open challenge. Now, we can discuss a
behavior when a referenced property is removed. We excluded the where conditions
so we know that the deletion a�ects all referencing properties. We have two options
what can happen with the referencing property: (1) set to default value, (2) delete
the property. We decided to use the second approach because it is clear solution
for the used models. The �rst approach has to de�ne what should be the behavior
when MMD contains entity without referencing property, then it has to de�ne
default values for all models, and the default value can be considered as a value of

81

the property in an application so it can be a confusing for developers.
The next step de�nes operations for creating and managing references in the

MMDPL. We need to have an opportunity to create a reference, store it, remove
it and �nd it. Let Reference Store Model (RSM) be a store which is able
to persists the reference entities. We use rhe RSM to extend the MMDPL and
de�ne functions which help us to implement reference management in the MMSEL.
Figure 5.11 shows the extension of the MMDPL which provides functions for the
mentioned operations. We introduced a special type of entities for the references
which is stored in the RSM but we work with the type in the same way as with other
database entities in the application space. The reference entities use a di�erent
set of keys to be able to easily distinguish between them in the application space.
Rule 5.17 creates a new reference entity in the application space for the targeted
key κ1 which has to be �lled in the application space. Rule 5.18 stores the entity ρ1
in the RSM. Rule 5.19 loads a reference entity ρ1 by the given database key κ1 to
the application space. Rule 5.20 loads all reference entities which are referenced by
the given key c1, n1 of the model δ to the application space. Rule 5.21 removes the
reference entity for the given database key κ1 from the RSM. Rule 5.22 renames
the reference entity for database key κ1 to κ2.

The set of operations allow us to create, delete, get, or rename a reference.
In our use-cases, we need to be able to register a new reference, �nd out if the
property is referenced by another one or if it is referencing another entity, and
remove a reference.

Now, we can introduce operation reference and modi�ed operations delete,
rename, and move.

82

Let rs be a RSM, ρ1,ρ2 be keys in rs and η1 its set of properties. Let dms be a
DMS, ds be a database state, as be an application state. Let κ1, κ2 be entity keys.
Let n1 be property name. Let δ be a model key, c be a kind and ν be an array of
triples of m, k, and p. Symbol ⊥ denotes an unde�ned value. Let π1 be properties,
i.e. mappings from property names to property values. key : RSM keys 7→ model
keys is a function that extracts the entity key from a reference store model key.

[[newReference(κ1)]](dms, ds, as, rs) =

(dms, ds, as[{ρ1 7→ ⊥ | key(ρ1) = κ1}], rs)
(5.17)

[[putReference(ρ1)]](dms, ds, as ∪ {ρ1 7→ η1}, rs) =

(dms, ds, as ∪ {ρ1 7→ η1}, rs[ρ1 7→ η1])
(5.18)

[[getReference(κ1)]](dms, ds, as, rs) =

(dms, ds, as[{ρ1 7→ η1 | ρ1 7→ η1 ∈rs ∧ key(ρ1) = κ1}], rs)
(5.19)

[[getReferencedBy(δ, c1, n1)]](dms, ds, as, rs) =

(dms, ds, as[{ρ1 7→ η1 | ρ1 7→ η1 ∈ rs ∧ {′′s′′, ν} ∈ η1
∧{′′m′′ : δ,′′ k′′ : c,′′ p′′ : n1} ∈ ν}], rs)

(5.20)

[[deleteReference(κ1)]](dms, ds, as, rs) =

(dms, ds, as, rs[{ρ1 7→⊥| key(ρ1) = κ1}])
(5.21)

[[renameReference(κ1, κ2)]](dms, ds, as,

rs ∪ {ρ1 7→ η1 | ρ1 7→ η1 ∧ key(ρ1) = κ1}) =

(dms, ds, as, rs[{ρ2 7→ η1 |key(ρ2) = κ2}])
(5.22)

Figure 5.11: Functions for management of references in the MMDPL.

83

Algorithm 5.10: Operation reference of the MMSEL and for reference
evolution.
Legend: Let m1, m2 be model names, let c1, c2 be kinds, let n1, n2 be
property names.

reference m1.c1.n1 by m2.c2.n2

if (getModel(m1) 6=⊥) ∧ (getModel(m2) 6=⊥) then
if getReference((m1.c1, n1)) =⊥ then

r = newReference((m1.c1, n1));
setProperty(r, "m", m1);
setProperty(r, "k", (m1.c1, n1));
setProperty(r, "p", n1);
setProperty(r, "s", "[{"m": m2, "k": c2, "p": n2}]");

else
r = getReference((m1.c1, n1));
setProperty(r, "s", getProperty(r, "s").push({"m": m2, "k": c2,
"p": n2}));

putReference(r);

Algorithm 5.10 de�nes operations reference. Operation reference checks if
the RSM already contains an entity for the referenced property. If the entity
is found, the referencing property is added to sources, else the function cre-
ates a new entity with a referencing entity and stores the changes in the RSM.

84

Algorithm 5.11:Modi�ed operation rename of the MMSEL for reference
evolution.
Legend: Let m1 be a model name, let c1 be a kind, let n1, n2 be a
property names.

rename m1.c1.n1 to n2

if getModel(m1) 6=⊥ then
foreach element e of get(m1, kind = c1) do

setProperty(e, n2, getProperty(e, n1));
removeProperty(e, n1);
setProperty(e, version, getProperty(e, version) + 1);
put(m, e);

renameReference((m1.c1, n1),(m1.c1, n2));
foreach element g of getReferencedBy(m1, c1, n1) do

foreach element f of getProperty(g, "s") do
if getProperty(f , "m") = m1∧ getProperty(f , "k") = c1∧
getProperty(f , "p")=n1 then
getProperty(g, "s").delete({"m": m1, "k": c1, "p": n1});
getProperty(g, "s").push({"m": m1, "k": c1, "p": n2});

putReference(g);

Algorithm 5.11 de�nes operation rename. Operation rename executes stan-
dard renaming and in the end it �xes the references. First, it tries to rename all
references to the renamed property by renameReference function. Then it iterates
through all references which are referenced by the renamed property and it �xes
the new property name. At the end of the operation, all changes are saved to the
RSM.

85

Algorithm 5.12: Modi�ed operation delete of the MMSEL for reference
evolution.
Legend: Let m1 be a model name, let c1 be a kind, let n1 be a property
name.

delete m1.c1.n1

if getModel(m1) 6=⊥ then
foreach element e of get(m1, kind = c1) do

removeProperty(e, n1);
setProperty(e, version, getProperty(e, version) + 1);
put(m, e);

r = getReference((m1.c1, n1));
if r 6=⊥ then

foreach element f of getProperty(r, "s") do
foreach element g of get(getProperty(f , "m"),getProperty(f ,
"k")) do
removeProperty(g, getProperty(f , "p"));
put(getProperty(f , "m"),g);

deleteReference((m1.c1, n1));
foreach element g of getReferencedBy(m1, c1, n1) do

foreach element f of getProperty(g, "s") do
if getProperty(f , "m")=m1∧ getProperty(f , "k")= c1∧
getProperty(f ,"p")=n1 then
getProperty(g, "s").delete({"m": m1, "k": c1, "p":
n1});

putReference(g);

Algorithm 5.12 de�nes operation delete. First, it deletes the property. In the
next step the operation iterates through all properties which reference the removed
property and removes them. When all references are removed, then also the entity
of the reference is deleted. The last step is to remove the property itself from all
reference entities which are referenced by it.

86

Algorithm 5.13: Modi�ed operation move of the MMSEL for reference
evolution.
Legend: Let m1, m2 be model names, let c1, c2 be kinds, let n1 be a
property name.

move m1.c1.n1 to m2.c2
if (getModel(m1) 6= ⊥) ∧ (getModel(m2) 6= ⊥) then

foreach element e of get(m1, kind = c1) do
foreach element f of get(m2, kind = c2) do

setProperty(f ,n1,getProperty(e, n1));
setProperty(f , version, getProperty(f , version) + 1);
put(m2, f);

setProperty(e, version, getProperty(e, version) + 1);
removeProperty(e, n1);
put(m1, e);

renameReference((m1.c1, n1),(m2.cc, n1));
foreach element g of getReferencedBy(m1, c1, n1) do

foreach element f of getProperty(g, "sources") do
if getProperty(f , "m")=m1∧ getProperty(f , "k") = c1∧
getProperty(f , "p") = n1 then
getProperty(g, "s").delete({"m": m1, "k": c1, "p": n1});
getProperty(g, "s").push({"m": m2, "k": c2, "p": n1});

putReference(g);

Algorithm 5.13 de�nes operation move which moves a property to a new entity
and then renames all references to the new one. The last step is replacing the new
name of the entity in the referenced properties in the RSM.

87

6. Implementation

We have implemented a prototype of the MMSEL as a part of the thesis to help
us further demonstrate and validate the functionality of the language. In this
chapter, we will brie�y describe its architecture and how to use it. The application
implements the MMSEL with reference extension and simulates the optimized
version of operations when intra-model operations are executed inside the speci�c
model.

6.1 Third Party Tools and Technologies

The application is based on the .NET framework 4.6.2 [53]. It is written in the
C# language 7.0 in the Visual Studio IDE [69]. We created an abstract layered-
based model of the MMD from MongoDB and MariaDB [37]. To be able to work
with the databases in the code, we used the MongoDB Driver [44] and the MySQL
Data [50]. For better visualization and control of databases we used the MongoDB
Compass Community [43] for MongoDB and the MySQL Workbench 6.3 CE [49].
Git [22] served as the version control system.

6.2 Architecture

The architecture of the application can be split into three parts:
model-independent part, model-speci�c part, and database part. Let us shortly
describe each part.

6.2.1 Model-independent Layer

The model-independent layer is mainly responsible for parsing of user input, ex-
ecution of the targeted evolution operation and communication with the a�ected
models. The user input is parsed by our tokenizer which is also used for validation
of the input. Our implementation does not support spaces in input strings so we
replace them by underscore.

The next important role of the layer is the distribution of operations which
happens in the multi-model engine. The engine distributes commands to the
speci�c models.

