
Charles University in Prague
Faculty of Mathematics and Physics

MASTER THESIS

Martin Svoboda

Processing of Incorrect XML Data

Department of Software Engineering

Supervisor: RNDr. Irena Mlýnková, Ph.D.

Study Program: Software Systems

2010

I would like to thank my supervisor RNDr. Irena Mlýnková, Ph.D. for provided
advices, reviews of thesis working versions and text corrections.

Rád bych poděkoval mé vedoućı RNDr. Ireně Mlýnkové, Ph.D. za poskytnuté
rady, připomı́nky k pracovńım verźım práce a textové korektury.

I hereby declare that I have elaborated this master thesis on my own and listed
all used references. I agree with making this thesis publicly available.

Prohlašuji, že jsem svou diplomovou práci napsal samostatně a výhradně s pou-
žit́ım citovaných pramen̊u. Dále souhlaśım se zap̊ujčováńım této práce a jej́ım
zveřejňováńım.

In Prague on July 1, 2010 Martin Svoboda
V Praze dne 1. srpna 2010

2

Contents

1 Introduction 6

2 Preliminaries 10
2.1 Extensible Markup Language 10

2.1.1 Model of Documents . 11
2.1.2 Schema Languages . 14

2.2 Regular Expressions . 15
2.2.1 Glushkov Automaton . 16

2.3 Regular Tree Grammars . 19
2.3.1 Data Trees Validity . 20
2.3.2 Grammar Classes . 21

2.4 Document Type Definition . 22
2.4.1 Schema Translation . 22

2.5 XML Schema . 24
2.5.1 Schema Translation . 25

3 Analysis 31
3.1 General Aspects . 31
3.2 Existing Implementations . 35
3.3 Theoretical Research . 36

3.3.1 Incremental Validation and Correction 36
3.3.2 Validity Sensitive Querying 41
3.3.3 Correctors for XML Data 43
3.3.4 Repairs and Consistent Answers 44
3.3.5 Repairing Documents using Chase 45

4 Corrections 46
4.1 Framework Concept . 46
4.2 Edit Operations . 50

4.2.1 Edit Operations for Nodes 52
4.2.2 Edit Operations for Attributes 56
4.2.3 Costs and Sequences of Operations 57

4.3 Update Operations . 59
4.3.1 Elementary Update Operations 60
4.3.2 Complex Update Operations 61
4.3.3 Costs and Sequences of Operations 65

3

4.4 Correction Intents . 68
4.4.1 Grammar Context . 69
4.4.2 Repairing Instructions and Repairs 71
4.4.3 Correction of Data Trees 74

4.5 Correction Multigraphs . 83
4.5.1 Exploration Multigraph 83
4.5.2 Correction Multigraph 86
4.5.3 Repairing Multigraph . 87
4.5.4 Repairs Construction . 89

4.6 Repairs Presentation . 90
4.6.1 Repairs for Nodes and Attributes 91
4.6.2 Repairs for Sequences and Intents 94

4.7 Correction Algorithms . 98
4.7.1 Naive Correction Algorithm 99
4.7.2 Dynamic Correction Algorithm 103
4.7.3 Caching Correction Algorithm 103
4.7.4 Incremental Correction Algorithm 106

5 Conclusion 120

A Content of CD 124

4

Název práce: Zpracováńı nekorektńıch XML dat
Autor: Bc. Martin Svoboda
Katedra: Katedra softwarového inženýrstv́ı
Vedoućı diplomové práce: RNDr. Irena Mlýnková, Ph.D.
E-mail vedoućıho: irena.mlynkova@ksi.mff.cuni.cz

Abstrakt:
XML dokumenty a technologie reprezentuj́ı široce akceptovaný standard

pro správu a výměnu semistrukturovaných dat. Překvapivě vysoký počet XML
dokument̊u však obsahuje chyby dobré formovanosti, strukturálńı validity nebo
nekonzistence dat. Ćılem této práce je analýza existuj́ıćıch př́ıstup̊u vedoućı
k návrhu nového korekčńıho systému. Představený model zahrnuje opravy
element̊u a atribut̊u v̊uči jednotypovým stromovým gramatikám. Pr̊uchodem
stavového prostoru automatu na rozpoznáváńı regulárńıch výraz̊u jsme vždy
schopni nalézt všechny minimálńı opravy. Tyto opravy jsou kompaktně repre-
zentovány rekurzivńımi multigrafy, které se daj́ı přeložit do konkrétńıch se-
kvenćı editačńıch operaćı modifikuj́ıćıch datové stromy. Navrženy byly čtyři
konkrétńı algoritmy doplněné o prototypovou implementaci a experimentálńı
výsledky. Nejv́ıce efektivńı algoritmus heuristicky sleduje pouze perspektivńı
směry oprav a bráńı jakýmkoli opakovaným výpočt̊um.

Kĺıčová slova: XML, validita, opravy.

Title: Processing of Incorrect XML Data
Author: Bc. Martin Svoboda
Department: Department of Software Engineering
Supervisor: RNDr. Irena Mlýnková, Ph.D.
Supervisor’s e-mail address: irena.mlynkova@ksi.mff.cuni.cz

Abstract:
XML documents and related technologies represent widely accepted stan-

dard for managing and exchanging semi-structured data. However, surprisingly
high number of XML documents is affected by well-formedness errors, struc-
tural invalidity or data inconsistencies. The aim of this thesis is the analysis
of existing approaches resulting to the proposal of a new correction frame-
work. The introduced model involves repairs of elements and attributes with
respect to single type tree grammars. Via the inspection of the state space of
an automaton recognising regular expressions, we are always able to find all
minimal repairs. These repairs are compactly represented by recursively nested
multigraphs, which can be translated to particular sequences of edit operations
altering data trees. We have proposed four particular algorithms and provided
the prototype implementation supplemented with experimental results. The
most efficient algorithm heuristically follows only perspective repair directions
and avoids repeated computations using the caching mechanism.

Keywords: XML, validity, corrections.

5

Chapter 1

Introduction

XML documents [18] and related technologies constitute without any doubt
an integral part of the contemporary Word Wide Web. They are used for data
interchange, sharing knowledge, other means of communication or for storing
semi-structured data. The Web is already not only an extensive repository for
unstructured pages, it is a web of data, web of services and its slowly moving
towards semantic web or a web of linked data.

Technologies around the XML format are often treated as a standard for
development of outlined directions of the web growth. As a consequence, we can
be witnessing the XML usage explosion. However, this process is automatically
attended with the presence of various forms of incorrect or damaged XML data.

We can detect several miscellaneous reasons causing these unwanted situa-
tions and according to [37], the number of documents with errors is surprisingly
high. These errors can cause the given documents are not well formed, they do
not conform to the required structure or have inconsistencies in data values.

Anyway these errors represent at least obstructions and may completely
prevent successful processing. Generally we can modify existing algorithms
to cope with these problems, or we can introduce a framework for proposing
suitable corrections.

Problem Specification

This thesis focuses on the problem of the structural invalidity of XML docu-
ments. This means that we assume the inspected documents are well formed
and constitute trees. However, these trees do not conform to the structure
declared by a provided schema written in DTD [18] or XML Schema [53] lan-
guages.

Schema languages have generally different abilities and expressive power to
restrict structure of data trees. Although there exist other languages like Relax
NG [43] or Schematron [45], we will work only with schemata at the level of
single type tree grammars [38].

These grammars are able to describe allowed XML trees by specifying per-
mitted nesting of elements, their content via regular expressions or required
presence of attributes.

6

The overall purpose of this work is the proposal of a correction framework
capable to detect validity violations and propose suitable repairs close to the
original trees.

Thesis Objectives

The proposed correction framework is based especially on two existing ap-
proaches presented in papers [14, 48].

The former one deals with the incremental correction problem, which is
extended by finding local structural corrections. Suppose that we are provided
a valid XML document which is later on updated by a sequence of edit op-
erations. The resulting tree may not be valid, thus the proposed algorithm
processes the tree in a bottom up manner and whenever it comes across a
locally invalid node, it attempts to propose its corrections.

These repairs are gathered during the dynamic traversal of the state space
of a finite automaton for recognising words of the language defined by a pro-
vided regular expression describing an allowed content model. However, this
involves the inefficient generation of word by word, repeatedly invoked identical
computations and the inability to find any repair under not rare circumstances.

The latter named paper works with the similar concept of local corrections,
however, its primary purpose is to introduce a framework for querying poten-
tially invalid XML databases. Contrary to the previous approach authors do
not generate words successively, but statically construct a restoration graph
describing all possible suitable repairs at once in a compact structure. Al-
though we can efficiently represent repairs as shortest paths, the introduced
set of operations is not sufficient and there are several other related problems.

Considering these two existing approaches we will harness their interesting
ideas and deal with determined disadvantages.

We attempt to introduce a correction algorithm that will be always able to
efficiently find repairs, will consider higher class from the hierarchy of regular
tree grammars and, finally, that will have wider set of allowed trivial trans-
forming operations.

Approach Concept

We consider the class of single type tree grammars. Therefore, we are able to
process not only a DTD schema as do both presented existing approaches, but
we can also encompass nearly all constructs from XML Schema language. As a
consequence we have decided to process the provided invalid XML document
from its root towards leaf nodes. This way brings the transparent working with
contexts. Furthermore, we take attribute corrections into account too.

Tree modifications are realised via elementary edit operations, through
which we can add a new leaf or internal node into a tree, remove an existing one
or change a label of a node. Composing these edit operations into sequences
we can define more complex update operations for insertions of new subtrees,
deletions of existing ones, pushing sibling nodes one level lower or pulling them

7

one level higher. Each of these transformations is assigned a non-negative cost
and using it we can measure distances between trees and grammars.

For each node in a tree we construct a repairing multigraph, which contains
all found repairs with a minimal cost. These repairs are compactly represented
in a form of shortest paths. However, there are several ways how we can con-
struct these multigraphs. Thus we have introduced four correction algorithms,
starting with the naive one and ending with the most efficient one.

As a consequence, we actually do not need to consider all possible correction
intents in each situation, but we directly follow only those directions, which
seem to be perspective in each moment of the algorithm execution. This means
that we are not forced to fully evaluate all possible ways of correction and
even more. Using the introduced mechanism of caching we are never forced
to compute any repair repeatedly. The algorithm behaves lazily even to the
depth, meaning that we are able to incrementally give precision to estimated
costs of repairs and follow only the perspective ways starting by the correction
of the root node and moving towards leaf nodes.

Finally, the presented approach is able under any circumstances compute
all minimal repairs, in which we differ to approach in [14].

Related Work

As a key aspect of any correction framework we can probably determine the
selection of operations, through which we are able to transform invalid trees
into valid. This problem has a rather close connection to measuring similarities
between XML documents or between a document and a schema. The former
case is presented in [42, 23], for the latter case there exist papers [41, 49, 54].

We have already listed the most common schema languages for restricting
content of XML documents. However, a schema may not always be consistent,
for example it may enforce an infinite recursion. This problem is discussed in
[4, 35]. Having a consistent schema we can represent it and detect validity using
several theoretical models. The most common are probably tree automata
[40, 38], or we can choose from automata for extended context free grammars
[33] or visibly pushdown automata [2].

The problem of detecting validity is studied for example in [47, 20, 34, 46].
All these papers especially focus on the problem of validating streaming XML
data. The special category of validation is the incremental validation, dealing
with originally valid documents that are partially updated by the user [5, 12,
15]. Similarly we can put attention to attributes validation as authors in [11]
or to validate keys and foreign keys [13].

Authors in [19, 16] extended the incremental validation by proposing repairs
for locally invalid nodes and thus introduced the framework for structural
repairs. Another work on correcting validity is presented in [44, 9]. Corrections
of integrity constraints such as functional dependencies, keys and foreign keys
are discussed in [27, 28, 51, 52].

The purpose of correction frameworks, however, needs not be only the
generation of suitable repairs. Authors in [48] attempted to extend the standard

8

model of query evaluation in order to retrieve more information from invalid
documents. Finally, we can mention work [1], where the authors introduced a
model for working with partially incomplete or missing XML data.

Thesis Organization

Chapter 2 introduces the essential formal definitions for modelling XML trees,
working with regular expressions and characterisation of regular tree gram-
mars with introduction of their classes. Finally, we will provide mechanism for
translation of DTD or XML Schema constructs into tree grammars.

In Chapter 3 we first discuss several general aspects and questions that
are crucial for proposing frameworks working with incorrect XML data. Next,
we will shortly introduce existing software projects for correction of HTML
documents. The last section of this chapter concerns on the detailed discussion
of existing theoretical approaches for correcting structural validity or integrity
constraints in XML documents.

The main part of this thesis is represented by Chapter 4, where we com-
pletely introduce the formal framework and correction algorithms proposed in
this work. The attention will be first put on sets of permitted elementary edit
operations and then complex update operations, which are used for XML trees
transformations. Next sections will be dedicated to the detailed description of
correction strategies represented by correction intents and ways of finding,
gathering and composing best suitable repairs using multigraphs model and
shortest paths in them. Finally, we will in detail present four correction algo-
rithms with different level of reached efficiency.

Chapter 5 concludes this thesis giving a brief overview of advantages and
disadvantages of the proposed framework including potential directions of the
future work.

9

Chapter 2

Preliminaries

The primary goal of this work is to propose a correction routine for XML doc-
uments capable of suggesting repairs for such documents, that do not conform
to the structural restrictions given by a provided schema written in DTD or
XML Schema languages.

Therefore our main interest during the inspection of a provided XML doc-
ument lies in studying the structure of a tree, the given document represents.
We are also interested in the presence of compulsory or optional attributes,
but our goal is not to manipulate textual values of elements or attributes. Our
general view of XML documents is significantly simplified and we ignore every
allowed construct, which is not directly connected with our approach to the
correction.

The first section of this chapter presents this adjusted notion of XML docu-
ments. In order to provide a formal framework for our proposal, we then follow
with two sections providing required knowledge from the domain of regular ex-
pressions and regular tree grammars. The chapter is concluded by two another
sections, which describe the most important steps of DTD or XML Schema
translation into our concept of single type tree grammars.

2.1 Extensible Markup Language

XML documents [17, 18] play without any doubt an important role in the data
interchange especially over the Internet. However, we can find several causes,
which can lead to various types of damages.

Our main intent is to inspect provided XML documents as trees that should
be valid with respect to a given set of structural restrictions. These constraints
are in our case defined by tree grammars. Since we are not interested in a plenty
of technical details of the XML specification, we will simplify the model of these
trees in order to provide more suitable framework adjusted to our concern.

10

2.1.1 Model of Documents

The main idea of the construction of our XML trees is based on the prefix
numbering schema over the set of non-negative integers. Trees themselves are
in fact not trees, but sets of nodes. These nodes are numbered by the mentioned
schema and thus we can sense the tree itself implicitly due to the numbering.
Before we can formally introduce this notion, we first need to define several
required string operations and relations.

Processing of Strings

The following definition introduces the concatenation and Kleene star opera-
tions over strings.

Definition 2.1 (String Operations). Let u = u1.u2 . . . um and v = v1.v2 . . . vn
be two words over an alphabet X, i.e. ui ∈ X for ∀i ∈ N, 1 ≤ i ≤ m and vj ∈ X
for ∀j ∈ N, 1 ≤ j ≤ n and some m,n ∈ N0. We suppose that ϵ is considered to
be a special symbol for the empty word.

We define string concatenation by u.v = u1 . . . um.v1 . . . vn.
Assume that S ⊆ X is a set of symbols from an alphabet X. Given S0 =

{ϵ} and inductively Si+1 = {v.s | v ∈ Si and s ∈ S} for i ∈ N0, we define S∗

=
∪

i∈N0
Si as a set of all words over symbols from S.

Let L be a set of words over an alphabet X. Given L0 = {ϵ} and induc-
tively Li+1 = {v.s | v ∈ Li and s ∈ L} for i ∈ N0, we analogously define L∗

=
∪

i∈N0
Li as the smallest set which contains ϵ and which is closed under the

string concatenation operation.

In order to easily work with our model of XML trees, we need to define
two essential relations. The first one will be used to implicitly construct the
structure of XML trees and the second one orders nodes of such trees built
over the prefix numbering schema.

Definition 2.2 (Prefix Relation). Let L be a language over an alphabet X, i.e.
L is a set of words over X. We define prefix relation ≼ as a binary relation
in L. For u, v ∈ L we say that u ≼ v if u.w = v for some w ∈ L.

A set D ⊆ L is closed under prefixes, if for ∀u, v ∈ L such that u ≼ v,
v ∈ D implies u ∈ D.

The relation ≼ is reflexive, antisymmetric and transitive.

Definition 2.3 (Partial order relation). Assume that u = u1.u2 . . . um, v =
v1.v2 . . . vn ∈ N∗

0 for some m, n ∈ N0. We define the partial order relation
≤ for words over an alphabet N0 this way: u ≤ v if and only if ∃c ∈ N0,
0 ≤ c ≤ min(m,n), ∀k ∈ N, 1 ≤ k ≤ c: uk = vk and uc+1 ≤ vc+1 in case of
c < min(m,n) or m ≤ n if c = min(m,n).

11

Underlying Trees

The underlying tree, simply called a tree, is a structure, which formally corre-
sponds to a set of words over an alphabet of non-negative integers, but using
the prefix relation we can implicitly view such set as an ordinary tree with one
designated node called root.

Definition 2.4 (Tree). Let N∗
0 be the set of all finite words over the set of

non-negative integers N0. A set D ⊂ N∗
0 is a tree, if both following conditions

hold:

• D is closed under prefixes.

• For ∀u ∈ N∗
0 and ∀j ∈ N0, if u.j ∈ D then for ∀i ∈ N0, 0 ≤ i ≤ j, also

u.i ∈ D.

Elements of D are called nodes and references also as positions or ad-
dresses. We say that D is an empty tree, if D = ∅. Otherwise the given tree
must contain at least the root node, i.e. node ϵ.

The set of leaves of D is defined as LeafNodes(D) = {u | u ∈ D and
¬∃i ∈ N0 such that u.i ∈ D}.

Given a node u ∈ D we define a fan-out of node u (fanOut(u)) as n ∈
N0 such that u.(n− 1) ∈ D and ¬∃n′ ∈ N, n′ > n− 1 such that u.n′ ∈ D. If
u.0 /∈ D, we put n = 0.

Finally, we define depth of a node to be a function D → N such that
depth(ϵ) = 1 and for ∀u ∈ D, u ̸= ϵ, u = v.i for some v ∈ N∗

0 and i ∈ N0:
depth(u) = depth(v) + 1.

For technical reasons we also need to introduce the notion of a subtree, since
it is not true, that using the previous definition we can follow the widespread
idea automatically considering a subtree as a tree. This problem can be easily
rectified by trimming addresses of nodes.

Definition 2.5 (Subtree). Let D be a tree and p ∈ D its node. We denote by
Dp the subtree whose root is at position p, i.e. Dp = {r | r ∈ D and ∃s ∈ N∗

0 :
r = p.s}. Node p stands for a root of the given subtree.

Since Dp is not a tree, we define Dtree
p as a tree resulting from corresponding

subtree Dp. Formally Dtree
p = {s | s ∈ N∗

0 and p.s ∈ Dp}.

Data Trees for Modeling XML

We consider XML documents as trees that are ordered and unranked. These
trees are constituted from nodes representing elements and nodes represent-
ing data values located in elements. Constructs like processing instructions,
namespaces, entities or notations are completely ignored in our framework.
Attributes are modelled using a function over element nodes, thus attributes
do not directly influence the structure of a tree.

12

We assume that names for elements and attributes, as well as data values of
attributes and textual values of elements, do not play an important role in our
correction approach, thus we will always suppose, that we have three special
domains E, A and V. The former one is a set of all names for elements, the
latter one stands for a set of all attribute names and, finally, the last domain
is a set of all data values for both attributes and data nodes.

Definition 2.6 (Data Tree). Let D be a tree, V a domain for data values, E a
domain of element labels (i.e. set of distinct element names) and analogously
A a domain of attribute names.

Tuple T = (D, lab, val, att) is a data tree, if all following conditions are
satisfied:

• lab is a labelling function D → E ∪ {data}, where data /∈ E is a special
symbol for labelling data nodes.

– Data nodes are those nodes p ∈ D, for which lab(p) = data.

– If p is a data node, then p ∈ LeafNodes(D).

– The set of all data nodes in D is denoted by DataNodes(D).

• val is a partial function D → V ∪ {⊥} assigning values to data nodes,
where ⊥ /∈ V is a special symbol for marking an undefined value. This
function is not defined on nodes that are not data nodes.

• att is a partial function assigning a set of pairs of the form (name, value)
to p ∈ D, where name ∈ A and value ∈ V ∪ {⊥}.

– This function is not defined on data nodes. In other cases the func-
tion is defined, but the set of pairs may be empty.

– Whenever (n1, v1), (n2, v2) ∈ att(p) for n1, n2 ∈ A, v1, v2 ∈ V
and any p ∈ D, then either n1 ̸= n2 or concurrently n1 = n2 and
v1 = v2.

Finally, we define functions labelsDomain and attsDomain returning ac-
tive domains for node labels and attribute names used in a given data tree.
Formally labelsDomain(D) = {e | e ∈ E and ∃p ∈ D, lab(p) = e} and
attsDomain(D) = {a | a ∈ A and ∃p ∈ D, ∃v ∈ V, (a, v) ∈ att(p)}.

XML documents are modelled using data trees. Each data tree is in fact
an ordinary underlying tree with the prefix numbering, which is enriched by
three functions representing labels of element nodes, values of data nodes and
sets of existing attributes assigned to particular element nodes.