88

6.2.2 Model-speci�c Layer

The model-speci�c layer contains adapters for each data model. Our abstract
model of the MMD is built from key/value, document and relational models. Each
one of them implements the DSEL interface to be able to simulate optimized
operations and Get and Put for the rest of the logic.

6.2.3 Database Layer

The last layer contains data models which contain the evolving data. In our
case, the layer is composed of MongoDB as a document model and it is also used
as a key/value model to simplify the solution (no need to another data adapter
or visualization tool). The second used database is MariaDB which represents
a relational model. In our solution, both databases can be easily changed by
providing di�erent connection strings in App.config.

6.3 Application Usage

The prototype is a standard .NET application with command-line interface. It
requires both databases to run and the respective connection strings. It can be
run using the following command:

> MultiModelSchemaEvolution . exe

When the application starts, it waits for a user input. The input can be any
command which matches MMSEL and is relevant to the used databases. The appli-
cation informs the user about data processing, command validation, and possible
errors. The application can be terminated by command EXIT .

89

7. Experiments

Now, we will demonstrate the bene�ts of our solution and results of running our
implementation on experiments using a computer with the following con�guration:

� a Inter Core i7 2.50GHz CPU

� 16GB of RAM memory

� 64-bit Windows 10 Home

7.1 Experiment Plan

We decided to split our experiment into two parts. First, we shortly describe the
plan of execution of the experiments and then we will go through them in detail.

7.1.1 Proof of Concept

First, we will demonstrate that our implementation works as expected. We will do
it on exactly the same example of the MMD which we used in the theoretical part
and the same evolution commands, i.e., the example of the MMD of an e-shop
with teas. The reason for it is that we will be able to simply check the initial state
and the resulting state in the visualization tools. Plus it is easy for the reader to
replicate our steps and check them by himself/herself.

The initial state of all experimental operations with the e-shop MMD is shown
in Figure 5.6. Figure 7.1 shows the initial state of the MMD in the visualization
tools for easier comparison with the future result states. The executed operations
are the following:

� Operation add:

> add document . tea . importer = Tea_Comp.

> add r e l a t i o n a l . u s e r s . canDe l iver = true where r e l a t i o n a l . u s e r s .
address = nu l l

� Operation delete:

> de l e t e document . tea . country

� Operation rename:

> rename r e l a t i o n a l . u s e r s . name to fu l lname

90

(a) Data in the key/value
model.

(b) Data in the document
model.

(c) References in the MMD.

(d) Data in the relational model.

Figure 7.1: The MMD of an e-shop in visualization tools.

91

� Operation copy:

> copy keyValue . appVersion to document . tea

� Operation move:

> move keyValue . s e l l e r to document . tea

� Operation reference:

> re f e r e n c e document . tea . type by r e l a t i o n a l . u s e r s . favTea
> de l e t e document . tea . type

7.1.2 Real-world Data Experiments

One of the most famous real-world big data projects for experiments is the Me-
diaWiki [39] project. It is an open-source web framework with the best-known
representative Wikipedia, a world-wide popular collaborative encyclopedia. The
next one is the Internet Movie Database (IMDb) [30] � an online database of in-
formation related to world �lms, TV programs, actors, fan reviews, and ratings,
etc. Both of them are publicly accessible for non-commercial experiments and
benchmarks.

We tried to use MediaWiki data but we faced troubles with their recommended
import approach to the relational model. Based on our research it seems that there
are changes in the relational schema which are not propagated to the data dumper.
During the data import the dumper fails on the database constraints. It block us
to import it and use it as a relational model. For this reason, we have decided to
use IMDb data for our tests. The provided data are for a relational model and for
a document model so the abstract MMD for the real-world experiments contains
only two models: document and relational.

Data Preparation

The data for the relational model are available in [27] which also expains the mean-
ing of them. The data for the document model can be downloaded as is described
on [28]. We have not found any proper description of the data for document
model so let us shortly introduce the high-level structure. The document model is
represented using database movies which consists of the following collections:

� Contributor � A collection of contributors of the IMDb site.

� Movie � A collection of all movies in the IMDb data set.

� MovieDoc � A collection of documents describing movies.

92

� MovieRole � A collection of actors from movies with additional information
like, e.g., role name.

The collections contain varying structures for di�erent sub-types of entities like,
e.g., properties for movies which are not presented for series. Because of this fact,
we do not describe the structure in detail and we will go through speci�c data in
the executed examples.

An important fact is that our structure is not the original structure of the
IMDb. We used unrelated existing exports to the targeted models. As a conse-
quence, the data are duplicated in both models but it is not a complication for
our purpose. For example, in the relational model, the information about a title
are stored in the title_basics table. In the document model we can �nd similar
information about the title in the Movie collection.

We recommend readers to use the database from the proof of concept for test-
ing of the MMSEL. The reason is that the preparation of the document model
is a complex process. First, we had to set up a Unix-like virtual machine be-
cause the process of download executes a Java program with hard-coded settings.
Downloading and extraction of data to the document model took approximately
35 hours.

For the relational model we used the MariaDB and for the document model,
we used the MongoDB. To be able to use our implementation of MMSEL with
IMDb we did only changes of connection strings to both databases.

Experimental Operations

The executed operations are the followings:

93

� Operation add:

� Experiment Q1:

> add document . MovieRole . RoleAge = unknown

� Experiment Q2:

> add r e l a t i o n a l . t i t l e_ba s i c s . c oun t ry_re s t r i c t i on = nu l l
where r e l a t i o n a l . t i t l e_ba s i c s . i sAdu l t = 1

� Operation delete:

� Experiment Q3:

> de l e t e document . MovieRole . RoleAge where document .
MovieRole . Contr ibClass = mi s c e l l aneous and document .
MovieRole . __version = 1

� Experiment Q4:

> de l e t e r e l a t i o n a l . t i t l e_ba s i c s . c oun t ry_re s t r i c t i on

� Operation rename:

� Experiment Q5:

> rename document . MovieRole . RoleAge to AgeOfRole where
document . MovieRole . __version = 1

� Experiment Q6:

> rename r e l a t i o n a l . t i t l e_ba s i c s . i sAdu l t to i sR e s t r i c t e d
where r e l a t i o n a l . t i t l e_ba s i c s . genres = Adult and
r e l a t i o n a l . t i t l e_ba s i c s . __version = 2

� Operation copy:

� Experiment Q7:

> copy document . Contr ibutor . ContribBio to document .
MovieRole where document . Contr ibutor . ContribName =
document . MovieRole . ContribName

� Experiment Q9:

> copy r e l a t i o n a l . name_basics . knownForTitles to document .
MovieRole where r e l a t i o n a l . name_basics . primaryName =
document . MovieRole . ContribName

94

� Operation move:

� Experiment Q8:

> move r e l a t i o n a l . t i t l e_aka s . language to r e l a t i o n a l .
t i t l e_ba s i c s where r e l a t i o n a l . t i t l e_aka s . t i t l e I d =
r e l a t i o n a l . t i t l e_ba s i c s . t cons t

� Experiment Q10:

> move document . Contr ibutor . ContribBio to r e l a t i o n a l .
name_basics where document . Contr ibutor . _id = r e l a t i o n a l .
name_basics . primaryName

� Operation reference:

� Experiment Q11:

> re f e r e n c e r e l a t i o n a l . name_basics . primaryName by document .
Contr ibutor . ContribName

> rename document . Contr ibutor . ContribName to PrimaryName
> de l e t e r e l a t i o n a l . name_basics . primaryName

7.2 Execution of the Proof of Concept

Experiments

For each of the experiments, we will always introduce the executed operation, the
resulting state, and compare the bene�t of the usage of the MMSEL instead of a
manual migration.

add document.tea.importer = Tea_Comp.

The operation adds a new property importer to all tea entities. We expect that
the result will be the new property with value Tea_Comp. and an incremented
version property.

The result of the operation is visualized in Figure 7.2. We can see the new
property with the required value and an increased version. Now, we can compare
what is the e�ort to do it manually. This operation is an intra-model one which
means it is executed directly in the one model. One model means one database
syntax. The example of the syntax of the command is shown in Figure 7.3.

At �rst sight, we can see that the manual operation is much more complex
than the MMSEL operation. The second aspect is the manual command requires
a knowledge of the MongoDB operation language.

95

Figure 7.2: The result of add operation of new property to the document model
in visualization tool.

db . tea . f i nd () . forEach (func t i on (item) {
db . tea . update ({_id : item . _id} , { $ s e t : { importer : "Tea_Comp." }} ,

t rue , t rue) ;
db . tea . update ({ id : item . _id} , { $ inc : {__version : 1}} , t rue , t rue

) ;
}) ;

Figure 7.3: An example of code which adds new property importer to all entities
tea in the document model (MongoDB).

96

Figure 7.4: The visualization of the result of operation add of a new property to
the relational model.

ALTER TABLE `users ` ADD ` canDel iver ` VARCHAR(255) ;
UPDATE `users ` SET `users ` . ` canDel iver ` = ' t rue ' WHERE `users ` . `

address ` IS NULL;
IF NOT EXISTS(SELECT 1 FROM information_schema .COLUMNS WHERE

TABLE_NAME = ' use r s ' AND COLUMN_NAME = '__version ')
THEN

ALTER TABLE `users ` ADD `__version ` INT DEFAULT 0 ;
END IF ;

UPDATE `users ` SET `{0} ` . `__version ` = `users ` . `__version ` + 1 WHERE
`users ` . ` address ` IS NULL;

Figure 7.5: The code which adds a new property canDeliver to all entities users
in the relational model (MariaDB).

add relational.users.canDeliver = true where relational.users.address =
null

The operation adds a new property canDeliver with value true to entities of the
relational model which meet the where condition and it increases version property.

The result of the operation is visualized in Figure 7.4. The new property
appeared for an entity which meets the where condition. This is an intra-model
operation which a�ects only the relational model. Let us introduce the manual
operation in Figure 7.5.

We showed the implementation of the manual command which controls the
existence of version property. It makes the implementation more complex but
based on our experiences it is often required in an enterprise environment. The
manual solution consists of four SQL commands instead of one command in the
MMSEL. It also means that the developer has to make sure that it will be executed
in a single transaction.

delete document.tea.country

The operation removes property country for all entities tea. We expect that the
property will be removed and the version property will be incremented.

The logic is similar as the logic of operation add to the document model.
Figure 7.6 shows the result. Di�erences between manual approach and the MMSEL

97

Figure 7.6: The visualization of the result of operation delete of a property in
the document model.

db . tea . f i nd () . forEach (func t i on (item) {
db . tea . update ({_id : item . _id} , { $unset : { country : 1}} , f a l s e , t rue) ;
db . tea . update ({_id : item . _id} , { $ inc : {__version : 1}} , f a l s e , t rue) ;

}) ;

Figure 7.7: The code which removes the property country from all entities tea
in the document model (MongoDB).

are in general similar as in the case of operation add. The manual implementation
is presented in Figure 7.7.

rename relational.users.name to fullname

The operation renames property name of entity users to property fullname. The
expected result is that the column of the table users should be renamed and the
version is incremented.

Figure 7.8 shows the result of the operation and the SQL command in Figure 7.9
is the example of the manual migration operation.

The manual command is simple and it is very similar to the add command.
The whole logic is in the alter the table. But let us consider the case that we
add a where condition to the command. In the relational world, we cannot simply
alter the table because we want to preserve some data in the original column. For

98

Figure 7.8: The visualization of the result of operation rename of a property in
the relational model.

ALTER TABLE `users ` CHANGE COLUMN `name` ` ful lname ` VARCHAR(255) ;
IF NOT EXISTS(SELECT 1 FROM information_schema .COLUMNS WHERE

TABLE_NAME= ' use r s ' AND COLUMN_NAME= '__version ')
THEN

ALTER TABLE `users ` ADD `__version ` INT DEFAULT 0 ;
END IF ;
UPDATE `users ` SET `users ` . `__version`=`users ` . `__version `+1;

Figure 7.9: The code which renames property name to fullname for all entities
users in the relational model (MariaDB).

example, we will add a condition where relational.users.name = "Peter Parker".
Now the manual migration command can be seen in Figure 7.10.

After execution of this operation, both columns name and fullname co-exist.
The simple change as adding a where condition makes a manual command more
di�cult than it would seem at �rst glance. The MMSEL hides this extra logic and
a developer does not have to deal with it.

copy keyValue.appVersion to document.tea

The operation copies property appVesrion from the key/value model to all entities
tea in the document model. The operation is inter-model which means that the
data transport is handled by the multi-model engine. The expected result is that
property appVersion will appear in all entities tea in the document model. During
the operation, the property �eld should be incremented.

The result is shown in Figure 7.11 and it is matching our expectations. Let us
discuss how the manual migration can be done. We cannot introduce a code as
we did for intra-model operations, because we need a mediator which will trans-
form data between the models. This fact clearly shows one of the bene�ts of the
MMSEL.

The e�ort to create a manual migration can be describe with psedo-code in
Algorithm 7.1. The operations to get and set entities requires a knowledge of both
a�ected models.

99

ALTER TABLE `users ` ADD ` ful lname ` VARCHAR(255) ;
UPDATE `users ` SET ` ful lname `=`name` WHERE `users ` . `name`="Peter

Parker " ;
UPDATE `users ` SET `name`=nu l l WHERE `users ` . `name`="Peter Parker "
IF NOT EXISTS(SELECT 1 FROM information_schema .COLUMNS WHERE

TABLE_NAME= ' use r s ' AND COLUMN_NAME= '__version ')
THEN

ALTER TABLE `users ` ADD `__version ` INT DEFAULT 0 ;
END IF ;
UPDATE `users ` SET `users ` . `__version`=`users ` . `__version`+1 WHERE `

users ` . `name`="Peter Parker " ;

Figure 7.10: The code which renames property name to fullname for selected
entities users selected by a where condition in the relational model (MariaDB).

Figure 7.11: The visualization of the result of operation copy from the key/value
model to the document model.

100

Algorithm 7.1: An example of copy appVersion property from the key/-
value model to the document model.
read appVersion property from the key/value model;
if property exists then

foreach entity tea in the document model do
get next entity;
add property appVersion to the entity;
increment the version property;
store the entity;

move keyValue.seller to document.tea

The operation removes property seller from the key/value model and moves it to
all entities tea in the document model. It is an inter-model operation so there is
the same limitation as we discussed in case of operation copy. Figure 7.12 shows
that our implementation works and we get a correct result where the entity is
removed from key/value model and it is inserted into the document entities.

To see the idea of manual migration we introduce a pseudo-code in Algo-
rithm 7.2. The algorithm copies the property to all target entities and deletes
it when it is copied.

Algorithm 7.2: An example of move seller property from the key/value
model to the document model.
read seller property from the key/value model;
if property exists then

foreach entity tea in the document model do
get next entity;
add property seller to the entity;
increment the version property;
store the entity;

remove seller from the key/value model;

reference document.tea.type by relational.users.favTea && delete doc-
ument.tea.type

The sequence of operations reference and delete of referenced entity should end up
so that the referencing entity is removed too. Before we execute the operations we
execute operation add relational.users.favTea = 1 to add the column to the

101

(a) Data in the key/value
model.

(b) Data in the document
model.

Figure 7.12: The visualization of the result of operation move from the key/value
model to the document model.

102

Figure 7.13: The visualization of the result of operation delete of a referenced
property which was referenced from relational model.

relational model and the version property is changed to 1. We execute the reference
operation �rst and then the delete operation. Figure 7.13 shows the resulting state
of the referencing entity. We do not show the result of the referenced entity because
we have already shown that operation delete works.

In the result, we see that entities do not contain the property favTea which
means that it was removed during the processing of operation delete. Also, the
version �eld is incremented to value 2.

To be able to perform this migration manually without the MMSEL the de-
veloper has to know which property is referencing the a�ected property. In Al-
gorithm 7.3, we show a high-level pseudo-code of the manual migration. The
complexity of the algorithm is hidden in the �rst step. The step to get all a�ected
entities has to be able to get the information about references in the MMD. The
second hidden complexity is that the entities can be stored in di�erent models so
the algorithm has to distinguish between them.

Algorithm 7.3: An example of processing of delete referencing property.

get all a�ected entities;
foreach a�ected entity do

get next entity;
remove the referencing property;
increment the version property;
store the entity;

Summary of the Proof of Concept

In the mentioned examples we showed that our implementation works and follows
the de�nition of the MMSEL. On these simple examples of the e-shop MMD we
demonstrated main advantages of the MMSEL as a uni�ed language across all
models, a reference handling, a uni�ed get and put for all models, etc. We will
summarize all bene�ts in Chapter 8.

103

7.3 Execution of IMDb Data Experiments

For the real-world experiments, we decided to split them into two categories: intra-
model and inter-model. We will show both types of operations and review results
and compare the usage of the MMSEL and a manual migration.

We decided to use a di�erent approach for data preparation for real-world
experiments. We gradually change the database state instead of using a fresh in-
stance of the database before each operation. One of the reasons is the complexity
of the MMD data restore and also we can simulate real demands by application of
multiple migration operations.

We decided that we will describe experiments as real-world demands. This
approach will make bene�ts of the language more visible and readers can easier
imagine the usage of the MMSEL in practice.

For each experiment, we mention the number of a�ected entities and the num-
ber of targeted entities for each experiment. The number of a�ected entities means
the number of entities which are changed during the execution of an operation.
The number of targeted entities is the size of the set of entities which corresponds
to the change request.

For better understanding we repeat the command for each experiment and we
reference operations of each command by a shortcut Q[numer of experiment].

7.3.1 Intra-model Operations Experiments

The intra-model operations are add, delete, and rename. We choose to execute one
operation of each kind for both models and we try to simulate real-world demands.

Experiment Q1

> add document . MovieRole . RoleAge = unknown

The �rst demand is to add a new property RoleAge to all entities MovieRole
with default value unknown.

Figure 7.14 show examples of entities before and after execution of the oper-
ation. The operation targets 64,424,283 entities. Because the implementation of
the MMSEL is eager, we are modifying all entities at once which takes a couple of
minutes on the current computer setup.

Let us describe what happens during the execution of Q1 with data: All en-
tities MovieRole have added a property RoleAge with the value unknown plus an
automatically added version property with value 1. We do not present an example
of a manual migration because it is similar to migration script from the proof of
concept section.

104

(a) An example of entities before opera-
tion add.

(b) An example of entities after operation
add.

Figure 7.14: An example of the initial state of entities MovieRole and the state
after operation add.

105

(a) An example of entities before operation add.

(b) An example of entities after operation add.

Figure 7.15: An example of the initial state of entities title_baciscs and a state
after operation add.

To sum up, we add a new property to 64,424,283 entities and in advance,
we introduce a second new version property to all of them which provides us
a support for correct recovery from interrupts during the processing and zero
downtime during the data migration.

Experiment Q2

> add r e l a t i o n a l . t i t l e_ba s i c s . c oun t ry_re s t r i c t i on = nu l l where
r e l a t i o n a l . t i t l e_ba s i c s . i sAdu l t = 1

The next requirement is to prepare a database structure for restricted countries
in title_basics based on the property isAdult. The value will be �lled by application
users so we can choose a default value ourselves.

Figure 7.15 shows examples of entities before and after execution of experiment
Q2. We can see that two new expected properties appeared. The operation sets the
property country_restriction with value null to 149,636 entities where the property
isAdult is 1 and the version property is added. Actually, the null value is set to
all entities, because it is also a default value for an added column in the relational
model. Thus, the real amount of a�ected entities is 4,920,457. Developers do not
have to know this and mainly they do not have to take care of it because it is
handled by the MMSEL.

The manual migration would use the same idea as we showed in Figure 7.5.

Experiment Q3

> de l e t e document . MovieRole . RoleAge where document . MovieRole .
Contr ibClass = mi s c e l l aneous and document . MovieRole . __version = 1

Following the previous requirement for the document model, we received a
change request to remove the new property RoleAge, where ContribClass is mis-

106

Figure 7.16: The result of operation delete of property ContribClass from entities
MovieRole, where its value is miscellaneous.

cellaneous. Experiment Q3 deletes the property from all entities MovieRole, where
the condition is ful�lled and the version of the entity is 1.