Definition 2.7 (Data Subtree). Given a data tree T = (D, lab, val, att) and
a node p ∈ D, we define Tp = (Dp, labp, valp, attp) to be a data subtree of the
tree T , where:

• Dp is a subtree of D rooted at position p,

13

• for each function f ∈ {lab, val, att}: if f(p.u) is defined, then fp(p.u) =
f(p.u), where u ∈ N∗

0.

Analogously to the underlying subtrees, we define T tree
p = (Dtree

p , labtreep ,
valtreep , atttreep) to be a data tree resulting from the data subtree Tp, where:

• Dtree
p is a tree resulting from the subtree Dtree

p ,

• for each function f ∈ {lab, val, att}: if fp(p.u) is defined, then f tree
p (u)

= fp(p.u), where u ∈ N∗
0.

The definition of the data subtree directly follows the idea of the subtree
of its underlying tree.

Definition 2.8 (Data Trees Equivalence). Assume that T1 = (D1, lab1, val1,
att1) and T2 = (D2, lab2, val2, att2) are two data trees. We define a relation
equivalence ≡ on data trees: T1 ≡ T2 if and only if D1 = D2, lab1 = lab2, val1
= val2 and att1 = att2. In such case we say, that T1 and T2 are equivalent.

Two data trees are equivalent, if all their components are equivalent. It is
not surprising, that the relation ≡ on data trees is reflexive, symmetric and
transitive.

Data Trees Construction

In our correction model we suppose, that XML documents to be corrected are
well formed. This generally means, that we can assume the well-formedness as
it is defined in [18], but we can relax it only on constructs, that are accounted
in our model. Thus we only consider restrictions on elements, attributes and
generally on the structure of an XML tree.

Having such XML document, we can easily construct its data tree using
for example a SAX parser [36] or parsers based on [25]. Processing the tree
from top to down, we create for each element a new node in a constructed data
tree. Derived functions over nodes are easy to define and all other content of
the given XML document is ignored.

2.1.2 Schema Languages

We start with a short overview of a several languages for creating specifications
of schemata the given XML documents should conform to.

• Document Type Definition [18]. The specification of this language is
an integral part of the XML specification itself. It provides basic ways
how to restrain the structure of documents, describing especially the
allowed nesting of elements or sets of compulsory or optional attributes.

• XML Schema [53]. This schema language can be considered as an ex-
tension of DTD. Ignoring constructs that we do not handle in this the-
sis, we have for example better possibilities to define content model of

14

elements. The expressive power is approximately at the level of single
type tree grammars. The own schema is written as an ordinary XML
document, which can be concurrently treated as an advantage and dis-
advantage.

• Relax NG [43]. Another example of a schema language for XML, which
is based on patterns. It introduces an XML syntax and a compact syntax,
has an extended support for restriction of element content and can be
used in conjunction with data types from XML Schema.

• Schematron [45]. This framework allows creating schemata, that are
not built on tree grammars. Its concept is based on finding patterns in
parsed documents and using two main constructs assert and report, we
can specify restrictions the given documents should respect.

In this thesis only DTD an XML Schema languages will be considered and
even only on the level of single type tree grammars, as it will be explained
later in this chapter.

2.2 Regular Expressions

The basic way how we can restrain structure of an XML tree is to enforce only
allowed sequences of child nodes for nodes in a tree. This can be done using
regular expressions.

Definition 2.9 (Regular Expression). Let Σ be a finite nonempty alphabet and
S = {∅, ϵ, |, ., ∗, (,)} are special symbols such that Σ ∩ S = ∅. We inductively
define a regular expression over Σ as a word in alphabet Σ ∪ S:

• Each of the following is a primitive regular expression:

– ∅
– ϵ

– x for ∀x ∈ Σ

• Assume that r1 and r2 are regular expressions that have already been
defined. Then each of the following is a compound regular expression:

– (r1|r2)
– (r1.r2)

– r1
∗

The set of all regular expressions over Σ is denoted by RE(Σ).
Having an expression r = r1, . . . , rn as a word over Σ∪S for some n ∈ N0,

we define symbols to be a function RE(Σ) → P(Σ) such that symbols(r) =
{ri | ri ∈ Σ for i ∈ N0, 1 ≤ i ≤ n}.

15

In order to simplify the notation of regular expressions, we usually adopt
several conventions. We can for example omit outer parentheses or parenthe-
ses around . and | due to the associativity. Sometimes we omit . and define
priorities of operators.

Sometimes it is useful to extend the basic set of operators with ? or +. The
former one stands for r? = (r|ϵ), the latter one r+ = (r.r∗). In our approach
we will not integrate these operators into the regular expression definition and
if needed, we will translate these operators into the basic set using provided
formulae.

Definition 2.10 (Regular Expression Evaluation). Let r be a regular expres-
sion over an alphabet Σ. We define the value of r as a regular language L(r)
inductively:

• Evaluation of primitive regular expressions:

– If r ≡ ∅, then L(r) = ∅
– If r ≡ ϵ, then L(r) = {ϵ}
– If r ≡ x for x ∈ Σ, then L(r) = {x}

• Evaluation of compound regular expressions:

– If r ≡ (r1|r2), then L(r) = L(r1) ∪ L(r2)

– If r ≡ (r1.r2), then L(r) = L(r1).L(r2)

– If r ≡ r1
∗, then L(r) = (L(r1))

∗

Each regular expression thus represents a regular language over a given
alphabet. Both DTD and XML Schema use regular expressions to limit allowed
sequences of child nodes in XML trees. If the sequence of child nodes belongs to
the language defined by a provided regular expression called content model, it is
treated as an allowed sequence. The only problem is that we cannot generally
build these words and expressions over an alphabet of element names. This
topic will be in detail discussed in Section 2.3.

2.2.1 Glushkov Automaton

We have already defined regular expressions and their value. Now we will focus
the problem of recognising words of a language generated by a given regular
expression. Assume that a schema for a given XML document defines a content
model for a specified node, i.e. we are provided a regular expression and we
have to decide, whether the word created from the sequence of child nodes
belongs to the language of such regular expression.

For this purpose we can utilise finite automata. The nondeterministic vari-
ant is used for example in [48], the deterministic variant in [5, 20]. In our work
we have chosen the Glushkov automaton. States of this automaton correspond
to positions of a given regular expression and transitions connect those posi-
tions that can be consecutive in words generated by that expression.

16

Before we can introduce the notion of the Glushkov automaton, we need
to define positions in a regular expression. This auxiliary notion allows us to
define 1-unambiguous regular expressions and we will also need it in order to
construct the required automaton.

Definition 2.11 (Marked Regular Expression). Let r be a regular expression
over an alphabet Σ. We define marked regular expression r′ as a regular ex-
pression over an alphabet Σ′, where:

• Σ′ = {xi | ∀x ∈ Σ and ∀i ∈ N, 1 ≤ i ≤ count(r, x), xi is a symbol x
with a subscript i}, where count(r, x) is the overall number of symbol x
occurrences in the expression r.

• Items of Σ′ are called marked symbols. We define sym(x′) as a function
Σ′ → Σ by the formula sym(xi) = x.

• We define r′ to be the adjusted expression r, where all occurrences of
symbol x are replaced by xi for ∀x ∈ Σ and some xi ∈ Σ′ only ensuring,
that whenever xj, xk ∈ Σ′ are two different occurrences in the expression
r′, necessarily j ̸= k.

If we have a regular expression, a corresponding marked regular expression
is derived from the original one by adding subscripts to all occurrences of
symbols from the original alphabet in order to distinguish occurrences of the
same original symbols. This is in other words the last condition in the previous
definition.

Although the particular algorithm of indexing symbols is not presented, we
only have to ensure uniqueness of all symbols. One way how to add such sub-
scripts to symbols is to create a continuous numbering sequence from natural
numbers for each original symbol separately, marking that symbols from the
left to the right.

It is easy to see, that a marked regular expression can be seen as a regular
expression over a marked alphabet.

Definition 2.12 (1-unambiguous Regular Expressions). Assume that r is a
regular expression over an alphabet Σ and r′ is a derived marked regular ex-
pression over an alphabet Σ′. We say that r is 1-unambiguous if and only if
for all words u, v, w ∈ (Σ′)∗ and all marked symbols x, y ∈ Σ′ such that x ̸= y
whenever u.x.v, u.y.w ∈ L(r′), then sym(x) ̸= sym(y).

If a regular expression is 1-unambiguous, the processed input string, which
is to be recognised, can be uniquely matched only with a look ahead of one
character.

Definition 2.13 (Glushkov Automaton). The Glushkov automaton for a reg-
ular expression r over an alphabet Σ is a nondeterministic finite automaton
Ar = (Q, Σ, δ, q0, F), where

• Q = Σ′ ∪ {q0} is a set of states,

17

• Σ is the original alphabet standing for input symbols,

• δ is a partial transition function Q× Σ→ P(Q) such that:

– δ(q0, a) = {x | x ∈ first(r) and sym(x) = a} for ∀a ∈ Σ,

– δ(q, a) = {x | x ∈ follow(r, q) and sym(x) = a} for ∀q ∈ Σ′ and
∀a ∈ Σ,

• q0 ∈ Q is the initial state,

• F ⊆ Q is a set of output states such that:

– if ϵ ∈ L(r) then F = last(r) ∪ {q0},
– otherwise F = last(r).

Having the transition function δ we can define an extended transition func-
tion δ∗: Q× Σ∗ → P(Q), where ∀w ∈ Σ∗ we define δ∗(q, w) to be:

• If w = ϵ, then δ∗(q, w) = {q}.

• If w = a.v for a ∈ Σ and v ∈ Σ∗, then δ∗(q, w) =
∪

q′∈δ(q,a) δ
∗(q′, v).

For each q ∈ Q we define reachable(q) = {q′ | ∃w ∈ Σ∗, q′ ∈ δ∗(q, w)} to
be a set of all states reachable from q.

Auxiliary functions first, follow and last are defined as follows:

• first is a function RE(Σ)→ P(Σ′) assigning a set of all marked symbols,
that can appear as the first symbol in some word in language L(r′) for a
given regular expression r,

• follow is a function RE(Σ)× Σ′ → P(Σ′) assigning a set of all marked
symbols, that can appear immediately after a given symbol in some word
in language L(r′),

• last is a function RE(Σ) → P(Σ′) assigning a set of all marked symbols,
that can appear as the last symbol in some word in language L(r′).

It can be shown, that a language recognised by the Glushkov automaton
constructed for a given regular expression corresponds to the language of such
regular expression. Moreover the Glushkov automaton is deterministic if and
only if the given regular expression is 1-unambiguous. Therefore, if we have 1-
unambiguous regular expression, the transition function of the corresponding
automaton assigns to each state and symbol pair at most one state.

18

2.3 Regular Tree Grammars

Although XML documents are naturally represented as ordinary strings, we
should rather comprehend this form of representation only as a serialisation
of an XML tree. This is because XML data in fact stand for semi structured
data, not a monolithic string.

From the same point of view we should use tree grammars to describe
allowed XML trees instead of using context free grammars. However, this string
approach is frequently used for example by [47, 5, 33]. Similarly another string
approach is based on visibly pushdown languages and automata [2, 34, 46] as
well as we can find papers using regular hedge grammars [54].

The purpose of this section is to introduce a notion of a regular tree gram-
mar and its derived classes. Even though we can base our definitions on [38],
the provided formal system is modified in order to support also description of
attributes.

Definition 2.14 (Regular Tree Grammar). A regular tree grammar is a tuple
G = (N, T,A, S, P), where:

• N is a finite set of nonterminal symbols,

• T is a finite set of terminal symbols,

• S is a set of starting symbols, where S ⊆ N

• T is a finite set of production rules of the form [a, C, O, r → n], where

– a ∈ T is a terminal symbol,

– C ⊆ A is a set of required attributes,

– O ⊆ A is a set of optional attributes,

– r is a 1-unambiguous regular expression over an alphabet N ,

– n ∈ N is nonterminal symbol.

If [a1, C1, O1, r1 → n] and [a2, C2, O2, r2 → n] are two production rules,
then necessarily a1 ̸= a2.

Without loss of generality, we assume that no two production rules from a
given grammar have concurrently the same terminal symbol a and the same
nonterminal symbol n on the right-hand side of the rule. This restriction is
expressed by the last condition in the definition. If there should be such two
consistent rules, they can be merged together into a single rule.

Informally let us have a data tree and a regular tree grammar to which the
given tree should conform. In order to verify this conformity, we can process
the tree in a top-down manner, i.e. a selected node is processed after its parent
is already processed. The regular expression restricts the suitable sequences
of children whereas sets of attributes enforce the presence of attributes. If all
conditions are satisfied and a label of a given node corresponds to a terminal

19

symbol, the given node can be assigned with a nonterminal symbol from used
production rule.

Probably a more frequent formalism for XML schemata are variations of
tree automata. This approach is used for example by [12, 15, 16], the basic
overview of tree automata can be found in [40]. Approaches using tree au-
tomata are in fact very close to our grammars. Since we cannot directly use
the mechanism of an automaton and we need to modify validation algorithm
itself, we have chosen the grammar approach, although we will use production
rules rather for validation than generation purposes.

2.3.1 Data Trees Validity

Now we will define the validity of a data tree with respect to a given regular
tree grammar. The first step of this effort is an interpretation tree notion.

Definition 2.15 (Interpretation Tree). Let T = (D, lab, val, att) be a data
tree and G = (N, T,A, S, P) is a regular tree grammar. An interpretation tree
of a tree T against grammar G is a tuple N = (D, int), where

• D is the original underlying tree,

• int is a function D → N mapping nodes to nonterminals and satisfying
the following conditions:

– For each node e ∈ D and its child nodes e1, . . . , ei for some i ∈ N0,
there exists a rule [a, C, O, r → n] in the set of production rules P
such that:

· int(e) = n,

· lab(e) = a,

· ∀t ∈ C, ∃(t, v) ∈ att(e) for some v ∈ V,
· ∀(t, v) ∈ att(e), t ∈ C or t ∈ O, where v ∈ V,
· int(e0).int(e1) . . . int(ei) ∈ L(r).

– If e is the root node, then int(e) ∈ S.

Given data tree is valid with respect to a provided grammar, if there exists
at least its one interpretation.

Definition 2.16 (Data Tree Validity). We say that a data tree T = (D, lab,
val, att) is valid against a regular tree grammar G = (N , T , A, S, P), if there
exists at least one interpretation N of T against G.

A set of trees is a regular tree language, if all trees in this set are valid
against some regular tree grammar and no other trees are valid.

The goal of our correction algorithm is to correct a provided data tree in
order to acquire another not too distant data tree that is valid against a given
schema. This algorithm works step by step through the original data tree, thus
we can use the following definition of local validity to gracefully describe the
local working of our algorithm.

20

Definition 2.17 (Local Validity). Assume that T = (D, lab, val, att) is a data
tree, p ∈ D is a node and G = (N, T,A, S, P) is a regular tree grammar. We
say, that p is locally valid, if T tree

p is valid with only one exception, that if
p ̸= ϵ, we do not insist on the last partial condition of validity, thus we do not
require that int(ϵ) ∈ S.

2.3.2 Grammar Classes

The main problem of validation against regular tree grammars is caused by
competing nonterminal symbols.

Definition 2.18 (Competing Nonterminals). Let G = (N, T,A, S, P) be a
regular tree grammar and n1, n2 ∈ N , n1 ̸= n2 are two different nonterminal
symbols. We say that n1 and n2 are competing with each other, if there exist
two production rules [a, C1, O1, r1 → n1] and [a, C2, O2, r2 → n2] sharing the
same terminal symbol a.

Assume that we have a data tree and its node e with lab(e) = a. This label
corresponds to an equivalent terminal symbol (a), but if there are competing
nonterminal symbols having this terminal on their left-hand sides, we do not
know, which of these rules to chose and, therefore, which unique nonterminal
symbol should be assigned to the given node.

We will next introduce two classes of regular tree grammars with limited
nonterminals competition. The local tree grammar is the most restricted one,
the single type tree grammar is less restricted. In [38] or other papers we can
also find the definition of restrained competition tree grammar as another class,
but for our purposes this class is not relevant.

Definition 2.19 (Local Tree Grammar). A regular tree grammar is a local
tree grammar, if it has no competing nonterminal symbols. A set of trees is a
local tree language, if all trees in this set are valid for some local tree grammar
and no other trees are valid.

Definition 2.20 (Single Type Tree Grammar). A regular tree grammar G =
(N , T , A, S, P) is a single type tree grammar, if both following conditions
hold:

• For each production rule [a, C, O, r → n] all nonterminal symbols in r
do not compete with each other,

• Starting nonterminal symbols in S do not compete with each other.

A set of trees is a single type tree language, if all trees in this set are valid
for some single type tree grammar and no other trees are valid.

Any local tree grammar is necessarily a single type tree grammar. This im-
plies directly from the given classes definitions. Providing particular examples
it could be proven, that some regular tree grammars are not single type and

21

analogously that some single type tree grammars are not local ones. Similar
conclusions can be derived for corresponding tree languages classes.

In other words local tree grammars have strictly less expressive power than
single type tree grammars and these grammars have strictly less expressive
power than regular tree grammars.

Following the propositions presented in [38], any data tree has at least
one interpretation against a local tree grammar or against a single type tree
grammar. As a consequence, if a given data tree is valid with respect to some
grammar of those two types, there exists right one interpretation of a given
data tree.

2.4 Document Type Definition

A Document Type Definition [18], abbreviated as a DTD, is a simple schema
language for restricting content of XML documents. Its specification was in-
troduced as a direct part of the Extensible Markup Language recommendation
and this tight binding also results in a fact, that a DTD schema can be an
integral part of a given XML document.

A DTD schema language allows describing the structure of an XML docu-
ment, focusing in particular on nesting of elements and presence of attributes.
Although this language can declare as well other types of constraints and dec-
larations, e.g. notations, we are interested only in elements and attributes,
since our model of XML documents is simplified too.

As shown in [38] the expressive power of a DTD is at the level of a local
tree grammar. The detailed description of schema translation into a grammar
will be shown in the next subsection. The basic idea is however hidden in
a fact that element names directly correspond to their nonterminal symbols.
Thus there can be no competing nonterminal symbols and thus the derived
grammar is a local tree grammar.

2.4.1 Schema Translation

Inspired by [11] we will now show how constructs from a DTD schema can be
translated into a grammar rules from Definition 2.14.

Formally we want to derive G = (N, T,A, S, P) grammar, therefore we need
to define individual sets of symbols and the set of production rules.

Root Element

In order to simplify our notation, we will not bother with precise white spaces
notion and we will only use simple blank character. Each DTD schema there-
fore has the form:

<!DOCTYPE RootElement [ListOfSpecifications] >

22

Item RootElement represents the name of the outermost element, i.e. the label
of the root element of an XML document conforming to a given DTD. Be-
cause no other outermost element names are not allowed, we can define S =
{RootElement}.

Item ListOfSpecifications contains individual specifications for element and
attributes definitions. Both of them are discussed in the following paragraphs.

Element Declarations

An element declaration has the following form:

<!ELEMENT ElementName
(EMPTY | ANY | ElementContent | MixedContent) >

Item ElementName defines the name of an element the given declaration de-
scribes. There are generally four different types of content, which is permitted
in a given element. In our work we will only consider ElementContent, EMPTY
and #PCDATA, which is the simpliest case of MixedContent.

For each element declaration in a given DTD we insert ElementName into
a set N of nonterminals and also into a set T of terminals. This correspondence
between terminal and nonterminal symbols causes the resulting grammar to
be a local tree grammar as discussed earlier.

Model ElementContent allows specifying a regular expression describing
permitted sequences of child elements, the processed element can have nested
inside. Since these expressions may contain in addition to standard operators
also ? and + operators, we translate them first. All regular expressions have to
be 1-unambiguous.

For an element declaration with element content, we add a production rule
of the form

[ElementName, ∅, ∅, r → ElementName]

into a set P . In this case r is a adjusted regular expression corresponding to
ElementContent.

For an element declaration with only a textual content, i.e. #PCDATA as the
case of MixedContent, we add a production rule of the form

[ElementName, ∅, ∅, data → ElementName]

into a set P . Symbol data is a special distinct nonterminal symbol for data
nodes, as introduced in Definition 2.6. Hence, we need to insert it both in N
and T sets of symbols and also we need to add rule of the form

[data, ∅, ∅, ∅ → data]

into a set P . Using this rule we are able to recognise data nodes.

23

Attribute Declarations

An attribute declaration has the following form:

<!ATTLIST ElementName SetOfAttributes >

It declares a set of attributes, that can appear inside an ElementName element.
If a given DTD has no specification for ElementName element itself, we can
ignore such attribute declaration.

Each individual attribute declaration in SetOfAttributes has the form:

AttributeName AttributeType AttributeDefaults

Item AttributeName defines an attribute name and AttributeType chooses one
of the allowed attribute types from the predefined set or represents an enumer-
ation of values defined by the user. Since we are not interested in attributes
typing, we only need to discuss AttributeDefaults, which tailors the presence
of attributes themselves inside elements.

Let [ElementName, C, O, r → ElementName] be a production rule from
P corresponding to ElementName. In case of #REQUIRED we add AttributeName
into a set C and in case of #IMPLIED, #FIXED or in case with specified attribute
default value we add AttributeName into a set O.

In all cases we also add AttributeName into a set A of all attribute names
defined in a given DTD.

Other Declarations

Declarations of entities or notations are ignored, because we are only interested
in structural schema constraints on elements nesting and presence of attributes.