Figure 7.16 presents the example of the migrated entity MovieRole against an
entity which does not correspond to the where condition. Entities are migrated
and only the a�ected entities have increased the version property. There is a
disadvantage of this approach: entities co-exist with two di�erent value of the
version property, which means we cannot execute the next migration operations
safely across all entities by its version �eld because it is not the same.

The operation deletes the property from 7,504,078 entities and it increases the
version, too.

The manual migration is a little bit di�erent than we showed before. The main
di�erence is in the where condition. An example of code which does the manual
migration is shown in Figure 7.17.

It is good to mention bene�ts of the MMSEL in this experiment. The �rst one
is a simple �ltering of targeted data without the knowledge of the MongoDB query
language. The second bene�t is the automated management of version to provide
an opportunity for safer migrations.

107

db . MovieRole . f i nd () . forEach (func t i on (item) {
db . MovieRole . update (

{_id : item . _id , Contr ibClass : "mi s c e l l aneous " , __version : 1} ,
{ $unset : {RoleAge : 1}} ,
f a l s e , t rue) ;

db . MovieRole . update (
{ id : item . _id , Contr ibClass : "m i s c e l l aneous " , __version : 1} ,
{ $ inc : {__version : 1}} ,
f a l s e , t rue) ;

}) ;

Figure 7.17: An example of code which deletes property RoleAge from all entities
MovieRole in the document model.

Figure 7.18: The result of operation delete of property country_restriction from
entities title_basics from the relational model.

Experiment Q4

> de l e t e r e l a t i o n a l . t i t l e_ba s i c s . c oun t ry_re s t r i c t i on

The added property country_restiction was not used so we received a request to
remove it from all entities. Experiment Q4 removes the property from all entities.
We added the property to entities where property isAdult is 1. There is no need to
specify it in operation delete. If the �eld is not set then there is nothing to remove
and it is safe to execute it.

The manual migration will be similar as we showed in the proof of concept (see
Section 7.2).

The result of the operation is displayed in Figure 7.18. The operation dropped
column country_restriction from the table and it changed the version property to
2. From the application perspective, we removed the property from all 4,920,457
entities.

Experiment Q5

> rename document . MovieRole . RoleAge to AgeOfRole where document .
MovieRole . __version = 1

The next experiment can happen during a data refactoring. The name of the
property RoleAge is not self-describing so we have to change it to AgeofRole. In

108

Figure 7.19: The result of operation rename of property RoleAge to AgeOfRole
for entities MovieRole from the document model.

previous examples we introduced the �eld to all MovieRole entities and then we
removed it from entities where ContribClass = miscellaneous. We have to remove
from all entities where ContribClass != miscellaneous but the MMSEL does not
support the not-equal comparison. Fortunately, it is not needed. We can execute
experiment Q5 with version 1 for all entities. The rest of entities have version 2
and do not contain the property anyway.

The manual migration will not be much di�erent than the one we showed in
the proof of concept (see Section 7.2).

Figure 7.19 shows an example of migrated entities. The picture shows both
types of entities: miscellaneous and non-miscellaneous. The �rst entity does not
contain the changed RoleAge property and the version property is unchanged.
The second type has property RoleAge changed to AgeOfRole and the version was
incremented to version 2. The value of the version property is the same in all
entities MovieRole now so next operations can use the version property for safe
execution.

The operation modi�ed all 56,920,205 targeted entities.

109

Figure 7.20: The result of operation rename of property isAdult to isRestricted
for entities title_basics from the relational model.

Experiment Q6

> rename r e l a t i o n a l . t i t l e_ba s i c s . i sAdu l t to i sR e s t r i c t e d where
r e l a t i o n a l . t i t l e_ba s i c s . genres = Adult and r e l a t i o n a l . t i t l e_ba s i c s
. __version = 2

The next experiment simulates a requirement to rename a subset of entities in
the relational model. For movies where their gender is Adult, we have to rename
property isAdult to isRestricted to make it more meaningful. Experiment Q6
renames the property for all movies with genre Adult and with the latest version.

In the database, we can also �nd movies with a genre like Adult.Comedy which
we ignore in this experiment. The MMSEL do not support substring operation
and it can be migrated with the speci�c genre string.

The manual migration will be similar to the one we showed in the proof of
concept (see Section 7.2).

In Figure 7.20 we show an example of Adult and Comedy entities. There is
a new column isRestricted which has a value only for entities Adult. The same
entities do not have value in column isAdult and they have an incremented version
property.

The operation renamed the property in 133,778 entities.

7.3.2 Inter-model Operations Experiments

The inter-model operations aremove and copy. We also include operation reference
into this section because we want to demonstrate the behavior of the inter-model
reference propagation. We execute four experiments for inter-model operations
and one experiment for references which consists of two sub-experiments.

Experiment Q7

> copy document . Contr ibutor . ContribBio to document . MovieRole where
document . Contr ibutor . ContribName = document . MovieRole . ContribName

The next requirement is to have a property ContribBio from entities Contrib-
utor in MovieRole because it is often required when MovieRole entities are loaded

110

Figure 7.21: The result of operation copy of property ContribBio from entity
Contributor to entity MovieRole in the document model.

and joining entities on each data load to get one extra property is too expensive.
The denormalization in the document model is a common habit so we choose to
copy the value. Experiment Q7 covers the described experiment. During the ex-
ecution of this operation, we found out a limitation of MongoDB which is not
able to handle big data (∼6,000,000) in distinct() operation. The error message is
"errmsg": "exception: distinct too big, 16mb cap". For that reason, we modi�ed
our implementation to limit the query to 1000 entities.

Figure 7.21 shows the result of experiment Q7. We calculated the result num-
bers of the non-modi�ed algorithm: The operation copied the property from
458,107 entities Contributor which contain the property to 23,594,251 entities
MovieRole without loading them to the application memory. The version property
for MovieRole was incremented during data processing too.

The manual migration is more complicated than migrations before so we pre-
pared an example of the manual migration for MongoDB in Figure 7.22. The
di�erent part is the implementation of the where condition. The example selects
all possible properties ContribName and matching MovieRoles and then it looks
for entities Contributor. The operation is safe because it is a 1:N relationship.

Experiment Q8

> move r e l a t i o n a l . t i t l e_aka s . language to r e l a t i o n a l . t i t l e_ba s i c s
where r e l a t i o n a l . t i t l e_aka s . t i t l e I d = r e l a t i o n a l . t i t l e_ba s i c s .
t cons t

111

db . MovieRole . f i nd ({ContribName : { $ in : db . Contr ibutor . d i s t i n c t (
ContribName) }}) . forEach (func t i on (item) {

var value = "" ;
db . Contr ibutor . f i nd ({ContribName : item . ContribName}) . forEach (

func t i on (u) { value = u . ContribBio }) ;
db . MovieRole . update ({_id : item . _id} , { $ s e t : {ContribBio : va lue } ,

$ inc : {__version : 1 } , f a l s e , t rue) ;
}) ;

Figure 7.22: An example of code which copies property ContribBio from Con-
tributor to MovieRole in the document model.

(a) An example of entities title_akas after operation move.

(b) An example of entities title_basics after operation move.

Figure 7.23: An example of the �nal state of entities title_baciscs and title_akas
after operation move.

The experiment request is to move property language from title_akas to ti-
tle_basics. Experiment Q8 a�ects a single model so it will be executed as an
intra-model operation within the model. We do not want to copy the property,
because in the relational model it is usually not required to denormalize data.

In Figure 7.23 we show the �nal state after execution of experiment Q8. The
operation moved the property from all 2,084,595 title_akas to matching entities
title_basics. It also increments the version property for both types of entities.
The whole operation is executed in the model so there is no entity loaded into the
application memory.

Figure 7.24 shows an example of the manual migration with the version prop-
erty management.

Experiment Q9

> copy r e l a t i o n a l . name_basics . knownForTitles to document . MovieRole
where r e l a t i o n a l . name_basics . primaryName = document . MovieRole .
ContribName

112

ALTER TABLE ` t i t l e_ba s i c s ` ADD ` language ` VARCHAR(255) ;
UPDATE ` t i t l e_akas ` , ` t i t l e_ba s i c s ` SET ` t i t l e_ba s i c s ` . ` language ` = `

t i t l e_akas ` . ` language ` WHERE ` t i t l e_akas ` . ` t i t l e I d `= ` t i t l e_ba s i c s
` . ` tconst ` ;

ALTER TABLE ` t i t l e_akas ` DROP ` language ` ;
IF NOT EXISTS(SELECT 1 FROM information_schema .COLUMNS WHERE

TABLE_NAME = ' t i t l e_ba s i c s ' AND COLUMN_NAME = '__version ')
THEN

ALTER TABLE ` t i t l e_ba s i c s ` ADD `__version ` INT DEFAULT 1 ;
END IF ;
IF NOT EXISTS(SELECT 1 FROM information_schema .COLUMNS WHERE

TABLE_NAME = ' t i t l e_aka s ' AND COLUMN_NAME = '__version ')
THEN

ALTER TABLE ` t i t l e_akas ` ADD `__version ` INT DEFAULT 1 ;
END IF ;
UPDATE ` t i t l e_akas ` , ` t i t l e_ba s i c s ` SET ` t i t l e_ba s i c s ` . `__version ` = `

t i t l e_ba s i c s ` . `__version ` + 1 , ` t i t l e_akas ` . `__version ` = `

t i t l e_akas ` . `__version ` + 1 WHERE ` t i t l e_akas ` . ` t i t l e ID `= `

t i t l e_ba s i c s ` . ` tconst ` ;

Figure 7.24: An example of code which moves property language from title_akas
to title_basics in the relational model.

The next experiment is a requirement to copy a property knownForTitles from
entities name_basics in the relational model toMovieRole in the document model.
To match relevant entities we use the name property as is shown in experiment
Q9. Since we used separate exports to the relational and the document models,
the property name has a di�erent format. For example, in the document model
the property name is $lim, Bee Moe and in the relational model it is Bee Moe
$lim. In this situation, we cannot map entities so we decided to manually modify
2 properties name in the relational model to be able to execute the operation. The
number of matching entities is not important for our experiments.

Figure 7.25 shows an example of the moved property. Entities contain the new
property knownForTitles and on increased version property. Since we prepared
2 entities in the relational model we modi�ed just 16 matching entities in the
document model. So the total number of modi�ed entities is 16 but the operation is
inter-model so all entities have to be loaded to the multi-model engine. The number
of loaded entities from the relational model is 8,534,771. From the document model
it has to load 64,424,283. The total number is 72,959,054 loaded entities.

In this case, the manual migration is complex and we cannot easily show a
script for it. The algorithm which we introduced in the proof of concept section
(Algorithm 7.1) is the best way how to describe it. In other words, developers
have to create a migration application which loads entities and transforms them.

113

Figure 7.25: The result of operation copy of property knownForTitles from
entities name_basics in the relational model to entity MovieRole in the document
model.

Experiment Q10

> move document . Contr ibutor . ContribBio to r e l a t i o n a l . name_basics
where document . Contr ibutor . _id = r e l a t i o n a l . name_basics .
primaryName

This experiment moves property ContribBio from entities Contributor in the
document model to entities name_basics in the relational model. In the previous
experiment we changed the name property to be able to match entities across
models and we use this matching again.

In Figure 7.26 we show the result of experiment Q10. The operation matches
two entities in the document model and two entities in the relational model. But
as we can see in the result, only one entity in the relational model contains the new
property ContribBio. It is because only one entity in the document model had the
property �lled. The operation modi�es two entities but it loads 6,693,529 entities
Contributor and 8,534,771 entities name_basics to the multi-model engine in the
application memory. The total number of loaded entities is 15,225,300 .

114

(a) An example of entities Contributor after operation move.

(b) An example of entities name_basics after operation move.

Figure 7.26: An example of the �nal state of entities name_basics and Contrib-
utor after operation move.

Experiment Q11

> re f e r e n c e r e l a t i o n a l . name_basics . primaryName by document .
Contr ibutor . ContribName

> rename document . Contr ibutor . ContribName to PrimaryName
> de l e t e r e l a t i o n a l . name_basics . primaryName

The last experiment focuses on references and it consists of two parts: renaming
and deletion. The experiment simulates a real-world scenario when we have refer-
ences in the MMD that have to evolve in time. In the experiment, we have to create
a reference from Contributor.ContibName to the relational model speci�cally to
name_basics.primaryName. The next step is renaming of property ContribName
to PrimaryName and, as the last step, we delete property primaryName from
the relational entities. That triggers deletion of property PrimaryName which is
referencing them from the document model. Experiment Q11 covers the experi-
ment and it consists of three operations. The �rst one creates the reference, the
second one changes the name of the referencing property and the last one deletes
references property.

The �rst operation does not a�ect any entities so there is no need for manual
migration. It creates a persistent reference in the reference store model. The
second operation renames property ContribName in entities Contributor. The last
operation of Q11 is the most interesting for us. If there was no reference from

115

(a) An example of a created reference.

(b) An example of automatically changed
reference after renaming the referencing
property.

(c) An example of the entity Contributor

after deletion of the referenced property.

Figure 7.27: An example of the reference usage in the MMSEL.

116

the previous steps, then it would be operation delete which we described before.
The reference makes it more complex especially for manual migration. Figure 7.27
shows the evolution of the persisted reference in the document model and an
example of entity Contributor in the �nal state after deletion of the referenced
property.

First of all, let us calculate numbers of a�ected and targeted entities of the
operation delete. From the relational model, it deletes the property from 8,534,771
entities and then the referencing property from 6,693,529 entities in the document
model (15,225,300 in total).

The problem of the manual migration is that developers have to know that
there is the inter-model reference. Otherwise the data would get to an inconsistent
state in the MMD. They have to know which models are a�ected and prepare the
appropriate migration scripts for them. The MMSEL hides this logic and takes
care of it.

Summary of Real-world Experiments

In each experiment, we have already mentioned some pros and cons of the speci�c
approaches. We do not want to duplicate this information so we will focus on their
common features.

Now, we can compare operations which would be needed in the real-world
manual scenarios against the MMSEL. In the executed experiments, we always
mentioned how a manual migration could be done. It is good to have an idea
about it, but in a real-world usage of the MMD, it is not always possible. We can
be limited for example by lack of commands for modi�cations of the speci�c model
or the model language is not well-known by the developers. For that reason, we
assume that migrations could be also executed by loading each entity to application
memory of a migration application, modi�ed, and then stored back to the MMD.

We summarize both approaches as the worst-case scenarios: (1) loading to the
application memory, and (2) the best-case scenario when developers can execute
an optimal migration script. In Table 7.1 we compare them with (3) the opti-
mized implementation of the MMSEL which delegates intra-model operations to
the a�ected model.

Let us brie�y discuss the table. Operations Q1-Q6 are intra-model and Q7-Q10
are inter-model. Operation Q11 demonstrates usage of references in the MMSEL.
For inter-model operations we do not provide information about the best-case
scenarios because properties have to be loaded and transformed into the application
memory anyway. In these cases, it would be the same as the worst-case scenarios.

For each approach, we calculated two important numbers. The �rst one is the
number of read/write operations (R/W Op.) which is a number of entities which
are required to load in the application memory to be able to execute the migration

117

O
p
er
a
ti
o
n

T
a
rg
et

E
n
t.

R/Wop.

A�ectedEnt.

R/WOp.

A�ectedEnt.

R/WOp.

A�ectedEnt.

W
o
rs
t-
ca
se

B
es
t-
ca
se

M
M
S
E
L

Q
1

64
,4
24
,2
83

64
,4
24
,2
83

64
,4
24
,2
83

0
64
,4
24
,2
83

0
64
,4
24
,2
83

Q
2

14
9,
63
6

14
9,
63
6

4,
92
0,
45
7

0
4,
92
0,
45
7

0
4,
92
0,
45
7

Q
3

7,
50
4,
07
8

7,
50
4,
07
8

7,
50
4,
07
8

0
7,
50
4,
07
8

0
7,
50
4,
07
8

Q
4

4,
92
0,
45
7

4,
92
0,
45
7

4,
92
0,
45
7

0
4,
92
0,
45
7

0
4,
92
0,
45
7

Q
5

56
,9
20
,2
05

56
,9
20
,2
05

56
,9
20
,2
05

0
56
,9
20
,2
05

0
56
,9
20
,2
05

Q
6

13
3,
77
8

13
3,
77
8

13
3,
77
8

0
13
3,
77
8

0
13
3,
77
8

Q
7

23
,5
94
,2
51

24
,0
52
,3
58

23
,5
94
,2
51

0
23
,5
94
,2
51

0
23
,5
94
,2
51

Q
8

4,
16
9,
19
0

7,
00
5,
05
2

7,
00
5,
05
2

0
7,
00
5,
05
2

0
7,
00
5,
05
2

Q
9

16
72
,9
59
,0
54

16
N
/A

N
/A

72
,9
59
,0
54

16
Q
10

2
15
,2
25
,3
00

8,
53
4,
77
1

N
/A

N
/A

15
,2
25
,3
00

8,
53
4,
77
1

Q
11

a
8,
53
4,
77
1
+

6,
69
3,
52
9b

15
,2
25
,3
00

15
,2
25
,3
00

0
15
,2
25
,3
00

0
15
,2
25
,3
00

a
N
u
m
b
er
s
fo
r
th
e
la
st

d
el
et
e
op
er
at
io
n
.

b
E
n
ti
ti
es

re
fe
re
n
ce

th
e
d
el
et
ed

p
ro
p
er
ty
.
T
h
e
re
fe
re
n
ci
n
g
p
ro
p
er
ti
es

ar
e
d
el
et
ed

d
u
ri
n
g
th
e
op
er
at
io
n
.

T
a
b
le
7
.1
:
A
su
m
m
ar
y
of

th
e
w
or
st
-c
as
e
m
an
u
al

m
ig
ra
ti
on
.

118

operation. The second one is the number of a�ected entities after execution of the
migration operation.

The table shows that all chosen approaches modify the same number of entities
which is higher than the number of target entities. It is caused by the relational
model where a new property always a�ects all entities of the kind.

In all experiments, worst-case scenarios have to load all needed entities to the
application memory. The loading of entities from the MMD to the application
memory is a very expensive operation from the performance point of view. If
developers choose a worst-case scenario, the execution will be slow no matter if it
is an intra- or an inter-model operation.

The best-case scenarios and the MMSEL scenarios execute intra-model oper-
ations directly in the a�ected model so we do not need to load entities into the
application memory. The next fact is that the best-case scenarios always hit the
minimum of a�ected entities but at the price of the complexity of the migration
script, the knowledge of the migration languages of each model, etc.

The usage of the MMSEL is much easier and in our experiments, it is as e�ective
as the best-case scenarios. But, for example, if we remove the where condition from
operation Q5, renaming is the same but the version property could be updated in
all entities and the MMSEL would be less e�ective than the best-case scenario.
We said that it could happen because the MMSEL does not specify behavior for
this use-case when an operation targets an entity without modifying the property.

To sum up, based on the result we can see that the MMSEL is much easier and
understandable for developers than the usage of the best-case scenarios and the
e�ectiveness is the same if we use the language correctly. Unlike the worst-case
scenarios, it loads entities to the application memory only when it is needed for
inter-model operations.

119

8. Conclusion

The goal of this thesis was to introduce a general approach for schema evolution in
NoSQL databases which is reasonably complex yet would cover standard evolution
requirements. We have researched, studied and evaluated a wide range of existing
technologies and researches. Based on this we focused on general schema evolution
in multi-model databases (MMDs) because have not found any existing approach
or technology for them. We chose to use an existing proposal for NoSQL document
databases (Section 3.3.1) and built our approach on top of it. We used the proposed
language as a common interface for speci�c models. This decision gave us an idea
of required operations and cornerstone for our solution but we had to accept its
restrictions and limitations as well.

The main part of our e�ort consisted of research on induction of basic set of
migration operations add, delete, rename, move, and copy for abstract model of
MMDs (Section 5.1). The model consists of a model-independent layer and a
model-speci�c layer. We introduced an idea of an extension of the multi-model
schema evolution language (MMSEL) with inter-model references (Section 5.1.4).
As a part of the solution we extended a basic approach and we optimized it so that
it delegates intra-model operations to the target models. This behavior optimizes
data transfer between model-speci�c and model-independent layers.