2.5 XML Schema

An XML Schema language proposed in [26, 53, 6] is another example of rep-
resentative language for writing schemata for XML documents. Its expressive
power is mainly within the single type tree grammar class, but some constructs
violate restrictions of this class. As in [38] we will ignore these constructs and,
therefore, we are not forced to use the most general form of validation algo-
rithm for regular tree grammars.

The considered constructs are especially element, attribute, attribute-
Group, complexType, simpleType, group, all, choice and sequence. On the
other hand we will ignore constructs like annotation, any, anyAttribute or
integrity constraints like keys.

The essential difference between DTD and XML Schema is that in XML
Schema nonterminal and terminal symbols do not correspond to each other.
Therefore we gained more possibilities how to express structural constraints
on elements and attributes.

We will however not discuss all constructs in detail, since it would be out
of the scope of this work. The purpose of this section is thus not to provide

24

a complete and formal framework for XML Schema translation into a tree
grammar.

2.5.1 Schema Translation

Our goal is to transform a given XML Schema document into a G = (N , T ,
A, S, P) grammar. This involves definition of listed sets of symbols and a the
set of production rules.

Although we will not specify any prefix for names in the following examples,
we expect that names of schema components are from the standard XML
Schema namespace.

Element Declarations

A declaration of element can appear directly in schema or nested somewhere
in complexType, i.e. under a particular all, choice or sequence construct.
The former case represents globally defined elements, the latter locally defined
elements.

As discussed previously, content model of elements depends on a context,
i.e. terminal and nonterminal symbols are not equivalent and cannot be directly
derived from only element names themselves.

A type of a given element is declared either by a specification of named
type in a type property, or by an anonymous type declaration using nested
simpleType or complexType.

<element
name="ElementName"
type="ElementType"
ref="ElementReference"
minOccurs="MinOccurs"
maxOccurs="MaxOccurs"

>
(simpleType|complexType)

</element>

Declarations of complexType are either named explicitly by the user or we
assume that the anonymous ones can be associated with a unique name using
some provider. These names can be based for example on sequential numbering
or an adoption and adjustment of names of superior element declarations.

For each element declaration we define corresponding nonterminal sym-
bol as ElementNonterminal = ElementName.@.ContextName, where Con-
textName is equal to global for globally defined elements and TypeName of
corresponding complexType for locally defined ones, whether this name was
defined explicitly or automatically assigned. We only suppose that @ is a char-
acter not allowed in names of XML Schema components and that global

cannot conflict with remaining names TypeName.

25

We are now ready to formulate required production rule for a given element
declaration. We first add ElementName into a set T of terminal symbols and
ElementNonterminal into a set N of nonterminal symbols. Finally, we add a
rule of the form

[ElementName, C, O, r → ElementNonterminal]

into a set P of production rules. Sets of attributes C and O are initialized to
empty sets and content model r is derived from an element type. Mechanisms
of all these derivations will be the subject of the following paragraphs.

If ref is present, we adopt target element declaration of name Elemen-
tReference. In this case we use target ElementName as a terminal symbol, but
for the derivation of a nonterminal symbol we use the local context, not target
context.

Root Elements

Any element that is globally declared in a schema may be used as a root
element of an XML document valid with respect to a given schema.

<schema>
<element name="ElementName" .../>
. . .

</schema>

Since ElementName.@global is a nonterminal symbol associated with such
element with name ElementName, we add this nonterminal symbol into a set
S of starting symbols of the grammar.

Attribute Declarations

An attribute declaration can appear either in attributeGroup or complex-
Type. Each of these constructs in fact represents a set of such attribute decla-
rations and via an anonymous or named type this set is finally associated to
an element declaration.

Hence, let [ElementName, C, O, r → ElementNonterminal] be a cor-
responding production rule from the set P of the grammar. ElementName
represents a name (terminal symbol) for a processed element and Element-
Nonterminal a corresponding nonterminal symbol. Now we are provided a set
of attribute declarations. Each of them is of the form:

<attribute
name="AttributeName"
ref="AttributeReference"
use="AttributeUsage"

>
(simpleType)?

</attribute>

26

We first add AttributeName into a set A of attribute names. If AttributeUsage
is equal to required, then this attribute is required and we therefore add
AttributeName into a set C. If it is optional, we extend a set O. Otherwise
we do nothing, since we do not handle prohibited alternative.

If the declaration contains ref property, we simply adopt the referenced
attribute declaration, i.e. globally declared attribute with a name AttributeRef-
erence. Properties type, default, fixed and others are not interesting for our
work.

Attribute Groups

As described ealier, attributeGroup directly or indirectly represents a set
of attribute declarations. These declarations are finally associated with a
particular element declaration.

<attributeGroup
name="GroupName"
ref="GroupReference"

>
(attribute|attributeGroup)∗

</attributeGroup>

If a property ref is present, we simply adopt referenced attribute group,
i.e. globally declared group with a name corresponding to GroupReference.

Simple and Complex Types

A declaration of complexType can appear as a global definition in schema or
locally within element declaration.

<complexType
name="TypeName"
mixed="MixedContent"

>
(simpleContent) | (complexContent) | (

(group|all|choice|sequence)?,
(attribute|attributeGroup)∗

)
</complexType>

The only thing we need to do is to gather a content model specification and
a set of attribute declarations from subordinated constructs. When a particular
type is assigned to an element declaration, all required steps are performed
to translate declarations into a grammar rule.

If we are processing complexType, we propagate a regular expression over
nonterminal symbols. This expression is composed from subordinated group,
all, choice and sequence constructs.

27

In case of simpleType declaration, we propagate data as the only nonter-
minal symbol of the content model. In order to recognize data elements, we
finally need to add a special rule

[data, ∅, ∅, ∅ → data]

into a set P of production rules. The symbol data is a special distinct nonter-
minal symbol for data nodes, as introduced in Definition 2.6. Hence, we need
to insert it both in N and T sets of symbols.

Restriction and Extension

Constructs extension and restriction are used within simpleContent and
complexContent declarations. The particular usage conditions depend on the
context. Since we are not interested in simple types and we treat data values as
not distinguished data nodes, we only need to gather and later on propagate
untouched declarations of attributes or in latter case a content model as well.

<simpleContent|complexContent>
(restriction|extension)

</simpleContent|complexContent>

Model Groups

At first we need to create a mechanism for the translation of values minOccurs
and maxOccurs into appropriate operators and subexpressions of regular ex-
pressions describing content models.

Let r be a regular expression corresponding to the nested constructs such
as element, group, all, choice or sequence.

If maxOccurs is equal to unbounded and if minOccurs is equal to i ∈ N0,
then the resulting regular expression is equal to (r)i.r

∗, where (r)i is the con-
catenation of i times repeated r.

If maxOccurs is equal to j ∈ N0 and minOccurs to i ∈ N0, then the resulting
expression is equal to (r)i.(r|ϵ)(j−i). We assume that i and j represents a valid
range.

<group
name="GroupName"
ref="GroupReference"
minOccurs="MinOccurs"
maxOccurs="MaxOccurs"

>
(all|choice|sequence)?

</group>

If a ref is used, we adopt target declarations of a group with name Group-
Reference. The resulting regular expression for a group content model is ad-
justed from nested all, choice or sequence by minOccurs and maxOccurs

properties.

28

<all
minOccurs="MinOccurs"
maxOccurs="MaxOccurs"

>
(element)∗

</all>

In case of all the XML Schema requires that all nested element declara-
tions have restricted domains for minOccurs and maxOccurs properties, such
that each individual element can appear either 0 or 1 times.

Let P = {p1, . . . , pn} be a set of content model expressions from all nested
element constructs for some n ∈ N. The initial idea of creating the result-
ing expression can be based on the alternation and the Cartesian product
of items in P . However, we have to ensure, that the resulting expression is
1-unambiguous.

<choice
minOccurs="MinOccurs"
maxOccurs="MaxOccurs"

>
(element|group|choice|sequence)∗

</choice>

Let p1, . . . , pn be expressions of content models from all nested element,
group, choice or sequence constructs for some n ∈ N. We first prepare a reg-
ular expression for the alternation defined by (p1| . . . |pn) and after it we create
the resulting expression by adjusting the alternation expression by minOccurs

and maxOccurs properties.

<sequence
minOccurs="MinOccurs"
maxOccurs="MaxOccurs"

>
(element|group|choice|sequence)∗

</sequence>

Let p1, . . . , pn be expressions of content models from all nested element,
group, choice or sequence constructs for some n ∈ N. We first prepare a
regular expression for the concatenation defined by (p1.pn) and after it we
create the resulting expression by adjusting the concatenation expression by
minOccurs and maxOccurs properties.

<element
name="ElementName"
type="ElementType"
ref="ElementReference"
minOccurs="MinOccurs"
maxOccurs="MaxOccurs"

>

29

(simpleType|complexType)
</element>

Assume that an element declaration is nested directly or indirectly in some
complexType and let ElementNonterminal be a nonterminal symbol corre-
sponding to a given element. The resulting regular expression of this element
is equal to the nonterminal symbol adjusted by minOccurs and maxOccurs

properties.

30

Chapter 3

Analysis

Since the processing of incorrect XML data not only involves proposing struc-
tural corrections focused in this work, this section will provide overview of
existing theoretical approaches and discussion of general aspects of correction
frameworks for XML documents.

Generally we can classify errors in XML documents primarily into three
levels, starting with well-formedness violation, continuing with structural in-
validity and ending with data inconsistency. However, we do not need only to
find corrections for incorrect data, we can also leave the invalid data untouched
and extend possibilities of querying over them or we can treat such data as
incomplete or unreliable.

There are also several aspects that need to be clearly answered in order to
create meaningful correction framework that could be able to find fulfilment
in practise. In the last part of this chapter we will discuss five basic theoretical
approaches for correcting structural invalidity or integrity constraints violation
in XML documents.

3.1 General Aspects

Except the correction possibilities themselves, we need to at least take into
account several aspects that may radically influence the possibilities and be-
haviour of the proposed correction framework. We will successively discuss the
most important of them and we will also outline several interesting alternative
approaches not attempting to provide repairs of incorrect documents.

Errors Classification

As we have already outlined, we can determine essentially three basic levels
of incorrectness that can be found in XML documents. The first fundamental
question is the inspection of well-formedness of documents. If a given document
is not well formed, we cannot view it as a tree. Once we have a well formed tree
we can focus on its validity. This means we can detect violations of its structure,

31

which is defined by a tree grammar. Finally, having a valid document, we are
able to solve questions about correctness of data values contained in it.

This classification can naturally be simplified or extended, but the main
idea will probably be preserved. This principle stands on the fact that it is
quite reasonable to first ensure the given document is well formed, then valid
and, finally, consistent. The inverse order would probably not lead to good
results or transparent frameworks.

However, another question is, whether we are able to use some sort of
helping knowledge from latter levels within the prior ones. For example, if we
are provided a not well formed document, we can harness the knowledge of
the structure defined by the tree grammar and directly use it in order to find
more suitable repairs of formedness. Similarly we can utilise the type of data
values to find more suitable structural corrections.

At the level of structural repairs we can generally focus on allowed content
models, order of sibling nodes, labels of elements, correct nesting or presence
of attributes. Particularly we can refer to [19, 16, 54, 44, 9]. At the level of data
consistency we can consider corrections with respect to integrity constraints,
functional dependencies, keys or foreign keys, type checking or consistency
of ID and IDREF/S values of attributes. Papers discussing this level are for
example [27, 28, 51, 52].

Correction Objectives

When proposing a new approach for corrections, we first need to answer several
principal questions. It is apparent that we can generally achieve probably much
better corrections, if we are not limited by space or time complexity. The more
complex and interesting correction strategies, the higher probability of finding
suitable repairs is. Otherwise we can limit ourselves and then we are forced to
settle for worse results.

We can also study the characteristics of documents to be corrected. It
seems that at least two basic groups can be distinguished. Some documents are
textual designated especially to human readers, other documents have strictly
data nature, are precisely structured and created especially for programs.

The former group puts an attention probably on data values, the latter one
on correct structure or consistency. Even the given documents may not have
specified explicit schema, applications processing them nearly always assume
the schema at least implicitly. For these reasons it is a good idea to introduce
a framework capable at least to achieve well-formedness and validity, leaving
other questions to particular applications. Only they can perfectly master the
semantics that cannot be caught in the schema even if it is provided.

If we know what we need to correct, we also need to know the allowed
range of errors. For example, an approach discussed in [44, 9] assumes only
documents that are not too far from their explicitly provided schema.

32

Processing Strategies

Without any doubt the better correction results can be achieved in situations,
when we can work with the entire data tree loaded into the system memory.
This approach is represented by parsers [25]. We can walk through the tree
without limitations, we can inspect the tree from the global context, perform
extensive or distant repairs, but we are probably limited in the size of a doc-
ument that can be processed this way. On the other hand, we can propose a
framework which can dynamically fetch only required portions of data from
hard disk and thus facilitate correction of huge documents.

For streaming XML documents we can use for example parser [36]. How-
ever, it is a question whether this approach would at all allow at least some
correction strategies.

Finally, we can discuss one special problem connected with the incremental
validation of XML documents. Anyway we do not always need to process and
correct entire trees, but we can only inspect smaller parts of documents, assum-
ing that the rest of them is valid. This efficient way of revalidation connected
with correction proposals is introduced in [16, 14].

In this case we can harness one interesting idea that is based on refusing
those suitable local corrections, which are too close to the original document.
If the user once decided to modify it, proposing backward repairs would not
be a good idea.

Edit Operations

Probably one of the crucial aspects of any correction framework is the set
of permitted operations used for transforming trees in order to correct them.
Generally we can distinguish three basic strategies. First we can insert new
information into a tree, next we can modify the existing information and,
finally, we can delete it from the tree.

When deleting, we obviously lose some portion of the information that
was originally stored in a tree. It is a question, whether we should perform
deletions in situations, in which we are in fact not sure about the absolutely
fitting repair and we only do it because it seems that no better solution can
be found. However, this can only mean, that we are not able to find a better
solution, not that it cannot generally exist.

Therefore, some papers work with the idea of keeping incorrect information
in a tree and marking it as not reliable. This approach is presented in [27].

Anyway the correction framework needs the definition of comparison of
found repairs in order to decide, what repairs are better than others. Having
a set of proposed elementary operations, for example an addition or deletion
of a leaf node and a node label rename, we can base this comparison on a cost
function that assigns to each operation some non-negative cost. The lower cost,
the better repair. This idea is generally used, but we can name for example
[16]. Another alternative based on a greatest lower bound of all found repairs
can be found in [51].

33

The introduced model of measuring distances between trees can easily be
extended to the notion of distance between a tree and a grammar. The problem
of document correction with respect to a given schema, therefore, can be viewed
as finding those repairs that have minimal distance to such grammar.

Alternative Approaches

Having incorrect XML data, we not only need to correct them. In the area of
querying we are not forced to correct the data, we can as well adjust prepared
query statements to deal with incorrectness or we can harness errors to provide
more extensive answers.

The latter named approach is presented for example in [48, 27, 28]. We can
process the potentially invalid XML documents and propose their corrections.
The goal is, however, not to find the best repair and its consequent application,
but we consider several suitable repairs together concurrently. Then we are able
to introduce notions of possible and certain answers with the meaning that a
possible answer is involved at least in one considered repair and a certain
answer in all repairs.

Following this extended way of querying and query evaluation we are able
to access potentially damaged documents and retrieve more information.

Furthermore, we can find another alternative approaches that directly do
not propose corrections. For example the framework presented in [1] main-
taining the incomplete information. The purpose of this work is to introduce
storage for XML documents that need not be complete. Thus the authors
established a simple mechanism for the description of missing or incomplete
values. Similar strategies can be used in the context of corrections too.

Interactivity and Learning

There are essentially two options how the best suitable repair can be chosen
from the set of all found suitable ones. We have already outlined the possibili-
ties of cost functions, but these do not solve the problem definitely. If we need
to find best corrections, we had better interact with the user. The algorithm
then attempts to find repairs, it orders them using the defined mechanism of
comparison and then yields the final decision up to the user.

In this approach the algorithm should probably be able not only provide
the minimal repairs, but also some other ones, since we cannot assume that
the cost function can be defined perfectly to fit expectations of the user. When
there is no interaction, the algorithm can select the right one best repair on its
own and in this case the algorithm obviously can automatically throw away
all candidates with not minimal cost.

Finally, we can discuss the question of learning possibilities of the correction
framework. From the first point of view it would be interesting, if the correction
algorithm would be able to gather experiences from already proposed repairs
confirmed by the user, but the problem is quite more complicated.

34

The learning itself would only be useful, if the algorithm would be able
to derive new knowledge from already learnt situations and apply it under
circumstances that are not equal to that learnt. Otherwise the learning would
bring the advantage only if we could apply learnt situations repeatedly, thus the
input document must repeatedly provide these situations. However, in these
cases it seems better to even manually find the suitable correction and then
massively apply it using standard XML transformations tools like XSLT [21].
The expressive power of such tools obviously exceeds the scope of a correction
framework itself.

3.2 Existing Implementations

Except the prototype implementations from some theoretical research papers
dealing with corrections of XML, there not exists any complex tool for cor-
recting XML documents in a way related to structural corrections focused in
this thesis.

However, we can find several tools correcting HTML [29]. Although they
process primarily HTML documents, there is a clear connection to XML. Since
these tools do not have a solid theoretical background and they have many
constructs firmly associated only with a schema for HTML, we will provide
their short listing with brief descriptions.

HtmlCleaner

HtmlCleaner [31] is an HTML parser available as a Java [32] library or a
command line tool. Its original motivation was to correct existing HTML doc-
uments in order to acquire valid XML documents prepared for querying using
XPath [22], XQuery [7] or XSLT [21].

However, it primarily serves for transforming provided HTML documents
into well formed ones. The parser is for example able to reorder individual
elements, correct invalid attributes or nesting of elements and is also partially
configurable allowing a custom tags filtering and balancing functionality.

NekoHTML

NekoHTML [39] is another example of a tool for correcting HTML documents,
which in fact produces valid XML trees. It represents a simple scanner and tag
balancer, generating documents capable to be processed via standard XML
interfaces.

It is particularly able for example to add missing parent elements, auto-
matically close elements or can handle mismatched inline element tags.

HTML Tidy

HTML Tidy [30] is the last example of an existing implementation for correc-
tions of HTML documents and, moreover, it is able to directly process XML

35

documents as well. Users are again provided with a library and a command
line utility.

In case of HTML documents this tool is able to correct their well-formedness
and propose other repairs based on the most common coding errors. Usually it
is used for transforming HTML documents into valid XML. When processing
native XML documents, HTML Tidy is able to correct them in a way of pro-
ducing well formed documents, but the question of validity is not considered.

3.3 Theoretical Research

In this section we will discuss existing papers related to the correction of XML
documents. First three approaches pursue structural correction to achieve valid
documents with respect to a given local tree grammar. The remaining two
papers focus the problem of repairing documents against a set of integrity
constraints.

The major attention is put only to first two approaches, since the correction
framework presented in this thesis adopts several aspects right from these two
studies.

3.3.1 Incremental Validation and Correction

Suppose that we have an XML document valid with respect to a given schema
and the user modifies it. In order to verify validity of the resulting document,
we are not necessarily forced to validate the entire document, but we can focus
only on its modified parts. This problem is discussed for example in papers
[5, 12, 15].

Authors of these papers later on attempted to enrich the concept of incre-
mental validation by correction proposals in [19, 16] and, finally, they sum-
marised the proposed incremental correction framework in [14]. This paper
represents one of two crucial starting points of this thesis.

Incremental Correction

Let us first return to the problem of the incremental validation. At the begin-
ning we have a valid document, which is subsequently updated by the user.
This means that the user performs a sequence of trivial modifications like a
leaf node insertion or an element label renaming. This sequence can be viewed
using the paradigm of transactions. We are naturally not interested in their
proceeding, but at the end we need to obtain a document, which is again valid
with respect to a provided schema.

Since the user probably did not perform radical modifications, it seems to
be more efficient only to focus on those local parts of the tree, which have been
affected by realised updates. Anyway, if the resulting document is not valid,
we can prompt the user for corrections. Or we can as well attempt to guess

36

some suitable corrections and offer them. The user thus can easier find out
what is wrong and he/she is even provided by some suitable solutions.

The proposed correction algorithm processes the updated tree from leaves
towards the root node, i.e. we are inspecting a given node only after all its
child nodes are already inspected. Whenever we find out that the given node
has not its child nodes matching the allowed content model, we invoke the
local correction routine, whose purpose is to locally repair these invalid child
nodes.

The corrections are based on a consecutive generation and inspection of
words in the language defined by the regular expression restricting the content
model of a given locally invalid node. We dynamically generate all possible
sequences of child nodes, bypassing not perspective ways and propose suitable
corrections. The authors, however, only considered a DTD schema belonging
to the class of local tree grammars with no competing nonterminal symbols
and identical sets of terminals and nonterminals.

Formal Model of XML Trees

XML documents are modelled using unranked ordered labelled trees. The un-
derlying tree is composed from a set of nodes numbered using the prefix num-
bering schema over non-negative integers, thus the tree itself is defined only
implicitly via this numbering schema as in the approach proposed in this the-
sis. However, attributes are completely ignored. Not only that they are not
considered in the tree model, but they are not involved in corrections too.

The validity of data trees is based on the definition of unranked tree au-
tomaton, similarly to our grammars. The validation algorithm starts the pro-
cessing of the tree at leaf nodes and if there exists the transition with cor-
responding element label and the child nodes sequence matches the regular
expression, the automaton assigns the inspected node its state and then con-
tinue towards the root node. If the root matches any of the final states, then the
document is valid. Whenever we cannot use any transition rule, we attempt
to correct the given node and then continue with the rest of the validation
traversal.