As the next step, we prepared an abstract prototype of the MMSEL (Chapter 6)
to demonstrate and verify its bene�ts and usage. We used MongoDB and MariaDB
for implementation of speci�c models. During the execution of experiments, we
discovered some limitation of the prototype for big data (Section 7.3.2). Experi-
mental results presented in the last chapter illustrate that, (1) the language is able
to correctly migrate all targeted entities with the optimal number of read/write
operations, (2) the syntax of our language is much simpler than manual migration
scripts, (3) it enables execution of migrations safely based on the version �eld, and
(4) the language provides an opportunity for reference management (both intra-
and inter-model references). Naturally, there is still a space for improvements and
extensions which will be discussed in the next section. However, as far as we found
out, currently, there is no other solution for the schema evolution in MMDs.

8.1 Remaining Open Challenges in Multi-model

Schema Evolution

Despite all our e�ort, there still remains space for further research, especially in
the following areas.

120

8.1.1 Query Evolution in the MMD

The inter-query evolution is one of the biggest open challenges in MMDs because
there is no uni�ed query language. Partially we touched this problem when we sug-
gested a solution of reference migration. The fact is that query migration is more
complex and complicated. It requires better case analyses and introducing of the
inter-model query language. Nowadays, Kian Win Ong, Yannis Papakonstantinou,
and Romain Vernoux introduce a query language SQL++ [56]. The language is
an extension of SQL and it uni�es query languages for a multiple SQL and NoSQL
databases. We suggest SQL++ as an adept for a uni�ed query language for MMDs
which can be used for the query evolution.

8.1.2 Schema Evolution in Graph Model

One of the possible improvements of our work can be a proper de�nition and
implementation of the DSEL. We decided to transform the graph model into the
document model. The used approach can decrease e�ectivity of graph operations
which are executed on top of the document model and ban some native graph
operations. Introducing of a solution for this open challenge can improve the
performance of schema evolution in MMDs.

8.1.3 Lazy Implementation of Multi-model Schema Evolu-
tion

Our implementations of schema evolution in MMDs is eager. It can also be im-
plemented as lazy. The bene�t of lazy approach is that we do not have to migrate
data which are not used. However, the problem of using lazy features in an uncon-
trolled manner is that we cannot predict when data are migrated and from which
version.

8.1.4 Transactions in MMDs

In general, inter-model transactions have to be managed in the model independent
layer by the multi-model engine which can delegate operations to the model speci�c
layer. Each model can provide the full support of transactions (i.e. rollbacks,
persistence, etc.). The engine should create a transaction on top of the model
speci�c layer and control execution of operations. Currently, there is no general
approach and the challenge remains open.

121

8.1.5 Reference Evolution in MMDs

We mentioned it in Section 5.1.4 that we have not �nished references completely.
We excluded chains of references which should be added to the MMSEL.

8.1.6 Validation of Operations copy and move

This is a problem inherited from the NoSQLSEL. The NoSQLSEL and MMSEL
requires relationship 1:N for operations copy and move to ensure a de�ned re-
sult. The open challenge is how to verify if entities in the executing operation
moves/copies are in the required relationship.

122

Bibliography

[1] Apache CouchDB, 2018. URL http://couchdb.apache.org/. [Online; Ac-
cessed 2-February-2018].

[2] Apache� Hadoop, 2018. URL http://hadoop.apache.org/. [Online; Ac-
cessed 2-February-2018].

[3] ArangoDB, 2018. URL https://www.arangodb.com/. [Online; Accessed 2-
February-2018].

[4] Bob Bryla and Kevin Loney. Oracle Database 12C The Complete Refer-
ence. McGraw-Hill Osborne Media, 1st edition, 2013. ISBN 0071801758,
9780071801751.

[5] BSON. Speci�cation Version 1.1, 2018. URL http://bsonspec.org/spec.

html. [Online; Accessed 2-February-2018].

[6] Peter Buneman and Atsushi Ohori. Polymorphism and type inference in
database programming. ACM Trans. Database Syst., 21(1):30�76, March
1996. ISSN 0362-5915. doi: 10.1145/227604.227609. URL http://doi.acm.

org/10.1145/227604.227609.

[7] Cassandra, 2018. URL http://cassandra.apache.org/. [Online; Accessed
2-February-2018].

[8] Cassandra Query Language, 2018. URL http://cassandra.apache.org/

doc/latest/cql/. [Online; Accessed 2-February-2018].

[9] ControVol. ControVol, 2016. URL https://sites.google.com/site/

controvolplugin/home. [Online; Accessed 18-April-2016].

[10] Couchbase, 2018. URL https://www.couchbase.com/. [Online; Accessed
2-February-2018].

[11] CrateDB, 2018. URL https://crate.io/. [Online; Accessed 2-February-
2018].

[12] Cypher Query Language, 2018. URL https://neo4j.com/developer/

cypher-query-language/. [Online; Accessed 2-February-2018].

[13] Dare Obasanjo's weblog. Building Scalable Databases: De-
normalization, the NoSQL Movement and Digg, 2018.
URL http://www.25hoursaday.com/weblog/2009/09/10/

123

http://couchdb.apache.org/
http://hadoop.apache.org/
https://www.arangodb.com/
http://bsonspec.org/spec.html
http://bsonspec.org/spec.html
http://doi.acm.org/10.1145/227604.227609
http://doi.acm.org/10.1145/227604.227609
http://cassandra.apache.org/
http://cassandra.apache.org/doc/latest/cql/
http://cassandra.apache.org/doc/latest/cql/
https://sites.google.com/site/controvolplugin/home
https://sites.google.com/site/controvolplugin/home
https://www.couchbase.com/
https://crate.io/
https://neo4j.com/developer/cypher-query-language/
https://neo4j.com/developer/cypher-query-language/
http://www.25hoursaday.com/weblog/2009/09/10/BuildingScalableDatabasesDenormalizationTheNoSQLMovementAndDigg.aspx
http://www.25hoursaday.com/weblog/2009/09/10/BuildingScalableDatabasesDenormalizationTheNoSQLMovementAndDigg.aspx

BuildingScalableDatabasesDenormalizationTheNoSQLMovementAndDigg.

aspx. [Online; Accessed 2-February-2018].

[14] DataStax, 2018. URL https://www.datastax.com/. [Online; Accessed 2-
February-2018].

[15] DB Engines. DB Engines, 2017. URL https://db-engines.com/en/

ranking. [Online; Accessed 05-May-2017].

[16] AnHai Doan, Alon Halevy, and Zachary Ives. Principles of Data Integration.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition,
2012. ISBN 0124160441, 9780124160446.

[17] ECMAScript 2017 Language Speci�cation. Ecma International, Geneva,
2018. URL http://www.ecma-international.org/publications/files/

ECMA-ST/Ecma-262.pdf. [Online; Accessed 2-February-2018].

[18] Ehcache, 2018. URL http://www.ehcache.org/. [Online; Accessed 2-
February-2018].

[19] Martin Fowler. Polyglot persistence. ONLINE, November 2011. URL https:

//martinfowler.com/bliki/PolyglotPersistence.html.

[20] Gartner. Magic Quadrant for Operational Database Management
Systems, 2018. URL https://www.gartner.com/doc/3467318/

magic-quadrant-operational-database-management. [Online; Accessed
2-February-2018].

[21] Giraph, 2018. URL http://giraph.apache.org/. [Online; Accessed 2-
February-2018].

[22] Git, 2018. URL https://git-scm.com/. [Online; Accessed 2-February-2018].

[23] Google App Engine Datastore. Google App Engine Datastore Java
API, 2016. URL https://developers.google.com/appengine/docs/java/

datastore/. [Online; Accessed 18-April-2016].

[24] James Gro� and Paul Weinberg. SQL The Complete Reference, 3rd Edition.
McGraw-Hill, Inc., New York, NY, USA, 3 edition, 2010. ISBN 0071592555,
9780071592550.

[25] HBase, 2018. URL https://hbase.apache.org/. [Online; Accessed 2-
February-2018].

124

http://www.25hoursaday.com/weblog/2009/09/10/BuildingScalableDatabasesDenormalizationTheNoSQLMovementAndDigg.aspx
http://www.25hoursaday.com/weblog/2009/09/10/BuildingScalableDatabasesDenormalizationTheNoSQLMovementAndDigg.aspx
http://www.25hoursaday.com/weblog/2009/09/10/BuildingScalableDatabasesDenormalizationTheNoSQLMovementAndDigg.aspx
https://www.datastax.com/
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ehcache.org/
https://martinfowler.com/bliki/PolyglotPersistence.html
https://martinfowler.com/bliki/PolyglotPersistence.html
https://www.gartner.com/doc/3467318/magic-quadrant-operational-database-management
https://www.gartner.com/doc/3467318/magic-quadrant-operational-database-management
http://giraph.apache.org/
https://git-scm.com/
https://developers.google.com/appengine/docs/java/datastore/
https://developers.google.com/appengine/docs/java/datastore/
https://hbase.apache.org/

[26] Hibernate OGM. Hibernate ogm, 2016. URL http://hibernate.org/ogm/.
[Online; Accessed 18-April-2016].

[27] IMDb Interfaces, 2018. URL https://www.imdb.com/interfaces/. [Online;
Accessed 2-February-2018].

[28] Importing IMDB data into MongoDB: follow the instruction of
MICHAEL HAVEY, 2018. URL http://log4idea.blogspot.cz/2015/

05/importing-imdb-data-into-mongodb-follow.html. [Online; Accessed
2-February-2018].

[29] In�nispan, 2018. URL http://infinispan.org/. [Online; Accessed 2-
February-2018].

[30] Internet Movie Database, 2018. URL http://www.imdb.com/. [Online; Ac-
cessed 2-February-2018].

[31] JSON. ECMA-404 The JSON Data Interchange Standard, 2018. URL http:

//json.org/. [Online; Accessed 2-February-2018].

[32] Matthias Kurz. Bpmn model interchange: The quest for interoperability. In
Proceedings of the 8th International Conference on Subject-oriented Business
Process Management, S-BPM '16, pages 6:1�6:10, New York, NY, USA, 2016.
ACM. ISBN 978-1-4503-4071-7. doi: 10.1145/2882879.2882886. URL http:

//doi.acm.org/10.1145/2882879.2882886.

[33] Ralf Lämmel. Google's mapreduce programming model � revisited. Science
of Computer Programming, 70(1):1 � 30, 2008. ISSN 0167-6423. doi: https://
doi.org/10.1016/j.scico.2007.07.001. URL http://www.sciencedirect.com/

science/article/pii/S0167642307001281.

[34] Jiaheng Lu and Irena Holubová. Multi-model data management: What's new
and what's next? In Volker Markl, Salvatore Orlando, Bernhard Mitschang,
Periklis Andritsos, Kai-Uwe Sattler, and Sebastian Breÿ, editors, Proceed-
ings of the 20th International Conference on Extending Database Technology,
EDBT 2017, Venice, Italy, March 21-24, 2017., pages 602�605. OpenPro-
ceedings.org, 2017. ISBN 978-3-89318-073-8. doi: 10.5441/002/edbt.2017.80.
URL http://dx.doi.org/10.5441/002/edbt.2017.80.

[35] Jiaheng Lu, Zhen Hua Liu, Pengfei Xu, and Chao Zhang. UDBMS: road to
uni�cation for multi-model data management. CoRR, abs/1612.08050, 2016.
URL http://arxiv.org/abs/1612.08050.

125

http://hibernate.org/ogm/
https://www.imdb.com/interfaces/
http://log4idea.blogspot.cz/2015/05/importing-imdb-data-into-mongodb-follow.html
http://log4idea.blogspot.cz/2015/05/importing-imdb-data-into-mongodb-follow.html
http://infinispan.org/
http://www.imdb.com/
http://json.org/
http://json.org/
http://doi.acm.org/10.1145/2882879.2882886
http://doi.acm.org/10.1145/2882879.2882886
http://www.sciencedirect.com/science/article/pii/S0167642307001281
http://www.sciencedirect.com/science/article/pii/S0167642307001281
http://dx.doi.org/10.5441/002/edbt.2017.80
http://arxiv.org/abs/1612.08050

[36] Jakub Malý, Irena Mlýnková, and Martin Ne£aský. Xml data transformations
as schema evolves. Advances in Databases and Information Systems, pages
375�388, 2011. doi: 10.1007/978-3-642-23737-9_27. URL http://dx.doi.

org/10.1007/978-3-642-23737-9_27.

[37] MariaDB, 2018. URL https://mariadb.org/. [Online; Accessed 2-February-
2018].

[38] MarkLogic, 2018. URL http://www.marklogic.com/. [Online; Accessed 2-
February-2018].

[39] MediaWiki, 2018. URL https://www.mediawiki.org/wiki/MediaWiki.
[Online; Accessed 2-February-2018].

[40] Memcached, 2018. URL https://memcached.org/. [Online; Accessed 2-
February-2018].

[41] Microsoft. Repository pattern. ONLINE, jun 2016. URL https://msdn.

microsoft.com/en-us/library/ff649690.aspx.

[42] MongoDB, 2018. URL https://www.mongodb.com/. [Online; Accessed 2-
February-2018].

[43] MongoDB Compass, 2018. URL https://www.mongodb.com/products/

compass. [Online; Accessed 2-February-2018].

[44] MongoDB Drivers, 2018. URL https://docs.mongodb.com/ecosystem/

drivers/. [Online; Accessed 2-February-2018].

[45] Mongoid, 2018. URL https://github.com/mongodb/mongoid. [Online; Ac-
cessed 2-February-2018].

[46] Mongoid Evolver, 2018. URL https://github.com/mongoid/evolver. [On-
line; Accessed 2-February-2018].

[47] MongoRepository, 2018. URL https://github.com/RobThree/

MongoRepository/. [Online; Accessed 2-February-2018].

[48] Morphia. Morphia, 2016. URL http://mongodb.github.io/morphia/. [On-
line; Accessed 18-April-2016].

[49] MySQL Workbench, 2018. URL https://www.mysql.com/products/

workbench/. [Online; Accessed 2-February-2018].

[50] MySql.Data, 2018. URL https://www.nuget.org/packages/MySql.Data/.
[Online; Accessed 2-February-2018].

126

http://dx.doi.org/10.1007/978-3-642-23737-9_27
http://dx.doi.org/10.1007/978-3-642-23737-9_27
https://mariadb.org/
http://www.marklogic.com/
https://www.mediawiki.org/wiki/MediaWiki
https://memcached.org/
https://msdn.microsoft.com/en-us/library/ff649690.aspx
https://msdn.microsoft.com/en-us/library/ff649690.aspx
https://www.mongodb.com/
https://www.mongodb.com/products/compass
https://www.mongodb.com/products/compass
https://docs.mongodb.com/ecosystem/drivers/
https://docs.mongodb.com/ecosystem/drivers/
https://github.com/mongodb/mongoid
https://github.com/mongoid/evolver
https://github.com/RobThree/MongoRepository/
https://github.com/RobThree/MongoRepository/
http://mongodb.github.io/morphia/
https://www.mysql.com/products/workbench/
https://www.mysql.com/products/workbench/
https://www.nuget.org/packages/MySql.Data/

[51] Martin Ne£aský, Jakub Klímek, Jakub Malý, and Irena Mlýnková. Evolu-
tion and change management of xml-based systems. Journal of Systems and
Software, 85(3):683 � 707, 2012. ISSN 0164-1212. doi: http://dx.doi.org/
10.1016/j.jss.2011.09.038. URL http://www.sciencedirect.com/science/

article/pii/S0164121211002524. Novel approaches in the design and im-
plementation of systems/software architecture.

[52] Neo4j, 2018. URL https://neo4j.com/. [Online; Accessed 2-February-2018].

[53] .NET Framework. Microsoft .NET Framework 4.6.2, 2018. URL https:

//www.visualstudio.com/vs. [Online; Accessed 2-February-2018].

[54] NoSQL Databases, 2018. URL http://nosql-database.org/. [Online; Ac-
cessed 2-February-2018].

[55] Objectify AppEngine. Migrating schemas. https://github.com/

objectify/objectify/wiki/SchemaMigration/, 2016. [Online; Accessed
18-April-2016].

[56] Kian Win Ong, Yannis Papakonstantinou, and Romain Vernoux. The sql++
semi-structured data model and query language: A capabilities survey of sql-
on-hadoop, nosql and newsql databases. 05 2014.

[57] OrientDB, 2018. URL http://orientdb.com/orientdb/. [Online; Accessed
2-February-2018].

[58] Marek Polák, Martin Chytil, Karel Jakubec, Vladimír Kudelas, Peter Pi-
ják, Martin Ne£aský, and Irena Holubová. Data and query adaptation us-
ing daemonx. COMPUTING AND INFORMATICS, 34(1), 2015. URL
http://www.cai.sk/ojs/index.php/cai/article/view/2040.

[59] RavenDB. Denormalized References, 2018. URL https://ravendb.net/

docs/article-page/2.5/csharp/faq/denormalized-references. [Online;
Accessed 2-February-2018].

[60] Redis, 2018. URL https://redis.io/. [Online; Accessed 2-February-2018].

[61] Pramod J. Sadalage and Martin Fowler. NoSQL Distilled: A Brief
Guide to the Emerging World of Polyglot Persistence. Addison-
Wesley Professional, 2012. ISBN 0321826620. URL http://www.

amazon.com/NoSQL-Distilled-Emerging-Polyglot-Persistence/

dp/0321826620%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%

3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%

3D165953%26creativeASIN%3D0321826620.

127

http://www.sciencedirect.com/science/article/pii/S0164121211002524
http://www.sciencedirect.com/science/article/pii/S0164121211002524
https://neo4j.com/
https://www.visualstudio.com/vs
https://www.visualstudio.com/vs
http://nosql-database.org/
https://github.com/objectify/objectify/wiki/SchemaMigration/
https://github.com/objectify/objectify/wiki/SchemaMigration/
http://orientdb.com/orientdb/
http://www.cai.sk/ojs/index.php/cai/article/view/2040
https://ravendb.net/docs/article-page/2.5/csharp/faq/denormalized-references
https://ravendb.net/docs/article-page/2.5/csharp/faq/denormalized-references
https://redis.io/
http://www.amazon.com/NoSQL-Distilled-Emerging-Polyglot-Persistence/dp/0321826620%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0321826620
http://www.amazon.com/NoSQL-Distilled-Emerging-Polyglot-Persistence/dp/0321826620%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0321826620
http://www.amazon.com/NoSQL-Distilled-Emerging-Polyglot-Persistence/dp/0321826620%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0321826620
http://www.amazon.com/NoSQL-Distilled-Emerging-Polyglot-Persistence/dp/0321826620%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0321826620
http://www.amazon.com/NoSQL-Distilled-Emerging-Polyglot-Persistence/dp/0321826620%3FSubscriptionId%3D0JYN1NVW651KCA56C102%26tag%3Dtechkie-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0321826620

[62] Karla Saur, Tudor Dumitras, and Michael W. Hicks. Evolving nosql databases
without downtime. CoRR, abs/1506.08800, 2015. URL http://arxiv.org/

abs/1506.08800.

[63] S. Scherzinger, M. Klettke, and U. Störl. Managing Schema Evolution in
NoSQL Data Stores. ArXiv e-prints, August 2013.

[64] Stefanie Scherzinger, Thomas Cerqueus, and Eduardo Cunha de Almeida.
Controvol: A framework for controlled schema evolution in nosql applica-
tion development. In Johannes Gehrke, Wolfgang Lehner, Kyuseok Shim,
Sang Kyun Cha, and Guy M. Lohman, editors, 31st IEEE International Con-
ference on Data Engineering, ICDE 2015, Seoul, South Korea, April 13-17,
2015, pages 1464�1467. IEEE Computer Society, 2015. ISBN 978-1-4799-
7964-6. doi: 10.1109/ICDE.2015.7113402. URL http://dx.doi.org/10.

1109/ICDE.2015.7113402.

[65] Stefanie Scherzinger, Meike Klettke, and Uta Störl. Cleager: Eager schema
evolution in nosql document stores. In BTW, pages 659�662, 2015.

[66] Stefanie Scherzinger, Uta Störl, and Meike Klettke. A datalog-based protocol
for lazy data migration in agile nosql application development. In Proceed-
ings of the 15th Symposium on Database Programming Languages, DBPL
2015, pages 41�44, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-
3902-5. doi: 10.1145/2815072.2815078. URL http://doi.acm.org/10.1145/

2815072.2815078.