Edit and Update Operations

Both the correction routine and the user express the required document changes
using the provided edit operations, which are composed together to form more
complex update operations.

The purpose of discussed papers was not to propose the set of most suitable
operations, thus only three elementary edit operations were introduced. They
are the removal of an existing leaf node, insertion of a new leaf node and a
label renaming of an existing node in a tree.

Each of these edit operations is assigned a unit cost and the framework itself
does not discuss other variants, even though it is clear that less restrained costs
would be also acceptable.

37

Update operations represent possibilities the correction routine can choose
from in order to correct provided sequence of nodes. The first update operation
is the insertion of a subtree. Because the schema generally allows the recursion
and even via Kleene star operation in regular expressions we can be threaten
by potentially infinite trees, the insertion operation only allows the insertion
of minimal trees.

The deletion update operation is intended for the complete removal of
existing subtrees. Finally, the replace operation may change the label of a
given node and then recursively attempts to process the sequence of all its
child nodes and subtrees in order to correct them using any of introduced
three update operations. We generally attempt to find those repairs that are
as close to the original tree as it is possible.

This distance is measured using the introduced cost function, which is
extended to update operations too. Since we can view update operations like
sequences of edit operations, cost of an update operation is simply the sum of
costs of all its component edits.

Correction Routine

Suppose that we are traversing the updated tree and we failed to validate
some node. There are essentially two reasons why the local validation could
fail. First the label of a given node may not be defined by the provided schema
and thus we have no transition rule to even take into account. Although the
described formal framework explicitly does not handle these situations, we can
simply move forward one level up and then correct this unknown node as an
ordinary node in a certainly not valid sequence of nodes.

The second and probably more common reason is that we have a regular
expression describing the content model, but the sequence of child nodes does
not conform to it. The proposed correction routine attempts to rectify this
situation by finding those sequences that are suitable and also with minimal
distance.

Note, however, that the problem is composed of two orthogonal dimen-
sions. First we horizontally step by step generate words from the language
of a given regular expression. These words are over the alphabet of element
names, since we do not need to distinguish between terminal and nonterminal
symbols. However each of these symbols in a generated word represents the
entire subtree. As a consequence we also need to proceed vertically.

At the horizontal level our goal is to generate words of element names, i.e.
new possible sequences of child nodes. For this purpose we use the Glushkov
automaton, whose state space we traverse to the depth following defined tran-
sitions. Although the algorithm processes dynamically, suppose now that we
have generated some suitable word. Using the standard Levenshtein distance
model we resolve the distance between the original invalid word and the gen-
erated one.

The Levenshtein metric considers a symbol insertion, deletion or replace-
ment. In our case we have update operations, which follow the same idea, only

38

these operations involve also nested subtrees and costs are not trivial. When
we decide to insert a new node in the horizontal plan, we not only need to add
a new leaf node using the corresponding edit operation, but we also need to
insert all its potential child nodes in order to ensure the given newly inserted
subtree will be locally valid.

Distance Matrix and Threshold

It is easy to see that the algorithm would be significantly inefficient if it would
really first generate a word and only then inspect its distance to the original
invalid one. Therefore, authors use the general concept of dynamic program-
ming and via the edit distance matrix we successively generate words and
concurrently we straight away compute the distance to the original one.

Having any cell of this distance matrix, the row represents the number
of processed symbols from the original invalid word and the column number
stands for the size of the generated word. The first column of the matrix
contains values∞ standing for very great costs and the second column contains
costs of the original subtrees deletions. Similarly the first row again contains
infinite values, the second one costs representing subtrees insertions.

At the beginning we are provided the original word and the generated word
is so far empty. Therefore, we initialize only the first two technical columns
of the matrix. During the algorithm execution, we successively try suitable al-
lowed symbols, thus we extend the matrix with new columns and incrementally
compute the distance.

Each cell is computed from three nearest neighbouring cells located to the
left and top including the diagonal one. These three options represent possible
actions that can be taken into account at a given position. We can ignore the
next symbol and first rather insert a new subtree, or we can delete the existing
one or, finally, we can repair the existing one in the connection to the newly
generated symbol. All cheapest possibilities win.

If we reach the accepting state of the Glushkov automaton, we have gener-
ated allowed sequence of nodes and the value located in the last column and
the last row represents the distance of this sequence to the original invalid
one. The cells not only contain cost values, but also particular sequences of
accounted operations, which are of the minimal cost and through which we
can completely repair the original tree.

However, the authors had to introduce the concept of pruning, because
due to recursive tree grammars or Kleene star operation, the algorithm might
never stop and incessantly generate longer and longer words. Therefore, at the
beginning we specify the fixed constant with the meaning of threshold and
whenever during the traversal we exceed this value, we treat the inspected
direction as not perspective, we backtrack and attempt to choose some other
direction.

39

Repairs Gathering and Merging

Whenever the algorithm reaches the accepting state of the automaton and
the distance does not exceed the allowed threshold, we have found a suitable
correction. The horizontal generation of words continue until the entire state
space of the automaton is examined. All successively found corrections are
gathered.

The local correction routine finally terminates and we continue process-
ing the original tree towards the root node. Whenever we discover another
invalid node which is the ancestor of some previously corrected node, we can
encompass already found corrections and do not need to compute them again.

Finally, when the tree is completely processed, we locate isolated areas of
the tree and combine proposed solutions for their local correction into the
aggregated global correction proposals.

Approach Assessment

Even though the set of introduced update operations and the model of correc-
tions itself is sufficient to enable basic XML trees correction, we can identify
several problematic aspects and disadvantages.

First there is a problem in the way, how the algorithm processes the entire
tree. Whenever we have processed all sibling nodes and enter their parent node,
we only correct this parent, if it is not locally valid. If so, we can only work
with its child nodes, but we cannot change the label of the parent node itself.
Assume a situation when we have explored such node and we have attempted
to repair it, thus find another sequence of child nodes that is suitable and with
the minimal distance. Suppose that the grandparent node is locally valid, thus
there is no way how to change the label of the original parent. But potentially
there may exist other labels, which would perfectly fit either the context of
this renamed parent and also the grandparent. Since the proposed model does
not permit this technique, we can throw away potentially very cheap repairs.

However, there are more crucial disadvantages. The algorithm ensures that
we always find all minimal corrections and also some other non minimal ones.
Unfortunately always does not mean really always. We are only assured to find
corrections in situations, when there exists some correction with cost at most
equal to the threshold value. Since the threshold is a constant, there can always
exist some invalid data tree, which could not be repaired, since all promising
directions during the horizontal and vertical generation are pruned too early
due to the exceeded cost. As a consequence the algorithm may not be able to
find local corrections and, in addition to this disadvantage, the problem itself
is not formally discussed in the paper.

It seems that we can set the threshold value high enough. And in fact we
really can and probably there might also exist a formal calculation of needed
value for each input tree. However, high threshold values bring other difficulties
and thus do not solve the problem itself.

The reason is quite simple, because the algorithm prunes unpromising di-

40

rections only using the idea of exceeding the given threshold. The higher value
for threshold, the more time the algorithm will spend inspecting ways that
obviously do not lead to the minimal corrections. Just consider the situation
when we are processing a sequence of nodes with respect to the regular expres-
sion for example (a|b)∗. We will be forced to generate the enormous number of
evidently non perspective words over symbols a and b using the insertion up-
date operation, without any opportunity to stop this hopeless working earlier.

And, moreover, we can find another disadvantage connected with this prob-
lem, namely repeated computations. Each symbol a or b in the previous ex-
ample may represent a nontrivial subtree, which need to be repeatedly con-
structed. The same problem can be detected in any update operation wherever
in the original tree. Generally we not only need to generate suitable sequences
of nodes dynamically, but we are forced to repeatedly execute the same com-
putations.

3.3.2 Validity Sensitive Querying

The problem of querying potentially invalid XML documents with respect to
DTD schemata is focused in [48]. Although the main goal of this paper is the
framework for querying, its integral part is also the model for proposing repairs
for structurally invalid documents.

Users querying databases of XML documents usually formulate their queries
with at least some knowledge of a schema, the given documents conform to.
If documents are not valid, standard queries evaluation may not provide as
sufficient answers as they could be returned, if the evaluation algorithm also
attempts to propose some corrections of invalid data.

The main idea adopted by this thesis from the querying framework is the
notion of a trace graph, which is capable to compactly represent all repairs of
a sequence of child nodes of a given inspected node.

Edit and Update Operations

XML documents are modelled similarly to the previously discussed papers via
unranked ordered labelled trees including the fact that attributes are com-
pletely ignored. However, the numbering schema is not the integral part of
trees and we only use it for determining positions of nodes.

A DTD schema is viewed as a function assigning to each declared element
name the allowed content model, thus a regular expression over element names.
Similarly the mixed content is not handled and since only a local tree grammar
is considered, we do not need to distinguish between terminal and nonterminal
symbols.

Having a locally invalid node in a tree, we can use two basic macro op-
erations for correcting its child nodes. These operations are analogous to up-
date operations from the previous work and they are again composed from
sequences of elementary edit operations. These are, however, only a leaf node
insertion and removal at the level of edit operations and thus a new subtree

41

insertion, an existing subtree deletion or recursive repairing at the level of up-
date operations. The recursive repairing however does not permit a node label
modification.

The authors remark that it would be possible to extend the set of intro-
duced operations with a rename label edit operation, but the paper does not
work with it.

Each edit operation is assigned a unit cost, the cost of macro operations
is derived as a sum of costs of all edit operations in a given sequence. The
distance between two trees and between a tree and a schema is based on this
cost function.

Restoration Graph

The provided XML tree is processed in a bottom up manner. Starting with
leaves we continue towards the root node and for each locally invalid node
we construct the restoration graph capable to compactly represent all possible
repairs.

The main idea of sibling nodes correction is once again based on the ex-
ploration of the automaton for detecting words of the language defined by a
provided content model regular expression. However, we do not dynamically
generate word by word, but we statically construct the restoration graph and
store all allowed corrections within it.

It is worth noting that the notion of this graph has a very close connection
to the edit distance matrix presented in [14]. Vertices of this graph are divided
into disjoint sets called columns and have a connection to rows of the distance
matrix, thus represent the range of original sequence of nodes already involved
into the correction. Each column is comprised from all states of the automaton
for the recognition of the given regular expression. If the original sequence has
n nodes, then the graph has n+ 1 columns.

Edges between these vertices represent macro operations that can be per-
formed. Between vertices inside a column we define edges representing inser-
tions of new subtrees and between two adjacent columns we define edges rep-
resenting deletions of existing subtrees or recursive repairs, depending on the
correspondence of automaton transitions and node labels from the sequence to
be processed.

Having constructed such restoration graph and assigned costs to all its
edges, we can transform the problem of finding corrections to the problem of
finding shortest paths in this graph. Each path starting in the first column at
the initial state of the automaton and ending in the last column at any accept-
ing state of the automaton represents the correction proposal. The shortest
paths logically stand for corrections with the minimal cost.

Approach Assessment

The essential advantage of this approach lies in avoiding the dynamical traver-
sal of the automaton state space and the generation of word by word. We can

42

directly focus the attention on processing only those directions of correction
that seem perspective. We even do not need to construct the entire restora-
tion graph, because we can use for example standard Dijkstra’s algorithm and
construct only the required parts of the graph.

Another advantage is that we can compactly represent all found corrections
in a form of the trace graph, thus the subgraph of the restoration graph with
only the shortest paths.

Finally, the processing is not limited by any threshold or pruning. Under
any circumstances the algorithm is able to find corrections, which particularly
means that it returns all corrections with the minimal cost. However, the in-
troduced set of edit operations is obviously not sufficient to fulfil expectations
of rational correction possibilities.

3.3.3 Correctors for XML Data

Authors in the series of papers [44, 9, 10] adopt the idea of correctors used in
the theory of algorithm verification and use it in the context of XML documents
correction. This approach represents the last analysed one, which pursues the
problem of structural corrections of well formed but not valid documents.

A corrector is a function that transforms a provided potentially invalid
XML document into a valid one, however, only under the condition that the
original tree is not too far from the schema. Depending on a particular pre-
sented algorithm with the connection to permitted edit operations this distance
needs to be constant or at most linear according to the particular schema.

An associated tester is capable to detect the approximate distance of a pro-
vided document to a schema with high probability in constant time, however,
only under the same condition.

XML documents are represented using ranked ordered labelled trees, which
are based on a set of nodes and associated relations for catching the structure
of trees. Once again the paper only considers a DTD schema, modelled as
a function returning content model regular expressions for declared element
names.

The authors presented different models of allowed edit operations used for
trees transformations and corrections. The first model is based on elementary
operations for inserting a leaf node, deleting a leaf node and renaming an
existing node. The second model is enriched by an operation for an atomic move
of entire subtrees. Anyway, by the combination of these elementary operations
we can acquire complex operations for inserting or deleting whole subtrees.

The measuring distances between trees are derived from the standard tree
edit distance counting number of renamed labels and inserted or deleted nodes
and edges.

The correction algorithm works in two basic phases. We first traverse the
tree from leaves towards the root node in order to mark all nodes that are not
locally valid. These nodes are marked using symbol ∗ behaving similarly as a
wildcard. Other nodes are marked by their labels, since only a DTD schema

43

is taken into account.
During the second phase we process the tree from the root node towards

leaves and recursively attempt to correct the neighbourhood of nodes marked
with ∗. These corrections are based on finding new suitable labels for the invalid
node and for each such label we attempt to locally correct the sequence of child
nodes using introduced set of operations. We finally select such alternative,
where the regular expression is the closest to the original sequence of nodes,
and then we select the particular transformation with the lowest cost.

Although the authors provided a prototype implementation available at
[8], the entire framework for corrections is not sufficiently transparent and
especially the main disadvantage lies in the restriction that only documents
with small number of errors can be corrected.

3.3.4 Repairs and Consistent Answers

Authors of [27, 28] proposed a framework for repairing XML documents with
respect to a given set of integrity constraints. In these papers we, therefore,
assume that provided documents are well formed and also valid with respect to
a tree grammar, but we focus on functional dependencies between data values
stored in a tree.

Proposed repairs are based on two combined concepts. First we can replace
values of attributes or elements and second we can use the boolean function
stating the reliability of nodes in a tree.

The functional dependencies are derived from the notion of tree tuples
and paths. A path is a sequence of element and attribute names, which can
be derived from the provided schema in a way of potential occurrence in a
document valid with respect to this schema. Each path starts with a name
of an element that is allowed to become the root node of a tree. All adjacent
pairs in a path must conform to declarations of elements and attributes and,
finally, we end in an attribute or element with only empty model permitted.

Now assume that we have a set of all paths that can be derived from a
provided schema. A tree tuple is a maximal subtree such that for every existing
path there exists at most one element in a given XML tree. The notion of the
tree tuple can be used for determining elementary data components for which
we can define functional dependencies.

These dependencies are again based on paths and we can use them to
express demands on data values equalities. Generally we prefer marking incor-
rect data as unreliable rather than removing them permanently, because the
deletion leads to the loss of information originally stored in such tree.

Having a particular functional dependency and incorrect values, we can
change these values in case we are sure of the right correction, we can use the
special symbol for unknown values or, finally, we can mark nodes as unreliable.
Whenever a given node becomes unreliable, all descendant nodes in its subtree
are automatically treated as unreliable too.

The algorithm successively processes all provided functional dependencies,

44

propose local repairs and merge these repairs into global ones. Having found
all repairs we can extend the concept of the standard querying by the notions
of possible and certain answers. Possible answers are those answers, which are
involved at least in one possible repair, certain answers have to be located in
all found repairs.

3.3.5 Repairing Documents using Chase

Similarly to the approach presented in the previous subsection authors in
[51, 52] introduced a framework for repairing well formed and valid XML doc-
uments with respect to a given set of integrity constraints. These constraints,
however, have wider expressive possibilities.

More particularly using them we are able to introduce constraints based on
functional dependencies, keys and multivalued dependencies. The constraints
themselves are structured expressions over variables and simple paths derived
from the schema similarly to the previous approach.

In the first phase we construct a mend for the provided inconsistent XML
document. Processing each provided constraint we inspect the tree and remove
all conflicting data. This means that we can change values of nodes in a tree,
replace constant values with variables and also delete nodes.

During the second phase we add new information into the prepared mend.
We can change values of nodes, replace variables by other variables or by
constants and, finally, we can insert new nodes. The resulting tree represents
a repair.

It is easy to see that the algorithm can find more possible repairs. In these
cases we select such repair that represents the greatest lower bound of all found
repairs.

Authors of these papers also demonstrated that the strategy based on the
successive creation of mends and only then repairs is not worse than a strat-
egy producing fixes, thus the strategy that can mix all introduced operations
without limits. Not only removal operations in the first phase and insertion in
the second one.

45

Chapter 4

Corrections

Having discussed advantages and disadvantages of existing theoretical ap-
proaches especially for structural corrections of XML documents, we can move
forward and focus on the detailed introduction of proposed correction frame-
work.

First we will informally outline the entire model of corrections and in the re-
maining sections we will formally define all aspects of this model and proposed
algorithms.

4.1 Framework Concept

The correction framework proposed in this thesis is capable to generate local
structural repairs for locally invalid elements. These repairs are motivated by
the classic Levenshtein metric for strings. For each node in a given XML tree
and its sequence of child nodes we attempt to efficiently inspect new sequences
that are allowed by the corresponding content model and that can be derived
using the extended concept of measuring distances between strings. However,
in our case we do not handle ordinary strings, but sequences of nodes, which
in fact are not only labels, but also entire subtrees.

We pursue corrections for attributes and elements, however, only sepa-
rately, i.e. we do not permit switching of attributes and elements mutually. All
corrections are proposed in order to achieve valid documents with respect to a
provided schema at the level of the single type tree grammar class. Although
the framework primarily serves for the correction of the whole data trees, there
is no problem using it in the context of the incremental validation for repairing
only updated subtrees.

The correction algorithm starts processing at the root node and recursively
moves towards leaf nodes. We assume that we have the complete data tree
loaded into the system memory and, therefore, we have access to all its parts.
Under all conditions the algorithm is able to find all minimal repairs, i.e. repairs
with the minimal distance to the grammar and the original data tree according
to the introduced cost function. Even though the algorithm does not consider
any interaction with the user, it is possible to modify it.

46

In the following paragraphs we will shortly discuss all important aspects of
the formal framework and correction algorithms. All these models and notions
will be in detail described and formally defined in the remaining sections of
this chapter.

Edit Operations

Edit operations are elementary transformations that are used for altering in-
valid data trees into valid ones. They behave as deterministically defined func-
tions, performing small local modifications with a provided data tree. Despite
the correction algorithm does not directly generate sequences of these edit
operations, we can in the end acquire them using a translation of generated
repairs, as it will be explained later.

For correcting attributes we have proposed edit operations for a new at-
tribute insertion and an existing attribute deletion or rename. For nodes in
a data tree there are operations capable to insert a new leaf node, delete an
existing one, rename a label of a node, push a group of adjacent sibling nodes
lower under a newly inserted internal node and, finally, an edit operation that
pulls all sibling nodes one level higher deleting their original parent node.

Note that these operations are designed to correct attributes and elements
separately.

Update Operations

Edit operations can be put together into sequences. And if these sequences
fulfil certain qualities, they can be classified as update operations. We have
proposed an insertion, deletion and repair elementary update operations for
correcting attributes and a new subtree insertion, an existing subtree deletion,
recursive repair of a subtree with an option of changing a label of its root
node and, finally, push and pull operations based on corresponding edit oper-
ations. Update operations for transforming nodes are called complex update
operations.

Anyway, the purpose of each update operation is to correct a local part
of a data tree in order to achieve its local validity. Unfortunately the correc-
tion algorithm does not generate these operations. The algorithm generates
repairs based on repairing instructions, which are subsequently translated into
sequences of edit operations. And this is the reason, why update operations are
not defined deterministically similarly to edit operations. Having a particular
sequence of edit operations, we can inspect its segments and if all required con-
ditions are satisfied, the given sequence can be viewed as an update operation
of a corresponding type.

Repairing Instructions

Assume that we are in a particular node in a data tree and our goal is to locally
correct the given node, which, passing over attributes, especially involves the

47

correction of the sequence of its child nodes.
Our objective is to find all minimal repairs for this inspected node. Since

the introduced model for measuring distances uses only non-negative values
for the cost function, in order to acquire the global optimum, we can simply
find minimal combinations of local optimums, meaning minimal repairs for all
subtrees of original child nodes of the inspected one.

However, we need to find all minimal repairs and because edit operations
require particular positions in a current data tree to be specified, we cannot use
them to describe all repairs. Assume for example that we have several options
how to correct the first child node. If we delete it, all positions of nodes to
the right must be shifted by one to the left, but if we accept the first child
node, original positions preserve. Thus we are not able to use edit operations
for describing multiple different repairing sequences.

The problem with the continuously changing numbers of positions is solved
by the model of repairing instructions. We have exactly one instruction for
each edit operation and these instructions represent the same transforming
ideas, however, do not include particular positions to be applied on. Having
a particular sequence of repairing instructions, we can easily translate it into
the corresponding sequence of edit operations.

Correction Intents

Being in a particular node and repairing its sequence of child nodes, the correc-
tion algorithm generally has many ways to achieve the local validity proposing
repairs for all these involved nodes. As already outlined, these actions follow
the model of measuring distances between ordinary strings. The Levenshtein
metric is defined as the minimal number of required elementary operations to
transform one string into another. These operations are an insertion of one
new symbol, deletion of an existing one and also replacement of an existing
symbol with a new one.