[67] Michael Sperberg-McQueen, Tim Bray, François Yergeau, Eve Maler, and
Jean Paoli. Extensible markup language (XML) 1.0 (�fth edition). W3C
recommendation, W3C, November 2008. http://www.w3.org/TR/2008/REC-
xml-20081126/.

[68] S. Tiwari. Professional NoSQL. EBL-Schweitzer. Wiley, 2011. ISBN
9781118167809. URL https://books.google.cz/books?id=tv5iO9MnObUC.

[69] Visual Studio IDE. Visual Studio Community 2017, 2018. URL https:

//www.visualstudio.com/vs. [Online; Accessed 2-February-2018].

[70] Priscilla Walmsley. XQuery. O'Reilly Media, Inc., 2007. ISBN 0596006349.

[71] XSEM, 2018. URL http://scripts.sil.org/cms/scripts/page.php?

site_id=nrsi&id=xsem. [Online; Accessed 2-February-2018].

128

http://arxiv.org/abs/1506.08800
http://arxiv.org/abs/1506.08800
http://dx.doi.org/10.1109/ICDE.2015.7113402
http://dx.doi.org/10.1109/ICDE.2015.7113402
http://doi.acm.org/10.1145/2815072.2815078
http://doi.acm.org/10.1145/2815072.2815078
https://books.google.cz/books?id=tv5iO9MnObUC
https://www.visualstudio.com/vs
https://www.visualstudio.com/vs
http://scripts.sil.org/cms/scripts/page.php?site_id=nrsi&id=xsem
http://scripts.sil.org/cms/scripts/page.php?site_id=nrsi&id=xsem

List of Figures

2.1 XML Example . 6
2.2 JSON Example . 7
2.3 Second meaning of column-family databases de�nition. 10

3.1 Example of data transformation for AppUser entity in Objectify. . . 14
3.2 Example of moving �elds for AppUser entity in Objectify. 15
3.3 Example of a MongoRepository entity object. 17
3.4 Example of a MongoRepository repository object. 18
3.5 Syntax of the NoSQLSEL in EBNF. 21
3.6 NoSQL Database Programming Language [63] 24
3.7 The Java class which represents entity Person. 25
3.8 The implementation of @AlsoLoad in the NoSQLDPL. 26
3.9 Residual rules for migrations declared in the schema evolution lan-

guage . 30
3.10 Java object mapper class Player with property level. 31
3.11 Java object mapper class Player with property rank. 32
3.12 Java object mapper class Player with property level renamed to rank. 33
3.13 Control Flow for Redis and KVolve 34
3.14 Example of update function for JSON for KVolve 35
3.15 Adding a property in the CLeager console and the MapReduce job

for adding the property . 37
3.16 A �ve-level XML evolution architecture of DaemonX and eXolutio.

The picture also shows scope of both Xcase and DaemonX frameworks. 38
3.17 The most used database engines [15] 44

4.1 An example of data model for an e-shop application 45
4.2 A diagram of both types of MMDs. 47
4.3 Schema of layer-based MMD with support of key/value, relational,

graph, document and column models. 48

5.1 An example of model of eshop design in DaemonX [58]. 52
5.2 An example of representation of a graph model in the document

model. 54
5.3 Interaction diagram of add, delete and rename operations. 58
5.4 Interaction diagram of move and copy operations. 59
5.5 Syntax of MMSEL in EBNF. 60
5.6 An example of multi-model storage for a web application. 62
5.7 Functions of the MMDPL for managing data models (Part 1) 69

129

5.8 Functions of the MMDPL (Part 2) 70
5.9 Functions of the MMDPL (Part 3) 71
5.10 Extension of the MMSEL in EBNF with references. 80
5.11 Functions for management of references in the MMDPL. 83

7.1 The MMD of an e-shop in visualization tools. 91
7.2 The result of add operation of new property to the document model

in visualization tool. 96
7.3 An example of code which adds new property importer to all entities

tea in the document model (MongoDB). 96
7.4 The visualization of the result of operation add of a new property

to the relational model. 97
7.5 The code which adds a new property canDeliver to all entities users

in the relational model (MariaDB). 97
7.6 The visualization of the result of operation delete of a property in

the document model. 98
7.7 The code which removes the property country from all entities tea

in the document model (MongoDB). 98
7.8 The visualization of the result of operation rename of a property in

the relational model. 99
7.9 The code which renames property name to fullname for all entities

users in the relational model (MariaDB). 99
7.10 The code which renames property name to fullname for selected

entities users selected by a where condition in the relational model
(MariaDB). 100

7.11 The visualization of the result of operation copy from the key/value
model to the document model. 100

7.12 The visualization of the result of operation move from the key/value
model to the document model. 102

7.13 The visualization of the result of operation delete of a referenced
property which was referenced from relational model. 103

7.14 An example of the initial state of entities MovieRole and the state
after operation add. 105

7.15 An example of the initial state of entities title_baciscs and a state
after operation add. 106

7.16 The result of operation delete of property ContribClass from entities
MovieRole, where its value is miscellaneous. 107

7.17 An example of code which deletes property RoleAge from all entities
MovieRole in the document model. 108

7.18 The result of operation delete of property country_restriction from
entities title_basics from the relational model. 108

130

7.19 The result of operation rename of property RoleAge to AgeOfRole
for entities MovieRole from the document model. 109

7.20 The result of operation rename of property isAdult to isRestricted
for entities title_basics from the relational model. 110

7.21 The result of operation copy of property ContribBio from entity
Contributor to entity MovieRole in the document model. 111

7.22 An example of code which copies property ContribBio from Con-
tributor to MovieRole in the document model. 112

7.23 An example of the �nal state of entities title_baciscs and title_akas
after operation move. 112

7.24 An example of code which moves property language from title_akas
to title_basics in the relational model. 113

7.25 The result of operation copy of property knownForTitles from en-
tities name_basics in the relational model to entity MovieRole in
the document model. 114

7.26 An example of the �nal state of entities name_basics and Contrib-
utor after operation move. 115

7.27 An example of the reference usage in the MMSEL. 116

131

List of Tables

3.1 Supported databases for ODMs. 19
3.2 Schema evolution function for ODMs. 20

4.1 Examples of MMDs with the supported models. 49

7.1 A summary of the worst-case manual migration. 118

132

List of Algorithms

5.1 Implementation of NoSQL schema evolution operations add, delete,
and rename for the document and column models [63]. 65

5.2 Implementation of NoSQL schema evolution operations move, and
copy for the document and column models [63]. 66

5.3 Implementation of NoSQL schema evolution operations add, delete,
and rename for the key/value model. 67

5.4 Implementation of NoSQL schema evolution operations move and
copy for the key/value model. 68

5.5 Intra-model operation add of MMSEL 72
5.6 Operations delete and rename of the MMSEL 73
5.7 Operations move and copy of the MMSEL 74
5.8 Optimized operations of the MMSEL (Part 1) 76
5.9 Optimized operations of the MMSEL (Part 2) 77
5.10 Operation reference of the MMSEL and for reference evolution. . . . 84
5.11 Modi�ed operation rename of the MMSEL for reference evolution. . 85
5.12 Modi�ed operation delete of the MMSEL for reference evolution. . . 86
5.13 Modi�ed operation move of the MMSEL for reference evolution. . . . 87

7.1 An example of copy appVersion property from the key/value model
to the document model. 101

7.2 An example of move seller property from the key/value model to the
document model. 101

7.3 An example of processing of delete referencing property. 103

133

A. Attachments

A.1 DVD Content

This thesis contains an attached DVD with the source code of the prototype of
the MMSEL, an electronic version of this document, and database exports of the
initial state of the abstract MMD for the proof of concept experiments. The disc
contains the following directories:

� doc � contains this text in PDF format,

� exports � contains exported data from initial state of the MMD from the
proof of concept experiments,

� MultiModelSchemaEvolution � contains the complete source code in the form
of a solution in Visual Studio 2017.

134

	Introduction
	Structure of the Thesis

	Definitions, Terms and Used Technologies
	XML
	JSON and BSON
	NoSQL Databases
	Key/value Databases
	Document Databases
	Column-Family Databases
	Graph Databases
	Data Model and Query Model

	Existing Approaches and Technologies
	Basic Approach
	NoSQL Schema Evolution in Standard ORM
	Objectify
	Morphia
	Hibernate OGM
	MongoRepository
	Mongoid Evolver

	Managing Schema Evolution in NoSQL Data Stores
	NoSQL Schema Evolution Language
	NoSQL Database Programming Language
	NoSQL Schema Evolution Strategies

	Datalog-Based Protocol for Lazy Data Migration
	Datalog-Based Model
	Data Migration Protocols

	ControVol
	Schema Migration Warnings
	Quick Fixes
	Recognized Annotations

	KVolve
	CLeager
	Schema Evolution in XML-based Databases
	DaemonX Framework

	Summary
	Target Database of the Schema Evolution
	Timing of the Schema Evolution
	Provided Functionalities for Schema Evolution
	General Approach

	Multi-model Databases
	Architecture of MMD
	Examples of MMDs
	Pros and Cons
	Open Challenges for MMDs

	Our Approach
	Schema Evolution in MMDs
	Operations for Schema Evolution in MMDs
	Multi-model Schema Evolution Language
	Semantics of the MMSEL
	Reference Evolution in MMDs

	Implementation
	Third Party Tools and Technologies
	Architecture
	Model-independent Layer
	Model-specific Layer
	Database Layer

	Application Usage

	Experiments
	Experiment Plan
	Proof of Concept
	Real-world Data Experiments

	Execution of the Proof of Concept Experiments
	Execution of IMDb Data Experiments
	Intra-model Operations Experiments
	Inter-model Operations Experiments

	Conclusion
	Remaining Open Challenges in Multi-model Schema Evolution
	Query Evolution in the MMD
	Schema Evolution in Graph Model
	Lazy Implementation of Multi-model Schema Evolution
	Transactions in MMDs
	Reference Evolution in MMDs
	Validation of Operations copy and move

	Bibliography
	List of Figures
	List of Tables
	Attachments
	DVD Content