We follow the same model, however, we have edit and update operations
respectively and sequences of nodes. It is easy to see that the given sequence
can be viewed as an ordinary string over labels of its nodes. For example, an
insertion of a new subtree at a given position stands for the insertion of its
label into the corresponding string of labels and of course recursive processing
of such new subtree.

The algorithm attempts to examine all suitable new words that are in the
language of the provided regular expression restraining the content model of
the inspected parent node. We do not generate word by word, but we attempt
to inspect all these words statically using a notion of an exploration and other
derived multigraphs.

Anyway suppose that the algorithm has already processed first few nodes
from the inspected sequence of sibling nodes, thus all nodes from the corre-
sponding prefix of the original sequence are already involved into corrections.
Now the algorithm must consider all possible actions that can be selected

48

in order to involve at least one next node from the original sequence. These
possibilities are formally modelled using the notion of correction intents.

In other words, the correction algorithm in each parent node has a variety
of options how to achieve its validity and particular steps performed with its
child nodes are called correction intents. Intents because we always examine
one possible action from more permitted ones.

Repairing Multigraphs

All existing correction intents in the context of a given node can be modelled
using an exploration multigraph. Suppose that we need to process a sequence
of child nodes with n nodes. This means that the graph will have n+1 strata,
numbered from 0 to n. Being on a stratum with number i, we have already
processed right i first nodes from this sequence.

Except one small exception, which can be ignored for this moment, each
stratum is constructed from the Glushkov automaton for recognising the pro-
vided regular expression restricting the given sequence. This means that there
are vertices corresponding to states of the automaton and directed edges re-
flecting the transition function in each stratum. Each such edge represents a
new tree insertion operation. Similarly, we can define edges between strata to
represent other allowed operations.

In other words, the exploration multigraph represents all correction intents
that can be derived for this sequence. And more precisely, each intent is rep-
resented by some edge in this multigraph. However, there can be intents that
are represented by more edges.

In order to find best repairs for a provided sequence of nodes, we need to
find all shortest paths in this multigraph, assuming that every edge is rated
with an overall cost of corresponding nested correction intent associated with
such edge. However, to resolve these costs, we need to fully evaluate associated
intents. And this represents nontrivial nested recursive computations. Anyway,
we require that each edge can be evaluated in a finite time, otherwise we would
obviously not be able to find required shortest paths.

Repairs Construction

Each correction intent can essentially be viewed as an assignment to the nested
recursive processing. This model in fact has a transparent relation with a
structure of an underlying tree itself and its processing from the root node
towards leaves. The entire correction of a provided data tree is initiated as a
special starting correction intent for root node and processing of every intent
always involves the construction of at least the required part of the introduced
multigraph with other nested intents.

Therefore, we continuously invoke recursive computations of nested intents.
When we reach the bottom of the recursion, we start backtracking, which
involve gathering of found repairs. This means that after we have found the

49

desired shortest paths at a given level, we encapsulate them in a form of a repair
structure and pass it one level up, towards the starting correction intent.

Having found shortest paths in the repairing multigraph for the starting
intent, we have found repairs for the entire data tree. Each intent repair con-
tains encoded shortest paths and related repairing instructions. Now we need
to generate particular sequences of repairing instructions and translate them
into standard sequences of edit operations. Having one such edit sequence, we
can apply it on the original data tree and we obtain its valid correction with
a minimal distance.

Correction Algorithms

Now we have completely outlined the model of the proposed correction frame-
work. However, there are several related efficiency problems that would cause
significantly slow behaviour, if we would strictly follow the formal model.
Therefore, we will introduce four correction algorithms. They all produce the
same repairs, but there are key differences in their efficiency.

First we start with a naive algorithm strictly following the formal model.
Later on we will introduce a dynamic algorithm, which is able to directly
search for shortest paths inside each intent computation and does not need
the entire multigraphs to be constructed. The next improvement is based on
caching already computed repairs, which causes that a caching algorithm never
computes the same thing twice. The final extension is represented by an in-
cremental algorithm, which is able to compute lazily even to the depth of the
recursion.

4.2 Edit Operations

The first essential step in the description of proposed corrections approach is an
introduction of transformations that can be used in order to correct provided
data trees with respect to given schemata. The model of these modifications
performed on data trees is based at two different levels of abstraction. The
first level stands for elementary operations, whereas the second level represents
some sort of macro operations.

The former type of operations is called edit operations, the latter one update
operations. As already sketched, edit operations are elementary operations
which represent basic alterations with a local impact. Formally, we define edit
operations as partial functions, which are capable to transform the source data
tree into another data tree.

On the other hand, update operations are more complex and represent
transformations with potentially great and global impact on data trees. While
edit operations are exactly defined, update operations are in fact only macro
operations, i.e. complex operations that are composed from sequences of edit
operations.

50

Auxiliary Sets of Nodes

Before we will formally define the set of proposed edit operations, we need to
introduce several auxiliary sets of nodes. Doing it, we can make edit operations
a little bit more readable.

Definition 4.1 (Auxiliary Sets of Nodes). Given an underlying tree D, we
define PosNodes as an auxiliary set of nodes:

• PosNodes(D) = {u.i | i ∈ N0, u.i /∈ D, u ∈ D and either i = 0 or i > 0
and u.(i− 1) ∈ D}.
If D is an empty tree, then PosNodes(D) = {ϵ}.

Given a tree D and a position p ∈ D, p ̸= ϵ, p = u.i, u ∈ N∗
0, i ∈ N, we define

ExpNodes, IncNodes and DecNodes as sets of nodes:

• ExpNodes(D, p) =
{u.k.v | k ∈ N0, i ≤ k < fanOut(u), v ∈ N∗

0, u.k.v ∈ D}.

• IncNodes(D, p) =
{u.(k + 1).v | k ∈ N0, i ≤ k < fanOut(u), v ∈ N∗

0, u.k.v ∈ D}.

• DecNodes(D, p) =
{u.(k − 1).v | k ∈ N0, i+ 1 ≤ k < fanOut(u), v ∈ N∗

0, u.k.v ∈ D}.

Given a tree D, s ∈ N0 and a position p ∈ D, p ̸= ϵ, p = u.i, u ∈ N∗
0, i ∈ N,

we define ShlNodes, ShrNodes, PshNodes and PulNodes as sets of nodes:

• ShlNodes(D, p, s) =
{u.(k − s).v | k ∈ N0, i < k < fanOut(u), v ∈ N∗

0, u.k.v ∈ D}.

• ShrNodes(D, p, s) =
{u.(k + s).v | k ∈ N0, i < k < fanOut(u), v ∈ N∗

0, u.k.v ∈ D}.

• PshNodes(D, p, s) =
{u.i.k.v | k ∈ N0, 0 ≤ k ≤ s, v ∈ N∗

0, u.(i+ k).v ∈ D}.

• PulNodes(D, p) =
{u.(i+ k).v | k ∈ N0, 0 ≤ k < fanOut(p), v ∈ N∗

0, u.i.k.v ∈ D}.

For a given data tree, PosNodes stands for a set of all positions, where
we can perform insertion of a new leaf node. These positions correspond to all
existing nodes in a tree, positions after the last child of each node and, finally,
positions for the first child node in current leaf nodes.

When we are inserting a new subtree at a given position in a data tree,
we need to shift all original subtrees of sibling nodes located to the right from
the insertion position by one to the right. Analogously when we are deleting a
subtree, we need to shift all these sibling subtrees by one to the left. Obsolete
positions for these shifts are defined in ExpNodes, new positions after shifting
are in IncNodes and DecNodes respectively.

51

Sets ShlNodes and ShrNodes stand for sets of analogously shifted posi-
tions, but in this case we do not include the original base position and the
shifting itself has a variable size. The last two sets PshNodes and PulNodes
together with both previously described sets are used in conjunction with in-
sertions or deletions of internal nodes, where group of nodes are lifted up or
pressed down.

Edit Operations Model

We are now ready to formally introduce the set of proposed edit operations. To
make the situation clearer, these operations are divided into two disjoint sets.
One set is for operations over attributes, the second one contains operations
for nodes.

In order to simplify the following definitions, we use a special notation of
the form f1(p1)← f0(p0), where f1, f0 are functions and p1, p0 are values from
corresponding domains, with this meaning: if f0(p0) is defined, then we define
f1(p1) = f0(p0), else f1(p1) remains undefined.

Definition 4.2 (Edit Operations). An edit operation e is a partial function
that transforms a given data tree T0 = (D0, lab0, val0, att0) into a new data
tree T1 = (D1, lab1, val1, att1), shortly denoted by T0

e−→ T1.
For each edit operation we define impactedNodes(e) as a function returning

a subset of N∗
0 representing a set of directly impacted nodes.

Before we continue, we have to emphasise that edit operations are functions,
which are not generally defined for all data trees. If the provided prerequisites
are not satisfied, the corresponding operation is undefined. We will start with
operations for nodes and continue with operations for attributes. Anyway we
will not consider any other operations than those defined in the following
subsections.

4.2.1 Edit Operations for Nodes

We are going to define addLeaf , removeLeaf , renameLabel, addNode and
removeNode edit operations for nodes. They represent insertion of a new leaf
into a given data tree, deletion of an existing leaf node, changing the label of an
existing node, insertion of an internal node and, finally, deletion of an internal
node. Since the majority of these operations are little bit complicated, we will
usually describe operations on the root node position separately to increase
legibility.

The first two operations are also introduced in the correction approach pro-
posed in [48], whereas authors in [14] append also the third named operation.
We have adopted these operations, but since we have significantly different
formal model for data trees, the corresponding definitions had to be adjusted.

52

Formal Model of Operations

Definition 4.3 (Node Edit Operations). Given data trees T0 and T1 from
Definition 4.2, we define the following node edit operations:

• e = addLeaf(p, n) for p ∈ D0 ∪ PosNodes(D0), p ̸= ϵ and n ∈ E as
a node label (not necessarily n ∈ attsDomain(D0)). We assume that
p = u.i, where u ∈ N∗

0 and i ∈ N0. We require that u /∈ DataNodes(D0).

– D1 = [D0 \ ExpNodes(D0, p)] ∪ IncNodes(D0, p) ∪ {p}.
– ∀w ∈ D0 \ ExpNodes(D0, p):

· f1(w)← f0(w) for f ∈ {lab, val, att}.
– For a position p we define:

· lab1(p) = n.

· If lab1(p) = data, then val1(p) = ⊥.
· If lab1(p) ̸= data, then att1(p) = ∅.

– ∀(u.(k + 1).v) ∈ IncNodes(D0, p) with appropriate k, v:

· f1(u.(k + 1).v)← f0(u.k.v) for f ∈ {lab, val, att}.
– impactedNodes(e) = {p}.

• e = addLeaf(p, n) for p = ϵ, n a node label, D0 = ∅.

– D1 = {p}.
– lab1(p) = n.

– If n = data, then val1(p) = ⊥, else val1 is undefined.

– att1 is undefined.

– impactedNodes(e) = {p}.

• e = removeLeaf(p) for p ∈ LeafNodes(D0), p ̸= ϵ. We assume that
p = u.i, where u ∈ N∗

0 and i ∈ N0. We require att0(p) = ∅.

– D1 = [D0 \ ExpNodes(D0, p)] ∪ IncNodes(D0, p).

– ∀w ∈ D0 \ ExpNodes(D0, p)

· f1(w)← f0(w) for f ∈ {lab, val, att}.
– ∀(u.(k − 1).v) ∈ DecNodes(D0, p) with appropriate k, v:

· f1(u.(k − 1).v)← f0(u.k.v) for f ∈ {lab, val, att}.
– impactedNodes(e) = {p}.

• e = removeLeaf(p) for p = ϵ, p ∈ LeafNodes(D0). We require that
att0(p) = ∅.

– D1 = ∅.
– lab1, val1, att1 are not defined anywhere.

53

– impactedNodes(e) = {p}.

• e = renameLabel(p, n) for p ∈ D0 and n ∈ E as a node label (not
necessarily n ∈ attsDomain(D0)), supposing that n ̸= lab0(p).

– D1 = D0.

– ∀w ∈ [D0 \ {p}]:
· f1(w)← f0(w) for f ∈ {lab, val, att}.

– For a position p we define:

· lab1(p) = n.

· If lab1(p) = data, then val1(p) = ⊥.
· If lab1(p) ̸= data and lab0(p) = data, then att1(p) = ∅.
· If lab1(p) ̸= data and lab0(p) ̸= data, then att1(p) = att0(p).

– impactedNodes(e) = {p}.

• e = addNode(p1, p2, n) for p1, p2 ∈ D0, p1, p2 ̸= ϵ, p1 = u.i, p2 = u.j,
where u ∈ N∗

0 and i, j ∈ N0, i ≤ j. Next n ∈ E, n ̸= data is a node label
(not necessarily n ∈ attsDomain(D0)).

– D1 = [D0 \ ExpNodes(D0, p1)] ∪
[ShlNodes(D0, p2, j − i) ∪ PshNodes(D0, p1, j − i].

– ∀w ∈ [D0 \ ExpNodes(D0, p1)]:

· f1(w)← f0(w) for f ∈ {lab, val, att}.
– For a newly added node on position p1:

· lab1(p1) = n

· If lab1(p1) = data, then val1(p1) = ⊥
· If lab1(p1) ̸= data, then att1(p1) = ∅

– ∀(u.i.k.v) ∈ PshNodes(D0, p, j − i) with appropriate k, v:

· f1(u.i.k.v)← f0(u.(i+ k).v) for f ∈ {lab, val, att}.
– ∀(u.(k − s).v) ∈ ShlNodes(D0, p, s− 1) with appropriate k, v:

· f1(u.(k − s).v)← f0(u.k.v) for f ∈ {lab, val, att}.
– impactedNodes(e) = {u.k | k ∈ N0, i ≤ k ≤ j}.

• e = addNode(p1, p2, n) for p1, p2 = ϵ, ϵ ∈ D0 and n ∈ E, n ̸= data is a
node label (not necessarily n ∈ attsDomain(D0)).

– D1 = {0.w | w ∈ D0} ∪ {ϵ}.
– ∀w ∈ D0:

· f1(0.w)← f0(w) for f ∈ {lab, val, att}.
– For a newly added root node:

· lab1(ϵ) = n.

54

· att1(ϵ) = ∅.
– impactedNodes(e) = {ϵ}.

• e = removeNode(p) for p ∈ D0, p /∈ LeafNodes(D0), p ̸= ϵ. We assume
that s = fanOut(p) and p = u.i, where u ∈ N∗

0 and i ∈ N0.

– D1 = [D0 \ ExpNodes(D0, p)] ∪
[ShrNodes(D0, p, s− 1) ∪ PulNodes(D0, p)].

– ∀w ∈ [D0 \ ExpNodes(D0, p)]:

· f1(w)← f0(w) for f ∈ {lab, val, att}.
– ∀(u.(i+ k).v) ∈ PulNodes(D0, p) with appropriate k, v:

· f1(u.(i+ k).v)← f0(u.i.k.v) for f ∈ {lab, val, att}.
– ∀(u.(k + s).v) ∈ ShrNodes(D0, p, s− 1) with appropriate k, v:

· f1(u.(k + s).v)← f0(u.k.v) for f ∈ {lab, val, att}.
– impactedNodes(e) = {p}.

• e = removeNode(p) for p = ϵ, p ∈ D0, p /∈ LeafNodes(D0). We require
that fanout(p) = 1.

– D1 = {v | 0.v ∈ D0, v ∈ N∗
0}.

– ∀(0.v) ∈ D0 with appropriate v:

· f1(v)← f0(0.v) for f ∈ {lab, val, att}.
– impactedNodes(e) = {p}.

Description of Defined Operations

The first defined operation addLeaf inserts a new leaf node at a position, that
allows such insertion. We require, that we do not nest this new leaf under a
data node, since data nodes cannot be internal nodes. The label of a new node
can be equal to some already known name, it can be either a newly introduced
name or, finally, it can be a special name data, that is used for data nodes.
In this case, the value is set to the undefined value ⊥, since we are actually
not interested in values themselves in our XML trees model and correction
approach.

The removeLeaf operation deletes the existing leaf node from the data
tree. Before we can apply such operation, the given node cannot have any
defined attribute. These attributes have to be removed before.

The third operation renameLabel lies in the replacement of a node label.
If we want to apply this operation, we really have to change the label. It is
not allowed to replace it with the same original value. Furthermore we have
to follow the condition for data nodes, since this operation as a consequence
allows also changing the type of a node from a data node to an element node
and vice versa.

55

The last but one operation addNode stands for the insertion of a new
internal node. For doing it, we have to specify the valid range of sibling nodes,
which will be moved one level lower and later on will be nested under a newly
added internal node with a specified label. Since it is expected that this range
is not empty, this label cannot be equal to data. The insertion of an internal
node with no descendants, i.e. specification of an empty range, is not permitted,
because it would lead to the standard leaf node insertion.

Finally, we will shortly describe the removeNode operation. It causes the
deletion of an internal node and later on the relocation of all its original child
nodes by one level upwards between sibling nodes of the former parent. This
operation requires, that the base node is really an internal node, otherwise it
would take the same effect as a simple remove leaf node operation. To make
the description complete, before the node is deleted, all attributes must be
removed.

4.2.2 Edit Operations for Attributes

The second type of edit operations are those for manipulation with attributes.
Their definition is the subject of this subsection.

Formal Model of Operations

Definition 4.4 (Attribute Edit Operations). Given data trees T0 and T1 from
Definition 4.2, we define the following attribute edit operations.

Furthermore we define a function impactedAtts assigning to each attribute
edit operation e a set of names of impacted attributes.

• e = addAttribute(p, a) for p ∈ D0, p /∈ DataNodes(D0) and a ∈ A is
an attribute name. We require that (a, v) /∈ att0(p) for some appropriate
v ∈ V.

– D1 = D0.

– ∀w ∈ [D0 \ p]:
· f1(w)← f0(w) for f ∈ {lab, val, att}.

– For a position p we define:

· lab1(p) = lab0(p).

· att1(p) = att0(p) ∪ {(a,⊥)}.
– impactedNodes(e) = {p}.
– impactedAtts(e) = {a}.

• e = removeAttribute(p, a) for p ∈ D0, p /∈ DataNodes(D0) and a ∈ A is
an attribute name. We require that (a, v) ∈ att0(p) for some appropriate
v ∈ V.

– D1 = D0.

56

– ∀w ∈ [D0 \ p]:
· f1(w)← f0(w) for f ∈ {lab, val, att}.

– For a position p we define:

· lab1(p) = lab0(p).

· att1(p) = att0(p) \ {(a, v)}.
– impactedNodes(e) = {p}.
– impactedAtts(e) = {a}.

• e = renameAttribute(p, a0, a1) for p ∈ D0, p /∈ DataNodes(D0), a0,
a1 ∈ A, a0 ̸= a1 are attribute names. We require that (a0, v0) ∈ att0(p)
and (a1, v1) /∈ att0(p) for some appropriate v0, v1 ∈ V.

– D1 = D0.

– ∀w ∈ [D0 \ p]:
· f1(w)← f0(w) for f ∈ {lab, val, att}.

– For a position p we define:

· lab1(p) = lab0(p).

· att1(p) = [att0(p) \ {(a0, v0)}] ∪ {(a1, v0)}.
– impactedNodes(e) = {p}.
– impactedAtts(e) = {a0, a1}.

Description of Defined Operations

Edit operations for attributes are quite simpler than operations for nodes. This
is first of all because we do not change the structure of a given data tree, when
we apply attribute edit operations. We only affect the set of pairs composed
by attribute names and their values.

The first operation addAttribute inserts a new distinct attribute, opera-
tion removeAttribute deletes the existing attribute and, finally, the operation
renameAttribute changes the name of some existing attribute. We are not
forced to use only established words for new attribute names and generally we
are not interested in data values of attributes. Thus we preserve them as long
as they can be preserved and for newly added attributes we use a special value
⊥ similarly to nodes themselves and their values.

4.2.3 Costs and Sequences of Operations

Our main goal is to find repairs of data trees that are as close to original trees
as they can be. Thus we need to introduce some method of measuring these
distances and a model for construction of more complex operations.

57

Sequences of Operations and Segmentation

The following definition sets up the notion of a sequence of edit operations,
which can be understood as a next step towards update operations, which are
built by a composition of edit operations.

Definition 4.5 (Sequence of Edit Operations). Given some n ∈ N0, let T0, . . . ,
Tn be data trees and e1, . . . , en edit operations, such that ∀i ∈ N0, 0 ≤ i < n:

Ti
ei+1−−→ Ti+1.

We say that T0
e1−→ T1 . . . Tn−1

en−→ Tn, simply denoted by T0
S−→ Tn for S

= ⟨e1, . . . , en⟩, is a sequence of edit operations transforming T0 into Tn. A
sequence is empty, if n = 0.

Let k0, k1 ∈ N0, 1 ≤ k0 ≤ k1 ≤ n. Then a sequence ⟨ek0, . . . , ek1⟩ is a
subsequence of the sequence S.

It will be shown in the next subsection, that update operations are in fact
those sequences of edit operations that satisfy some restrictions. The notion of
sequences segmentation helps us to describe such restrictions.

Definition 4.6 (Sequence Segmentation). Let S = ⟨e1, . . . , en⟩ be a non-
empty sequence of edit operations transforming T0 into Tn, let s ∈ N and
1 = i0, i1, . . . , is−1, is = n+ 1, ∀k ∈ N0, 0 ≤ k < s: ik ≤ ik+1.

We say, that P = ⟨P1, . . . , Ps⟩ is a segmentation of the sequence S, if ∀k,
0 ≤ k < s: Pk = ⟨ei(k−1)

, . . . , e(ik)−1⟩ is a subsequence called segment. Positive
number s represents the number of segments.

If S is an empty sequence, then P = ⟨⟩ or the segmentation can lead to
any number of empty segments.

Segments of edit operations are therefore ordinary subsequences of edit
sequences. For technical reasons we also admit empty segments.

Costs of Operations and Sequences

Authors in [51, 52] based their idea of measuring edit distance on a definition
of partial ordering of data trees, which is derived from the structure of trees
themselves. This approach may be interesting from the theoretical point of
view, but we have inclined to the model used for example in [14], i.e. a model
based on costs assigned to performed operations.

Definition 4.7 (Edit Operations Costs). Given an edit operation e, we define
cost(e) to be a function assigning to an operation e its non-negative cost.

The only restriction we put on the cost function is the non-negative range
of values. We allow zero value, but negative values could potentially trigger
problems in a phase of data tree correction. Thus we prohibit them.

It can be expected, that prospective implementations would pay nontrivial
attention on searching the ideal configuration of the cost function. Moreover

58

they can also provide configurable environment, leaving the final adjustment
up to the user.

The cost function can generally assign different values for different opera-
tions. However, it is a good idea to follow for example cost(renameLabel) ≤
cost(addLeaf) + cost(removeLeaf) restriction. In our approach we assume,
that the cost function always returns value 1. The formal framework however
does not assume this simplification. Having the cost function defined on single
operations, we can extend this idea to sequences of edit operations.

Definition 4.8 (Cost of edit operations sequence). Assume that S = ⟨e1, . . . ,
en⟩ is a sequence of edit operations transforming a data tree T0 into a data tree
Tn. We define a cost of a sequence of edit operations to be a function cost(S)
=

∑n
i=1 cost(ei). If n = 0, we define cost(S) = 0.

The cost of a sequence of edit operations is therefore equal to the sum of
costs of all operations in such sequence.

4.3 Update Operations

Whereas edit operations are deterministic functions with a local impact on
data trees, update operations are sequences of these primitive operations. But
not each sequence can be treated as an update operation. We say, that the
given sequence is an update operation of corresponding type, if that sequence
fulfils all conditions that the definition of such update operation requires.

Assume that we have, for example, an update operation insertTree, which
inserts a subtree into a data tree. Informally, any sequence doing this task
correctly, is treated as an update operation insertTree. As a consequence,
there can be many those sequences.

In order to restrain some strange behaviour, we restrict the description of
several update operations more than it could be expected from the first point
of view. For example it is not possible to use repeatedly nested operation
for deleting internal nodes to achieve the deletion of the complete original
subtree, because the same effect can be reached using the standard operation
for deleting whole subtrees.

Definition 4.9 (Update Operations). Let U = ⟨e1, . . . , en⟩ be a sequence of
edit operations transforming a given data tree T0 = (D0, lab0, val0, att0) into

a new data tree Tn = (Dn, labn, valn, attn), thus in other words T0
U−→ Tn. We

generally admit empty sequences to be update operations.
The sequence U is an update operation o, if it satisfies conditions of some

elementary update operation or complex update operation.
Furthermore we define baseNode(o) to be a function, that assigns exactly

one value from N∗
0 to each update operation o.

We have two basic types of update operations. We will start with update
operations for attributes. Their purpose is to provide transformations capable

59

of the complete correction of attributes in a given node. The second type
represents complex update operations which perform structural modifications
and which automatically involve invocation of potentially required elementary
update operations for attributes.

Even the following definitions do not explicitly recall this fact, it is always
required that a given sequence of edit operations is correctly defined. This
means that each operation in a chain must be feasible, thus all prerequisites
are correctly fulfilled in each step of the chain.

4.3.1 Elementary Update Operations

The first type of update operations represents elementary operations for ma-
nipulating attributes in a selected node. We have three basic strategies, that
we can use depending on the initial conditions and with the connection to
complex update operations in order to correct attributes.

Formal Model of Operations

Definition 4.10 (Elementary Update Operations). Given a sequence U = ⟨e1,
. . . , en⟩ and data trees T0 and Tn from Definition 4.9, we define the following
elementary update operations o:

• o = insertAttributes(p) for p ∈ N∗
0:

– p ∈ D0.

– ∀k ∈ N, 1 ≤ k ≤ n: ek = addAttribute(p, ak) for some ak ∈ A as
an attribute name (optionally ak ∈ attsDomain(Dk−1)).

– baseNode(o) = {p}.

• o = deleteAttributes(p) for p ∈ N∗
0:

– p ∈ D0.

– ∀k ∈ N, 1 ≤ k ≤ n: ek = removeAttribute(p, ak) for some ak as an
attribute name, (ak, v) ∈ att(p).

– baseNode(o) = {p}.

• o = repairAttributes(p) for p ∈ N∗
0:

– p ∈ D0.

– ∀k ∈ N, 1 ≤ k ≤ n: ek satisfies one of the following:

· ek = addAttribute(p, ak) for some ak ∈ A as an attribute name
(not necessarily ak ∈ attsDomain(Dk−1)).

· ek = removeAttribute(p, ak) for some existing attribute name
ak ∈ attsDomain(Dk−1).

60

· ek = renameAttribute(p, (a0)k, (a1)k) for some attribute names
(a0)k such that ((a0)k, v) ∈ att(p) and (a1)k ∈ A not necessarily
from attsDomain(Dk−1).

– Sequence U is without redundancies, i.e. ∀i, j ∈ N, 1 ≤ i < j ≤ n:
impactedAtts(ei) ∩ impactedAtts(ej) = ∅.

– baseNode(o) = {p}.

Description of Defined Operations

If we have inserted a completely new node into a data tree, we need to add
all required attributes as well, in order to achieve local validity of this node.
This is the meaning of the first update operation called insertAttributes. Con-
versely, the operation deleteAttributes removes all existing attributes from a
given node. This operation has to be invoked before the given node itself can
be removed from a tree. Finally, the operation repairAttributes attempts to
correct the existing node, thus add missing and remove invalid attributes.

It is important to say that the particular implementation of these strategies
is up to the correction routine. We have said that the operation deleteAttributes
will be used in situations, when we need to delete all attributes from a given
node, but the definition do not mention this demand.

Furthermore the definition also does not handle the order of such attribute
edit operations in a sequence. It is easy to find out, that since attributes are
modelled using a set paradigm, ordering is not relevant. Multiple sequences can
therefore exist and bring the same effect applied on a node. We only require
that we do not manipulate with one attribute repeatedly. This demand is
broadly legitimate, because one edit operation on an attribute would cancel
outcome of the previously performed one.

4.3.2 Complex Update Operations

Whereas elementary update operations handle only attributes, complex up-
date operations manipulate both with the structure of a data tree and with
attributes. The following definition gives the enumeration of all proposed com-
plex operations. It is suitable to recall, that sequences of update operations
can generally be empty.

Formal Model of Operations

Definition 4.11 (Complex Update Operations). Given a sequence U = ⟨e1,
. . . , en⟩ and data trees T0 and Tn from Definition 4.9, we define the following
complex update operations o:

• o = insertSubtree(p) for p ∈ N∗
0:

– p ∈ D0 ∪ PosNodes(D0).

– ∃P = ⟨P1, . . . , Ps⟩ segmentation of U for s ≥ 2 such that:

61

· P1 = ⟨e1⟩ and e1 = addLeaf(p, l) for some appropriate node
label l ∈ E.
· P2 = insertAttributes(p), where P2 can be empty.

· ∀k ∈ N, 3 ≤ k ≤ s: Pk = insertSubtree(p.(k − 3)).

– baseNode(o) = {p}.

• o = deleteSubtree(p) for p ∈ N∗
0:

– p ∈ D0.

– ∃P = ⟨P1, . . . , Ps⟩ segmentation of U for s ≥ 2 such that:

· ∀k ∈ N, 1 ≤ k ≤ (s− 2): Pk = deleteSubtree(p.0).

· Ps−1 = deleteAttributes(p), where Ps−1 can be empty.

· Ps = ⟨en⟩ and en = removeLeaf(p).

– baseNode(o) = {p}.

• o = repairSubtree(p) for p ∈ N∗
0:

– p ∈ D0.

– ∃P = ⟨P1, . . . , Ps⟩ segmentation of U for s ≥ 1 such that:

· P1 = repairAttributes(p), where P1 can be empty.

· ∀k ∈ N, 2 ≤ k ≤ s: Pk is one of the following update operations
for some appropriate uk, vk ∈ N0 \ {ϵ}:
· insertSubtree(p.uk), deleteSubtree(p.uk),

· repairSubtree(p.uk), renameSubtree(p.uk),

· pushSiblings(p.uk, p.vk) or pullSiblings(p.uk).

· ∀k ∈ N, 2 ≤ k < s: baseNode(Pk) ≤ baseNode(Pk+1).

– baseNode(o) = {p}.

• o = renameSubtree(p) for p ∈ N∗
0:

– p ∈ D0.

– ∃P = ⟨P1, . . . , Ps⟩ segmentation of U for s ≥ 2 such that:

· P1 = ⟨e1⟩ and e1 = renameLabel(p, l) for some appropriate
node label l ∈ E.
· P2 = repairAttributes(p), where P2 can be empty.

· ∀k ∈ N, 3 ≤ k ≤ s: Pk is one of the following update operations
for some appropriate uk, vk ∈ N0:

· insertSubtree(p.uk), deleteSubtree(p.uk),

· repairSubtree(p.uk), renameSubtree(p.uk),

· pushSiblings(p.uk, p.vk) or pullSiblings(p.uk).

· ∀k ∈ N, 3 ≤ k < s: baseNode(Pk) ≤ baseNode(Pk+1).

– baseNode(o) = {p}.

62

• o = pushSiblings(p1, p2) for p1, p2 ∈ N∗
0:

– p1, p2 ∈ D0. Either p1, p2 = ϵ or p1 = p.i, p2 = p.j for some p ∈ N∗
0

and i, j ∈ N0, i ≤ j.

– ∃P = ⟨P1, . . . , Ps⟩ segmentation of U for s ≥ 2 such that:

· P1 = ⟨e1⟩ and e1 = addNode(p1, p2, l) for some appropriate
node label l ∈ E.
· P2 = repairAttributes(p1), where P2 can be empty.

· ∀k ∈ N, 3 ≤ k ≤ s: Pk is one of the following update operations
for some appropriate uk, vk ∈ N0:

· insertSubtree(p.uk), deleteSubtree(p.uk),

· repairSubtree(p.uk), renameSubtree(p.uk),

· pushSiblings(p.uk, p.vk) or pullSiblings(p.uk).

· ∀k ∈ N, 3 ≤ k < s: baseNode(Pk) ≤ baseNode(Pk+1).

– baseNode(o) = {p1}.

• o = pullSiblings(p) for p ∈ N∗
0, p ̸= ϵ, p = u.i for some u ∈ N∗

0 and
i ∈ N0:

– p ∈ D0, p /∈ LeafNodes(D0).

– ∃P = ⟨P1, . . . , Ps⟩ segmentation of U for s ≥ 3 such that:

· P1 = deleteAttributes(p)

· P2 = ⟨ej⟩ and ej = removeNode(p) for some j ∈ N.
· ∀k ∈ N, 3 ≤ k ≤ s: Pk is one of the following update operations
for some appropriate jk ∈ N0:

· insertSubtree(u.jk), deleteSubtree(u.jk),
· repairSubtree(u.jk), renameSubtree(u.jk),

· pullSiblings(u.jk).
· Let f0 = fanOut(u) in D0 and fn = fanOut(u) in Dn. Then
∀jk from the previous condition the following formula i ≤ jk ≤
i+ (fn − f0)− 1 must hold.

· ∀k ∈ N, 3 ≤ k < s: baseNode(Pk) ≤ baseNode(Pk+1).

– baseNode(o) = {p}.

• o = pullSiblings(p) for p = ϵ:

– p ∈ D0, p /∈ LeafNodes(D0).

– ∃P = ⟨P1, . . . , Ps⟩ segmentation of U for s = 3 such that:

· P1 = deleteAttributes(p).

· P2 = ⟨ej⟩ and ej = removeNode(p) for some j ∈ N.
· P3 is one of the following update operations:

· repairSubtree(p), renameSubtree(p),

· pullSiblings(p).
– baseNode(o) = {p}.

63

Description of Defined Operations

The first update operation is insertSubtree. It causes the insertion of a whole
subtree on a given suitable position of the original data tree. The first step is
always the addition of a root node of such subtree using the edit operation for
adding leaf nodes. After it we optionally insert required attributes to this node
and then we can continue in a top-down and left to right manner, recursively
processing the rest of the tree to be inserted.

The operation deleteSubtree removes the entire subtree on a given position
from a data tree. This deletion is performed in a left to right and bottom-up
manner. Sibling nodes are thus removed from the left and we cannot remove a
node before all its child nodes are already removed. The last but one step at a
given level is therefore the removal of attributes and the last step deletes the
node itself.

Operations renameSubtree and repairSubtree are practically identical, ex-
cept that the former one invokes the rename label edit operation on a given
position, whereas the latter one does not allow this modification. Either way
the next step is the correction of attributes using the repair attributes elemen-
tary operation. Child nodes of the given node are always processed in a left
to right manner and in case of these two operations we are not limited, which
operations can be used recursively.

The operation pushSiblings selects the non-empty subsequence of sibling
nodes, pushes them one level lower and inserts a new internal node into the
tree on the former position of the first node in such sequence. This new node
becomes a new parent node for these pushed siblings. The first step is always
the insertion of a new parent followed by the insertion of attributes. All pushed
nodes are subsequently processed recursively in a left to right manner allowing
all defined update operations to be used.

Finally, the operation pullSiblings represents the deletion of an internal
node followed by lifting up its original child nodes one level higher. First we
need to remove potentially existing attributes and then we remove such internal
node from a tree using the remove node edit operation. The next step represents
processing of all fetched former child nodes. We handle them from left to right
and we only cannot use nested pushSiblings operation. This restriction is quite
strict, since the problem is in fact hidden in the consecutive application of the
push siblings operation on the whole sequence of pulled nodes, not its proper
subsequence.

General Problems of Update Operations

At first we recall once again, that all edit operations in a sequence must be
correctly defined. Thus restrictions in the previous definition are only general
and have to be respectively extended.

An update operation is by the definition a sequence of edit operations. Hav-
ing some sequence, we can inspect it and declare it to be the corresponding
update operation, if all declared conditions are fulfilled. The goal of update

64

operations is of course to provide the mechanism for corrections. Therefore,
it is better to insight update operations as transactions. The consistency re-
quirements are satisfied at the end, bud we cannot guarantee them inside the
transaction.

Our model of update operations is mainly derived from the approach pre-
sented in [14] and related papers, but there is a significant difference. Update
operations in this paper are defined deterministically in a way, how the pre-
sented correction algorithm works. Contrary to this attitude, our correction
routine generates repairing instructions, which are mapped to defined update
operations later on.

As already sketched in the previous paragraphs, we can permit modalities
in some of the introduced operations. Moreover we can also provide the config-
urable environment to the user, letting up to him which operations should be
used. But it is easy to see, that we need at least some minimal set of operations
to be allowed, in order to ensure the correction routine will always find repairs.

Another problem lies in the computation of repairs, i.e. finding sequences
reflecting introduced update operations. Both insertSubtree and pushSiblings
allows generation of potentially infinite subtrees. The correction routine itself
must restrict the semantics of these two operations and provide some sort of
mechanism preventing recursion without the bottom. Other update operations
do not cause this problem, since they only handle the existing finite information
stored in a given data tree.

4.3.3 Costs and Sequences of Operations

Analogously to edit operations and their sequences we can introduce the notion
of a sequence of update operations. Since updates are sequences of edit oper-
ations, sequences of update operations in fact represent ordinary sequences of
edit operations.

Sequences and Cost

Definition 4.12 (Sequence of Update Operations). Given some n ∈ N0, let T0,
. . . , Tn be data trees and o1, . . . , on are update operations, such that ∀i ∈ N0,

0 ≤ i < n: Ti
oi+1−−→ Ti+1. We say that T0

o1−→ T1 . . . Tn−1
on−→ Tn, simply

denoted by T0
U−→ Tn for U = ⟨o1, . . . , on⟩, is a sequence of update operations

transforming T0 into Tn.

Now we are able to easily extend the cost function notion to the cost of
sequences of update operations.

Definition 4.13 (Cost of Update Sequence). Assume that U = ⟨o1, . . . , on⟩ is
a sequence of update operations o1, . . . , on transforming a data tree T0 into a
data tree Tn. We define a cost of a sequence of update operations as a function
cost(U) =

∑n
i=1 cost(oi). If n = 0, we define cost(U) = 0.

65

Sequences Equivalence

It has already been outlined, that there can exist different update sequences
leading to the same target data tree. The first reason is hidden in the elemen-
tary update operations for attributes, because the nature of their occurrence
in elements is based on sets and sets are not ordered contrary to sequences.
We have therefore more possibilities how to arrange required attribute edit
operations into one segment representing an elementary update operation, but
the result will be the same.

However, we can obtain the same target data tree even if we use different
complex update operations. For example using the pullSiblings operation we
can achieve the complete subtree removal, but this removal can be done directly
via deleteSubtree. Although the result is in both cases the same, it is not a
good idea to treat such sequences as equivalent, since the correction intent
is not the same. In fact not only formally, but these two sequences of edit
operations can have different costs and thus they should be both considered.

The following definition introduces the update sequences equivalence rela-
tion reflecting the discussed opposing interests.

Definition 4.14 (Update Operations Equivalence). Two update operations e
= ⟨e1, . . . , en⟩ and f = ⟨f1, . . . , fn⟩ are equivalent, e ≡ f , if they are of the
same type, the same length n ∈ N0 and all the following conditions hold for a
given case of the update operation type.

For complex update operations we assume that Pe = ⟨Pe
1 , . . . , Pe

s ⟩ is the
segmentation for e and analogously Pf = ⟨Pf

1 , . . . , Pf
s ⟩ for f , where both Pe

and Pf conform to Definition 4.11.

• e = insertAttributes(pe) and f = insertAttributes(pf):
e = deleteAttributes(pe) and f = deleteAttributes(pf):
e = repairAttributes(pe) and f = repairAttributes(pf):

– pe = pf .

– ∃j1, . . . , jn ∈ N permutation of indices 1, . . . , n such that ∀i ∈ N,
1 ≤ i ≤ n: ei = fji.

• e = insertSubtree(pe) and f = insertSubtree(pf):

– pe = pf .

– e1 = f1 = addLeaf(pe, l) for some appropriate l ∈ E.
– Pe

2 ≡ P
f
2 .

– ∀k ∈ N, 3 ≤ k ≤ s: Pe
k ≡ P

f
k inductively.

• e = deleteSubtree(pe) and f = deleteSubtree(pf):

– pe = pf .

– ∀k ∈ N, 1 ≤ k ≤ (s− 2): Pe
k ≡ P

f
k inductively.

66

– Pe
s−1 ≡ P

f
s−1.

– en = fn = removeLeaf(pe).

• e = repairSubtree(pe) and f = repairSubtree(pf):

– pe = pf .

– Pe
1 ≡ P

f
1 .

– ∀k ∈ N, 2 ≤ k ≤ s: Pe
k ≡ P

f
k inductively.

• e = renameSubtree(pe) and f = renameSubtree(pf):

– pe = pf .

– e1 = f1 = renameLabel(pe, l) for some appropriate l ∈ E.
– Pe

2 ≡ P
f
2 .

– ∀k ∈ N, 3 ≤ k ≤ s: Pe
k ≡ P

f
k inductively.

• e = pushSiblings(pe1, p
e
2) and f = pushSiblings(pf1 , p

f
2):

– pe1 = pf1 and pe2 = pf2 .

– e1 = f1 = addNode(pe1, p
e
2, l) for some appropriate l ∈ E.

– Pe
2 ≡ P

f
2 .

– ∀k ∈ N, 3 ≤ k ≤ s: Pe
k ≡ P

f
k inductively.

• e = pullSiblings(pe) and f = pullSiblings(pf):

– pe = pf .

– Pe
1 ≡ P

f
1 .

– Assuming Pe
2 = (ej) and Pf

2 = (fj) for some j ∈ N:
ej = fj = removeNode(pe).

– ∀k ∈ N, 3 ≤ k ≤ s: Pe
k ≡ P

f
k inductively.

Our correction algorithm attempts to produce only mutually not equiva-
lent update sequences. Internally we in fact do not store completely unrolled
sequences of particular edit operations during the processing of provided data
tree, but we use compact data structures called repairs, which are not unrolled
until the phase of presenting found corrections.

Generated update sequences also do not contain redundancies, i.e. useless
operations which have no effect due to some another subsequent edit oper-
ations. For example at a given position in a data tree we can insert a com-
pletely new subtree and then immediately remove it. It is probable, that the
cost function would prevent these strange correction intents, but nonetheless
our definition of update operations do not allow these redundancies, because
we need always to process the tree from left to right. Once a new subtree is
inserted, there is no chance to remove it later on.

67

Data Tree Distance

Having completely introduced the model of update operations, we can define
the way, how distances between data trees and a data tree to tree language
are measured.

Definition 4.15 (Data Tree Distances). Assume that T1 and T2 are two data
trees and S is a set of all sequences of update operations capable to transform
T1 to T2. We define distance of T1 and T2 to be dist(T1, T2) = minS∈S cost(S).

Given a regular tree grammar G and the corresponding regular tree lan-
guage L(G), we define the distance between a tree T1 and language L(G) as
dist(T1, L(G)) = minT2∈L(G) dist(T1, T2).

The general idea is obviously to find those repairs of an invalid data tree
that are as close as possible to the original tree. However, the proposed cor-
rection algorithm is not able to produce all potentially existing repairs and
then choose the cheapest ones using the cost function, since for example the
subtree insertion connected with a recursive grammar or grammar with Kleene
star can lead to unlimited number of locally valid subtrees. This case can be
solved by the appropriately configured cost function, but the problem with
pushSiblings is more complicated.

As a consequence, the correction algorithm is generally not able to always
find repairs conforming to the distance of a given tree and provided grammar.

4.4 Correction Intents

Our correction algorithm is based on the top down processing of a provided
data tree. We start at the root node and using the general concept of divide
et impera we walk through the data tree towards individual leaf nodes. This
is the basic difference to the approach presented in [14], where only local tree
grammars are considered, but we also have another way how to generate re-
pairs.

Although the processing is motivated by the top down traversal, we actually
only invoke the correction routine at a given level of tree and then we need
to wait until repairs at descendant levels are evaluated. Hence, suppose that
we are in some node of a data tree. We first need to correct this node (e.g. by
changing its label), then we optionally need to correct its attributes (e.g. add
missing compulsory or remove not allowed ones) and then recursively process
all its child nodes.

Suppose that we have computed repairs for this sequence of child nodes,
then we combine these repairs with attribute repairing instructions and, finally
and optionally, with an instruction manipulating a given node itself. Then we
can encapsulate this repair and return it to the ascendant level of the recursion.

These repairs cannot be expressed directly using introduced edit or update
operations, since these operations generally require specifying a particular po-
sition in a tree. Our algorithm however attempts to generate at once all possible

68

closest repairs, and thus it is impossible to know exact positions that would
be valid for all found repairs.

In order to solve this problem, we will introduce repairing instructions.
They are connected to introduced edit operations, but do not contain explicitly
specified positions. Having one particular sequence of repairing instructions,
we can derive these positions implicitly. Therefore we are able to translate such
sequence into a standard sequence of edit operations that can be offered to the
user or immediately used to modify the source tree.

As already outlined, the correction algorithm starts the processing at the
root node and then recursively invokes the correction of descendant levels.
Being at a particular level, we can generally choose from more possible actions
looking forward to find the right repair. These actions are called correction
intents and can be compared with update operations.

The correction approach in [14] tries to dynamically generate repairs for
a sequence of sibling nodes one by one, recursively invoking the processing of
their subtrees. In contrast we generate at each level a correction multigraph,
which is able to statically describe all possible repairs. Then we only need to
find the shortest paths in this multigraph according to the given cost function.

4.4.1 Grammar Context

The purpose of the grammar context notion is to provide an encapsulation of
conditions from a single type tree grammar, that should be respected by nodes
in a data tree.

Local Context of Tree Grammar

Having a single type tree grammar, we are assured that starting nonterminal
symbols do not compete with each other and also that nonterminal symbols in
a regular expression of each production rule do not compete with each other.
As a consequence, if we are in a given node of a data tree and we have already
decided, that this node and its child nodes should conform to one particular
production rule, we are able to uniquely assign a nonterminal symbol to each
child node, i.e. to its label viewed as a terminal symbol. Therefore we are
able to choose right one production rule that should be used to restrict the
given child node content. The only problem is that there can be a node with
label, which is not permitted in a given context. Then we need to use special
nonterminal symbol and later on we will be forced to correct such node.

Definition 4.16 (Grammar Context). Let G = (N , T , A, S, P) be a single
type tree grammar and R = [aR, CR, OR, rR → nR] be a production rule from
the set P . We define CR to be a general context of the grammar G for the rule
R as a tuple CR = (aR, nR, Nc, Pc, map, r, C, O) such that:

• aR is equal to ⊥ or to a terminal symbol from R.

• nR is equal to ⊥ or to a nonterminal symbol from R.

69

• Nc ⊆ N is a set of allowed nonterminal symbols, where
Nc = {n | n ∈ symbols(rR)}.

• Pc ⊆ P is a set of active production rules, where
Pc = {U | U = [aU , CU , OU , rU → nU] and nU ∈ Nc}.

• map is a partial function T → Nc ∪ {⊥} such that ∀ U ∈ Pc, U = [aU ,
CU , OU , rU → nU] we define map(aU) = nU and for all other aX ∈ T
we define map(aX) = ⊥ supposing that ⊥ /∈ N is a special symbol.

• r = rR, C = CR and O = OR.

Next, we define a starting context to be C• = (⊥, ⊥, Nc, Pc, map, r•, ∅,
∅), where Nc = S and both Pc and map are defined in the same way as for
a general context. Expression r• is a starting regular expression and is equal
to (n1| . . . |ns), where s = |S|, ∀i ∈ N, 1 ≤ i ≤ s, ni ∈ S and ∀i, j ∈ N,
1 ≤ i < j ≤ s, ni ̸= nj.

Finally, we define an empty context to be C∅ = (⊥, ⊥, ∅, ∅, map, r∅, ∅,
∅), where r∅ = ∅ and map is defined in the same way as for a general context,
i.e. ∀aX ∈ T we define map(aX) = ⊥.

The purpose of the grammar context is to encapsulate conditions, which
should be used in order to validate a given node of a data tree. The context
contains a set of allowed nonterminal symbols, mapping function from node
labels to these nonterminals and, finally, a subset of production rules to be
used for child nodes.

Due to the last restriction in Definition 2.14, there cannot be two pro-
duction rules in a given grammar with the same terminal and concurrently
nonterminal symbol. As a consequence each grammar context is uniquely de-
termined by the pair of a terminal aR and nonterminal symbol nR. Using this
pair we can uniquely determine one particular production ruleR in a grammar
and thus to derive its context CR.

For technical reasons we have defined two special grammar contexts. The
starting context describes the context for a root node of a data tree and the cor-
responding regular expression represents the alternation of all allowed starting
nonterminals. The empty context is used e.g. in situations, when we need to
delete whole subtrees, that can generally contain unknown labels, thus terminal
symbols for which we cannot known the mapping to corresponding nontermi-
nals and production rules.

Node Sequence Imprint

Having defined the function for mapping terminal labels to nonterminal sym-
bols of the grammar, we can use it for sequences of nodes.

Definition 4.17 (Imprint of a Sequence of Nodes). Let T = (D, lab, val, att)
be a data tree and u = ⟨u1, . . . , un⟩ a sequence of nodes for some n ∈ N0 such
that ∀i ∈ N, 1 ≤ i ≤ n, ui ∈ D.

70

Given a general, starting or empty context C = (aR, nR, Nc, Pc, map, r,
C, O) of a grammar G, we define an imprint of a sequence u of nodes in the
context C, denoted by imprint(u), to be a word over an alphabet Nc such that
imprint(u) = m1, . . . , mn, where mi = map(lab(ui)).

Given a grammar context and a sequence of nodes, usually sequence of all
sibling nodes of a given parent node, the imprint of this sequence represents a
word from nonterminal symbols mapped from element labels.

Finally, we will shortly describe the meaning of ⊥ symbol. It is a special
nonterminal symbol and it is used in situations, when we are not able to map
a given node label to nonterminal symbol, since this label is not allowed by
the schema itself, or is only not allowed in a given context.

4.4.2 Repairing Instructions and Repairs

Suppose that the correction algorithm at a given level of recursive processing
finds the best suitable repairs. It has been explained, that the goal of our
algorithm is to find all these repairs, but the problem is, that applying each
individual found repair, we can obtain a subtree with a different fan-out. Thus
it is impossible to elegantly describe explicit positions for all operations in
found repairs. And we even do not need them.

On that account we use repairing instructions, which always assume the
processing of a given sequence of nodes from left to right, and, therefore, can
be later on easily translated into the already introduced set of edit or update
operations respectively.

Repairing Instructions

Having addAttribute, removeAttribute and renameAttribute edit operations
for attributes and addLeaf , removeLeaf , renameLabel, addNode and remove-
Node edit operations for nodes, we can introduce the corresponding set of re-
pairing instructions. Their meaning is equivalent to that defined in the context
of edit operations.

Definition 4.18 (Repairing Instructions). We define the following attribute
repairing instructions, for some appropriate a, a0 and a1 ∈ A:

• (addAttribute, a).

• (removeAttribute, a).

• (renameAttribute, a0, a1).

Next, we define the following node repairing instructions, for some appro-
priate n ∈ E and i ∈ N:

• (addLeaf, n).

• (removeLeaf).

71

• (renameLabel, n).

• (addNode, n, i).

• (removeNode).

For each repairing instruction we define cost to be a function returning the
same value as the cost function of corresponding edit operation.

Even though we did not mention it explicitly, we need to be able to translate
these instructions into valid edit operations, therefore the correction algorithm
must consider prerequisites defined for edit operations in order to produce only
suitable repairs.

Definition 4.19 (Sequences of Instructions). Having a sequence of repairing
instructions s = ⟨s1, . . . , sn⟩ for some n ∈ N0, we define cost of a sequence
of repairing instructions to be a function cost(s) =

∑n
k=1 cost(sk).

Two sequences of attribute repairing instructions are equivalent, if we can
reorder their items and obtain the identical sequences. This notion follows the
idea of equivalence of edit sequences.

Definition 4.20 (Equivalence of Attribute Instruction Sequences). Let s =
⟨s1, . . . , sn⟩ and t = ⟨t1, . . . , tn⟩ be two sequences of attribute repairing in-
structions for some n ∈ N0. We say that s and t are equivalent, s ≡ t, if ∃j1,
. . . , jn ∈ N permutation of indices 1, . . . , n such that ∀i ∈ N, 1 ≤ i ≤ n: si =
tji.

Repairs for Attributes

When we are inserting a new node into a data tree, we need to add all compul-
sory attributes. Analogously when we are deleting a node, we need to remove
all its attributes. In a situation we are correcting an existing node, we need
to add those compulsory attributes, which are missing, and remove those at-
tributes, that are not allowed.

Definition 4.21 (Attribute Repairs). Assume that C, O ⊂ A are sets of
names of required and optional attributes respectively and that P is a set of
existing attributes, i.e. pairs of the form (a, v), a ∈ A, v ∈ V conforming to
the specification of the att function in Definition 2.6.

If P is provided, we derive E = {a | ∃v ∈ V, (a, v) ∈ P}. We define the
following attribute repairs as pairs (R,A), where R, A ⊂ A and:

• insertAttributes(C) represents (∅, C).

• deleteAttributes(P) represents (E, ∅).

• repairAttributes(P,C,O) represents (E \ (C ∪O), C \ E).

72

Assuming that ca is the cost of addAttribute, cr of removeAttribute and
cn of renameAttribute repairing instruction, we define a cost to be a function
returning the minimal cost of all sequences of attribute repairing instructions
capable to correct attributes of a given node:

• If cn < ca + cr, then cost = max(0, |R| − |A|) ∗ cr +
max(0, |A| − |R|) ∗ ca + min(|R|, |A|) ∗ cn.

• If cn > ca + cr, then cost = |R| ∗ cr + |A| ∗ ca.

• If cn = ca+cr, then we can define cost using any of two previous formulae,
since the returned values will always be the same.

Repair containers are generally data structures that are capable to store all
corrections, thus sequences of repairing instructions, subsequently translated
to sequences of edit operations. This however does not mean, that we need to
store all these sequences explicitly, we only need to store the information, from
which we can later on produce such sequences.

In case of repairs for attributes we can therefore store only two sets of at-
tributes. This is useful, because especially repairAttributes can produce rather
large number of possible sequences.

Repairs for Nodes

A repair for a node represents a simple data structure, that only stores one
optional repairing instruction meeting the criteria of corresponding correction
intent.

Definition 4.22 (Node Repairs). If relevant, assume that n ∈ E and i ∈ N.
We define the following node repairs as sequences of repairing instructions:

• insertSubtree(n) represents ⟨(addLeaf, n)⟩.

• deleteSubtree() represents ⟨(removeLeaf)⟩.

• repairSubtree() represents ⟨⟩.

• renameSubtree(n) represents ⟨(renameLabel, n)⟩.

• pushNodes(n, i) represents ⟨(addNode, n, i)⟩.

• pullNodes() represents ⟨(removeNode)⟩.

Furthermore, we define a cost to be a function returning the overall cost
of a node repair, i.e. for a node repair R = ⟨r1, . . . , rn⟩ we define cost(R) =∑n

k=1 cost(rk).

73

Repairs for Trees

We have already introduced repairs for attributes and nodes, now we are first
going to discuss repairs for sequences of nodes and after it repairs for correction
intents. The only problem is that we currently do not have defined all required
notions. Thus the following definitions will be tentative and will be elaborated
later on with the knowledge of formally introduced correction intents.

A repair of a sequence of nodes stores the information describing all poten-
tial sequences of repairing instructions capable to correct a given sequence of
nodes into a locally valid data tree.

Definition 4.23 (Node Sequence Repair). We tentatively define a node se-
quence repair to be a structure, that is capable to store repairs for a given
sequence of nodes. It will be shown that this structure corresponds to a repair-
ing multigraph.

Each intent repair corresponds to particular correction intent and encap-
sulates sequences of repairing instructions correcting the inspected node and
its entire subtree.

Definition 4.24 (Correction Intent Repair). We tentatively define a repair
for a given correction intent to be a structure containing a node repair, an
attribute repair and optionally a node sequence repair.

Depending on the type of the associated intent, we define a cost to be a
function returning the overall cost of all involved repairs.

The correction algorithm starts at the root node and proceeds subtrees of
its child nodes recursively. When we move one level lower towards leaf nodes,
we follow the idea of selected correction intents. When we are backtracking, we
gather proposed corrections and in a form of a repair we pass it back towards
the root node.

4.4.3 Correction of Data Trees

Being at a particular level of recursion, beside other we are given a sequence
of nodes to process. Usually this sequence corresponds to all child nodes of a
given parent node. But in case of the pull update operation, we can fetch all
grandchild nodes and pull them at the level of their former parent.

Generally we can say that we have to process a given sequence with some
other restrictions in order to find the best suitable repairs, thus sequences of
repairing instructions capable to achieve a valid tree. We do not generate these
sequences directly, but we choose a suitable action, which can be performed
with a given node or a sequence of nodes, and then recursively repair its subtree
or subtrees respectively.

These possible actions are called correction intents and their model is for-
mally introduced in the following definition. Except the correct, they all
correspond to already introduced update operations. Even their purpose is the

74

same, formally there are a few differences. First of all, correction intents are
more assignment to the recursive subproblem rather than the particular speci-
fication of a sequence of operations. The subproblem is described, then solved
and only then we are able to provide via repair structures particular sequences
of operations. And in fact not operations, but repairing instructions, which
first need to be translated, as already sketched.

Model of Correction Intents

First, we will provide the general description of correction intents. They can be
seen from two levels of adjacent recursion levels differently in a way that each
intent is represented by a tuple from which the first few parameters describe
the situation at a level that decided to create that intent and the remain-
ing parameters describe the subproblem to be solved at the nested level of
recursion.

Definition 4.25 (Correction Intents). Let us consider all the following as-
sumptions:

• T = (D, lab, val, att) is a data tree.

• u = ⟨u1, . . . , un⟩ is a sequence of nodes for some n ∈ N0 such that
∀i ∈ N, 1 ≤ i ≤ n, ui ∈ D.

• G = (N , T , A, S, P) is a single type tree grammar.

• C = (aR, nR, Nc, Pc, map, r, C, O) is a general, starting or empty
context of the grammar G.

• Ar = (Q, Nc, δ, q0, F) is the Glushkov automaton for r.

Next, assume that Y = {correct, insert, delete, repair, rename, push,
pull} is a set of correction intent types. The first one is a starting intent, all
remaining are recursive intents.

We define a correction intent to be any tuple I = (y, RN , RA, sI , qI ,
sE, QE, u

′, d′, C ′, f ′
S, f

′
T , q

′
S, Q

′
T , Y

′
a) which generally fulfils all the following

conditions:

• Items describing the correction intent:

– y ∈ Y is a type of the correction intent I.
– RN is a node repair.

– RA is an attribute repair.

– sI ∈ N0, sI ≤ n is an initial stratum.

– qI ∈ Q is an initial state in sI .

– sE ∈ N0, sE ≤ n is an ending stratum.

– QE ⊆ Q is a set of ending states in sE.

75

Only if y = correct, items RN , RA, sI , qI , sE and QE may not be
defined.

• Items describing the recursive processing:

– u′ = ⟨u′
1, . . . , u

′
n′⟩ is a sequence of nodes to be processed for some

n′ ∈ N0 such that ∀i ∈ N, 1 ≤ i ≤ n′, ui ∈ D.

– d′ ∈ N is a reached depth in a new data tree.

– C ′ = (a′R, n
′
R, N

′
c, P

′
c, map′, r′, C ′, O′) is a general, starting or

empty context of the grammar G. Then let Ar′ = (Q′, N ′
c, δ

′, q′0,
F ′) be the Glushkov automaton for r′.

– f ′
S ∈ {expanded, collapsed} indicates how to start.

– f ′
T ∈ {aggregated, separated} indicates how to terminate.

– q′S ∈ Q′ is a source state.

– Q′
T ⊆ Q′ is a set of target states.

– Y ′
a ⊂ Y is a set of allowed nested correction intent types.

If r′ = ∅, then we require that Q′
T = {q′0}. If f ′

T = separated, then QE

= Q′
T , and if f ′

T = aggregated, then |QE| = 1.

Particular restrictions for all introduced correction intent types are the subject
of two following definitions.

Correction intents in fact define the behaviour and possibilities of the cor-
rection algorithm itself. The tuple of the particular intent can be treated as
the assignment for the nested problem and the solution from this subproblem
is returned upwards in a form of an intent repair structure. The correction al-
gorithm processes the given sequence of nodes from left to right and attempts
to create new nested correction intents in the way the definition permits. Re-
turned repair structure should represent those sequences of repairing instruc-
tions, that can be translated into sequences of edit operations corresponding
to associated update operations.

Starting Correction Intent

Before we can define the set of recursive correction intents, we need to introduce
the special intent, called starting correction intent. This intent describes the
initiation of data trees correction.

Definition 4.26 (Starting Correction Intent). Let T = (D, lab, val, att) be
a data tree and G = (N , T , A, S, P) a single type tree grammar.

Assume that C• is the starting context of the grammar G and that Ar =
(Q, Nc, δ, q0, F) is the Glushkov automaton for r.

We define I• = (correct, RN , RA, sI , qI , sE, QE, u
′, d′, C ′, f ′

S, f
′
T , q

′
S,

Q′
T , Y

′
a) to be a starting correction intent, where:

76

• RN , RA, sI , qI , sE and QE are not defined.

• If D is not empty, then u′ = ⟨ϵ⟩, else u′ = ⟨⟩.

• d′ = 1.

• C ′ = C• = (a′R, n
′
R, N

′
c, P

′
c, map′, r′, ∅, ∅) for introduced a′R, n

′
R, N

′
c,

P ′
c, map′ and r′. Then let Ar′ = (Q′, N ′

c, δ′, q′0, F ′) be the Glushkov
automaton for r′.

• fS = expanded.

• fT = aggregated.

• qS = q′0.

• QT = F ′.

• Ya = Y \ {correct}.

Since this correction intent starts the entire processing of a data tree, first
six items in the tuple are not relevant, because there is no other recursion level
before this one.

Recursive Correction Intents

Although the definition of the Glushkov automaton supposes the nondeter-
ministic finite automaton, we require 1-unambiguous regular expressions for
content models of elements and thus the Glushkov automaton is deterministic.
We will harness this fact in the following definition of the allowed recursive
correction intents.

Definition 4.27 (Recursive Correction Intents). Let T = (D, lab, val, att)
be a data tree and G = (N , T , A, S, P) a single type tree grammar.

Assume that I = (y, RN , RA, sI , qI , sE, QE, u, d, C, fS, fT , qS, QT , Ya)
is an already defined correction intent, where u = ⟨u1, . . . , un⟩ is a sequence
of nodes of a tree D for some n ∈ N0, C = (aR, nR, Nc, Pc, map, r, C, O) is a
general, starting or empty context and Ar = (Q, Nc, δ, q0, F) is the Glushkov
automaton for r.

Furthermore, let m = imprint(u) = m1, . . . , mn be the imprint of the
sequence u in the context C.

Under the specified constraints we recursively define the following correction
intents:

• insert. ∀k ∈ N0, 0 ≤ k ≤ n in case of fS = expanded or 1 ≤ k ≤ n in
case of fS = collapsed, ∀qs ∈ Q, ∀x ∈ Nc such that δ(qs, x) is defined,
qt = δ(qs, x), we define a correction intent I ′ = (insert, R′

N , R
′
A, s

′
I ,

q′I , s
′
E, Q

′
E, u

′, d′, C ′, f ′
S, f

′
T , q

′
S, Q

′
T , Y

′
a), where:

– s′I = k, q′I = qs, s
′
E = k and Q′

E = {qt}.

77

– u′ = ⟨⟩.
– d′ = d+ 1.

– C ′ = CR = (a, x, N ′
c, P

′
c, map′, r′, C ′, O′) for a production rule

R ∈ Pc such that R = [a, C ′, O′, r′ → x] for map(a) = x, some
appropriate C ′, O′, r′ and derived N ′

c, P
′
c, map′. There is always

right one such R. Then let Ar′ = (Q′, N ′
c, δ

′, q′0, F
′) be the Glushkov

automaton for r′.

– f ′
S = expanded.

– f ′
T = aggregated.

– q′S = q′0.

– If r′ ̸= ∅, then Q′
T = F ′, else Q′

T = {q′0}.
– Y ′

a = {insert}.
– RN = insertSubtree(a).

– RA = insertAttributes(C ′).

Suppose that I1, . . . , Ij is the maximal chain of correction intents for
some j ∈ N0, such that ∀i ∈ N, 1 ≤ i < j, yi = insert, I i invokes
I i+1 and, finally, Ij = I, yj = insert. We do not allow the previously
described correction intent I ′, if ∃i, 1 ≤ i ≤ j: aiR = a and ni

R = x,
where aiR and ni

R are terminal and nonterminal symbols from context Ci
respectively. In other words we do not allow repeated nesting of insertion
correction intents with the same context.

• delete. ∀k ∈ N0, 0 ≤ k < n in case of fS = expanded or 1 ≤ k < n in
case of fS = collapsed, ∀qs ∈ Q and concurrently in addition for qs =
qI and k = 0 in case that fs = collapsed, we define a correction intent
I ′ = (delete, R′

N , R
′
A, s

′
I , q

′
I , s

′
E, Q

′
E, u

′, d′, C ′, f ′
S, f

′
T , q

′
S, Q

′
T , Y

′
a),

where:

– s′I = k, q′I = qs, s
′
E = k + 1 and Q′

E = {qs}.
– u′ = ⟨uk+1.0, . . . , uk+1.(fanOut(uk+1)− 1)⟩.
– d′ = d+ 1.

– C ′ = C∅ = (⊥, ⊥, ∅, ∅, map′, r∅
′, ∅, ∅) for introduced map′ and

r∅
′. Then let Ar′ = (Q′, N ′

c, δ
′, q′0, F

′) be the Glushkov automaton
for r′.

– f ′
S = expanded.

– f ′
T = aggregated.

– q′S = q′0.

– Q′
T = {q′o}.

– Y ′
a = {delete}.

– RN = deleteSubtree().

78

– RA = deleteAttributes(att(uk+1)).

• repair. ∀k ∈ N0, 0 ≤ k < n in case of fS = expanded or 1 ≤ k < n in
case of fS = collapsed, ∀qs ∈ Q and concurrently in addition for qs =
qI and k = 0 in case that fs = collapsed; if mk+1 ̸= ⊥, δ(qs,mk+1) is
defined and qt = δ(qs,mk+1), we define a correction intent I ′ = (repair,
R′

N , R
′
A, s

′
I , q

′
I , s

′
E, Q

′
E, u

′, d′, C ′, f ′
S, f

′
T , q

′
S, Q

′
T , Y

′
a), where:

– s′I = k, q′I = qs, s
′
E = k + 1 and Q′

E = {qt}.
– u′ = ⟨uk+1.0, . . . , uk+1.(fanOut(uk+1)− 1)⟩.
– d′ = d+ 1.

– C ′ = CR = (lab(uk+1), mk+1, N
′
c, P

′
c, map′, r′, C ′, O′) for a pro-

duction rule R ∈ Pc such that R = [lab(uk+1), C
′, O′, r′ → mk+1]

for some appropriate C ′, O′, r′ and derived N ′
c, P

′
c, map′. There is

always right one such R. Then let Ar′ = (Q′, N ′
c, δ

′, q′0, F
′) be the

Glushkov automaton for r′.

– f ′
S = expanded.

– f ′
T = aggregated.

– q′S = q′0.

– If r′ ̸= ∅, then Q′
T = F ′, else Q′

T = {q′0}.
– If r′ ̸= ∅, then Y ′

a = Y \ {correct}, else Y ′
a = {delete}.

– RN = repairSubtree().

– RA = repairAttributes(att(uk+1), C
′, O′).

• rename. ∀k ∈ N0, 0 ≤ k < n in case of fS = expanded or 1 ≤ k < n in
case of fS = collapsed, ∀qs ∈ Q and concurrently in addition for qs =
qI and k = 0 in case that fs = collapsed; if mk+1 = ⊥ or δ(qs,mk+1)
is not defined, then ∀x ∈ Nc such that δ(qs, x) is defined, qt = δ(qs, x),
we define a correction intent I ′ = (rename, R′

N , R
′
A, s

′
I , q

′
I , s

′
E, Q

′
E, u

′,
d′, C ′, f ′

S, f
′
T , q

′
S, Q

′
T , Y

′
a), where:

– s′I = k, q′I = qs, s
′
E = k + 1 and Q′

E = {qt}.
– u′ = ⟨uk+1.0, . . . , uk+1.(fanOut(uk+1)− 1)⟩.
– d′ = d+ 1.

– C ′ = CR = (a, x, N ′
c, P

′
c, map′, r′, C ′, O′) for a production rule

R ∈ Pc such that R = [a, C ′, O′, r′ → x] for map(a) = x, some
appropriate C ′, O′, r′ and derived N ′

c, P
′
c, map′. There is always

right one such R. Then let Ar′ = (Q′, N ′
c, δ

′, q′0, F
′) be the Glushkov

automaton for r′.

– f ′
S = expanded.

– f ′
T = aggregated.

– q′S = q′0.

79

– If r′ ̸= ∅, then Q′
T = F ′, else Q′

T = {q′0}.
– If r′ ̸= ∅, then Y ′

a = Y \ {correct}, else Y ′
a = {delete}.

– RN = renameSubtree(a).

– RA = repairAttributes(att(uk+1), C
′, O′).

• push. ∀k ∈ N0, 0 ≤ k < n in case of fS = expanded or 1 ≤ k < n in
case of fS = collapsed, ∀qs ∈ Q and concurrently in addition for qs =
qI and k = 0 in case that fs = collapsed; ∀j ∈ N, k < j < n, ∀x ∈ Nc

such that δ(qs, x) is defined, qt = δ(qs, x) we define a correction intent I ′
= (push, R′

N , R
′
A, s

′
I , q

′
I , s

′
E, Q

′
E, u

′, d′, C ′, f ′
S, f

′
T , q

′
S, Q

′
T , Y

′
a), where:

– s′I = k, q′I = qs, s
′
E = j + 1 and Q′

E = {qt}.
– u′ = ⟨uk+1, . . . , uj+1⟩.
– d′ = d+ 1.

– C ′ = CR = (a, x, N ′
c, P

′
c, map′, r′, C ′, O′) for a production rule

R ∈ Pc such that R = [a, C ′, O′, r′ → x] for map(a) = x, some
appropriate C ′, O′, r′ and derived N ′

c, P
′
c, map′. There is always

right one such R. Then let Ar′ = (Q′, N ′
c, δ

′, q′0, F
′) be the Glushkov

automaton for r′. We require that r′ ̸= ∅.

– f ′
S = expanded.

– f ′
T = aggregated.

– q′S = q′0.

– Q′
T = F ′.

– Y ′
a = Y \ {correct}.

– RN = pushNodes(a, (j + 1)− (k + 1) + 1).

– RA = insertAttributes(C ′).

Suppose that I1, . . . , Ij is the maximal chain of correction intents for
some j ∈ N0, such that ∀i ∈ N, 1 ≤ i < j, yi = push, I i invokes I i+1,
ni = n′ and, finally, Ij = I, n = n′, yj = push. We do not allow the
previously described correction intent I ′, if ∃i, 1 ≤ i ≤ j: aiR = a and
ni
R = x, where aiR and ni

R are terminal and nonterminal symbols from
context Ci respectively. In other words we do not allow repeated nesting
of push correction intents with the same context and same sequence of
nodes.

• pull. ∀k ∈ N0, 0 ≤ k < n in case of fS = expanded or 1 ≤ k < n in
case of fS = collapsed, ∀qs ∈ Q and concurrently in addition for qs =
qI and k = 0 in case that fs = collapsed; if fanOut(uk+1) > 0 and
reachable(qs) ̸= ∅, then we define a correction intent I ′ = (pull, R′

N ,
R′

A, s
′
I , q

′
I , s

′
E, Q

′
E, u

′, d′, C ′, f ′
S, f

′
T , q

′
S, Q

′
T , Y

′
a), where:

– s′I = k, q′I = qs, s
′
E = k + 1 and Q′

E = reachable(qs).

80

– u′ = ⟨uk+1.0, . . . , uk+1.(fanOut(uk+1)− 1)⟩.
– d′ = d.

– C ′ = C.
– f ′

S = collapsed.

– f ′
T = separated.

– q′S = qs.

– Q′
T = reachable(qs).

– Y ′
a = Y \ {correct, push}.

– RN = pullNodes().

– RA = deleteAttributes(att(uk+1)).

Each of the previously introduced correction intent of whatever type I ′ =
(y′, R′

N , R
′
A, sI , qI , sE, QE, u

′, d′, C ′, f ′
S, f

′
T , q

′
S, Q

′
T , Y

′
a) is only defined if

y′ ∈ Ya.
We declare intents(I) to be a set of all correction intents I ′, that can be

derived from I using the above descriptions.
Finally, for correction intents I ′ having type y′ ∈ {delete, repair, rename,

push, pull} we define baseNode(I ′) = uk+1.

Basic Description of Intents

Now we will describe the semantics of items in a tuple of a given correction
intent. The first parameter y represents the type of the correction intent and
must be equal to one of the defined intents.

Parameters RN and RA stand for a node repair and an attribute repair
respectively. These repairs define instructions that have to be performed at a
given node in order to follow selected intent on invoked levels of recursion.

Item sI is the number of the stratum and qI the state of the Glushkov
automaton in this stratum, where the given intent has been generated. This
means that after sI processed nodes from the input sequence of nodes and in
the corresponding state of automaton, the algorithm allows to perform a new
correction intent with the following node and its subtree or nodes and their
subtrees.

The correction algorithm in fact can be described as a simulation of the
traversal of the state space of the corresponding Glushkov automaton. For
example, if we choose repair intent, we accept the next node of a sequence,
recursively initiate correction of descendant subtrees and then appear back
in sE stratum, i.e. one stratum to the right from sI , and in a new state of
automaton qE ∈ QE, since we have accepted and used the transition in the
Glushkov automaton from state qI to state qE via given nonterminal symbol.
Item sE describes the number of the target stratum and QE set of states in it.

All the previous items were describing the circumstances, from which the
given correction item has been generated. The remaining items describe the
parameters for the processing of the next level of recursion.

81

The first of them u stands for the sequence of nodes to be processed. As
already explained, this sequence does not need to always conform to the se-
quence of all sibling nodes of a given parent node. Item d is the depth in a data
tree. Usually we increase this depth by 1 whenever we enter the next recursion
level, but this not holds always. In a pull intent we pull some nodes up by one
level and continue their processing in the same depth of the tree.

Item C ′ is the grammar context to be used at a nested level. It conforms to
the terminal and nonterminal symbol assigned to a given parent node (from
the point of view of the nested level).

If the flag fS is equal to collapsed, then the stratum with a number 0 of
the nested level is collapsed into only one state qS and we do not allow insert
correction intent in that zeroth stratum. Otherwise if it is equal to expanded,
the zeroth stratum is defined completely. The former variant is only used by
pull, since we can perform any required insertion in the original depth before
we decide to invoke this intent.

Flag fT influences the way of aggregating found repairs at a given level. If
it is equal to aggregated, which is the usual variant, we are trying to find all
repairs and finish at the last stratum in any state qT ∈ QT . We do not need to
know in which state we have really finished, because all found repairs are worth
the same. Conversely, if this flag is equal to separated, we are interested in
particular target states and we need to return repairs separately.

The last parameter of each correction item Ya is a set of correction intent
types, that are allowed in the nested level. For example if we have once decided
to insert a new subtree using insert, we really cannot use any other way of
correction, since there would be nothing to correct.

Recursion Termination

The main idea of the correction algorithm is based on the recursive processing,
therefore we need to explicitly define conditions, under which we stop further
nesting. It is easy to determine, that the processing will certainly be stopped in
such correction intents that to not allow any nested content and concurrently
that should process only empty sequence of input nodes. We will call this type
of correction intent as a terminating correction intent.

Definition 4.28 (Terminating Correction Intent). Assume that I = (y, RN ,
RA, sI , qI , sE, QE, u, d, C, fS, fT , qS, QT , Ya) is a correction intent and C
= (aR, nR, Nc, Pc, map, r, C, O) a grammar context.

We say that I is a terminating correction intent, if the following conditions
concurrently hold:

• u = ⟨⟩ is an empty sequence of nodes.

• r = r∅ = ∅ is an empty regular expression.

Each terminating intent only has one stratum with only one state. This
state is a source state, but there are no target states, i.e. the corresponding
Glushkov automaton accepts only an empty language.

82

The essential problem is caused by the mechanism of correction intents
evaluation. We process the tree from top to down, but in order to complete
the processing at a given level of recursive nesting, we first need to evaluate all
invoked nested correction intents. If we ensure, that each nesting must finish
in finite time reaching some terminating correction intent, the recursion itself
will be certainly finite.

The problem is therefore hidden only in the way, how we generate nested
intents. And, in fact, only insert and push correction intents are really prob-
lematic. All other intents are safe, because they always handle only existing
nodes and move one level lower towards leaves. Since data trees are finite, we
must reach some terminating correction intent sooner or later.

In case of the insert intent, there are two constructs causing potential
infinity of trees to be inserted. The first cause is Kleene star operation in con-
tent models. We can avoid this repeated generation of subtrees in a way, that
we prohibit repeated walking through cycles in the corresponding Glushkov
automaton. The second problem with insert is caused by recursive tree gram-
mars. Because we consider only consistent grammars, there must always be a
way in content models, how to bypass this recursion. Therefore, we can avoid
this behaviour by forbidding repeated nested invocations of such insertion in-
tent.

The similar situation is as well around the push correction intent, since we
can insert new internal nodes without limits, if the provided tree grammar is
recursive. The proposed solution is analogous to the insert intent.

4.5 Correction Multigraphs

The previous chapter introduced the notion of the correction intents. Their
purpose is to describe one possible step of the correction algorithm in a way
of a local action with usually one or exceptionally more sibling nodes followed
usually by the processing of their child nodes.

We will successively introduce three levels of multigraph abstractions, start-
ing with an exploration multigraph for description of all possible nested correc-
tion intents, then derived correction multigraph having all nested correction
intents evaluated and, finally, a repairing multigraph compactly storing all
found repairs.

4.5.1 Exploration Multigraph

The correction algorithm itself can be at each level of the recursion described
by the exploration multigraph. Its vertices are separated into strata, which
correspond to the size of processed subsequence of the input sequence of nodes,
and its edges correspond to generated intents, yet without repairs passed from
nested levels.

The notion of this multigraph is the subject of this subsection. Furthermore,
this multigraph not only abstracts the working of the correction algorithm, but

83

in order to find all suitable repairs efficiently, we really need to construct it,
or at least its required subgraph.

Vertices and Edges

At first we start with the notion of vertices and edges for the exploration
multigraph.

Definition 4.29 (Exploration Vertex). Assume that I = (y, RN , RA, sI , qI ,
sE, QE, u, d, C, fS, fT , qS, QT , Ya) is a correction intent, n length of u and
Q the set of states of the Glushkov automaton Ar for r from C.

An exploration vertex is a tuple v = (s, q) where:

• s ∈ N0, 0 ≤ s ≤ n is a number of a stratum,

• q ∈ Q is a state of the Glushkov automaton Ar.

An exploration vertex is a vertex of the exploration multigraph. Each vertex
is defined by a number of a stratum and a state of the Glushkov automaton,
which is constructed for a regular expression describing allowed content for a
processed element node.

Since we are going to define the exploration multigraph, not only an or-
dinary graph, we have decided to formally introduce edges as special objects.
Thus each directed exploration edge has its source and target vertex appended
by the reference to the particular correction intent. We have to emphasise that
correction intents usually produce only one exploration edge, but pull intent
can generally produce more edges. This means that there can be more edges
with the same associated intent under the circumstance |QE| > 1.

All exploration edges only describe the assignment for the nested recursive
computations, but later on we will append to these edges also repair structures
passed from the nested levels. This is the reason why pull generally need more
edges, although from the nested level only one common repair structure is
returned.

Definition 4.30 (Exploration Edge). Assume that I and I ′ are two correction
intents. An exploration edge is a tuple e = (v1, v2, i) where:

• v1 and v2 are exploration vertices derived from I,

• i = I ′ ∈ intents(I).

Exploration Multigraph Notion

In other words the exploration multigraph describes all ways of correcting a
given sequence of nodes. This structure is static and we will show that we need
to find all shortest paths to some specified vertices in order to find corrections
closest to the original data tree. This is one of the main differences to the
approach presented in [14]. The main idea of a graph abstraction itself is
adopted from [48].

84

Definition 4.31 (Exploration Multigraph). Given a data tree T = (D, lab,
val, att) and a single type tree grammar G = (N , T , A, S, P), assume that
I = (y, RN , RA, sI , qI , sE, QE, u, d, C, fS, fT , qS, QT , Ya) is a correction
intent, where u = ⟨u1, . . . , un⟩ is a sequence of nodes, C = (Nc, Pc, map, r, C,
O) a grammar context and Ar = (Q, Nc, δ, q0, F) the corresponding Glushkov
automaton.

Let intents(I) be a set of all correction intents I ′, that can be derived from
I using Definition 4.27.

We define an exploration multigraph for I to be a directed multigraph E(I)
= (V,E), where V is a non empty set of exploration vertices derived from I,
E is a set of exploration edges derived from I and both V and E satisfies the
following conditions:

• If fS = expanded, then:
V = {(k, q) | k ∈ N0, 0 ≤ k ≤ n, q ∈ Q}.

• If fS = collapsed, then:
V = {(k, q) | k ∈ N, 1 ≤ k ≤ n, q ∈ Q} ∪ {(0, qS)}.

• Starting with E = ∅, we add for ∀ I ′ ∈ intents(I), I ′ = (y′, s′I , q′I ,
s′E, Q

′
E, u

′, d′, C ′, f ′
S, f

′
T , q

′
S, Q

′
T , Y

′
a), ∀q′E ∈ Q′

E an exploration edge
((s′I , q

′
I), (s

′
E, q

′
E), I ′) into E.

A stratum s of an exploration multigraph (V,E) for some s ∈ N is a set Vs

of exploration vertices such that Vs = {v | v ∈ V , v = (s, q) for some q ∈ Q}.

Having an exploration multigraph, all its vertices can be divided into dis-
joint strata. Vertices in each stratum correspond to states of the Glushkov
automaton, that is used to recognise sequences of nodes, which conforms to
the allowed content model. Being in the stratum with a number k, exactly k
nodes from the input sequence have already been processed.

Moreover all edges except that for insert intents start in some vertex
of one stratum and always have to end in some vertex of a stratum with
strictly higher number. This means that these edges follow the processing of
the sequence from left to right.

Conversely, edges for insert intents only start and end in the same stra-
tum. And there are even no other edges than for insertion intents inside any
stratum. The reason is simple, because the purpose of this intent is to insert
a new subtree, thus we insert it, but do not touch the next waiting node from
the input sequence.

Edges between strata are oriented only from left to right, thus from stratum
with a lower number to a stratum with a strictly higher number. In a given
non-collapsed stratum, edges directly correspond to transition function of the
Glushkov automaton. Thus there can generally be cycles, because Kleene star
operator causes them.

85

4.5.2 Correction Multigraph

The naive algorithm statically constructs the whole exploration multigraph and
then evaluates all its edges in order to find all repairs. It will be shown, that
we do not actually need to evaluate the complete multigraph, but the notion
of the correction multigraph from theoretical reasons assumes the complete
evaluation.

Correction Edges

First we will extend the notion of an exploration edge to enable storing of
evaluated nested intent repairs directly in the structure of correction edges.

Definition 4.32 (Correction Edge). Given an exploration edge (v1, v2, I ′) in
an exploration multigraph E(I) = (V,E), where v2 = (s2, q2) and I ′ = (y′,
R′

N , R
′
A, s

′
I , q

′
I , s

′
E, Q

′
E, u

′, d′, C ′, f ′
S, f

′
T , q

′
S, Q

′
T , Y

′
a), we define a correction

edge to be a tuple (v1, v2, I ′, RI′, c) such that:

• RI′ is a repair corresponding to the correction intent I ′.

• If f ′
T = aggregated, then c = cost(RI′).

• If f ′
T = separated, then c = cost(RI′ , q2).

Each correction edge is derived from the corresponding exploration edge
by adding the repair structure returned from the nested level of recursive
processing and the corresponding value of cost function. Its computation will
be introduced later on.

Correction Multigraph Notion

The correction multigraph itself comes out from the exploration multigraph
and only contains all its edges evaluated.

Definition 4.33 (Correction Multigraph). Given an exploration multigraph
E(I) = (V,E), we define a correction multigraph to be a pair C(I) = (V,E ′),
where:

• V is equivalent to the original set of exploration vertices.

• E ′ = {(v1, v2, I ′, RI′, c) | (v1, v2, I ′) ∈ E} is a set of correction edges.

Paths in Correction Multigraphs

It has been already outlined, that all corrections we want to find, are encoded in
the shortest paths in the correction multigraph. We will first formally introduce
paths in these multigraphs as sequences of distinct edges with no repeated
vertices.

86

Definition 4.34 (Path and Shortest Path). Let C(I) = (V,E) be a correction
multigraph. Given vS, vT ∈ V , we define a path to be a sequence pvS ,vT = ⟨e1,
. . . , en⟩ of correcting edges, where n ∈ N0 is a length of the sequence and:

• ∀k ∈ N, 1 ≤ k ≤ n, ek = (vk1 , v
k
2 , i

k, Rk
ik
, ck).

• If n > 0, then v11 = vS and vn2 = vT .

• ∀k ∈ N, 1 ≤ k < n: vk2 = vk+1
1 .

• ¬∃j, k ∈ N, 1 ≤ j < k ≤ n: vj1 = vk1 , v
j
2 = vk2 or vj1 = vj2.

If vS = vT , then pvS ,vT = ⟨⟩ is an empty sequence. Vertices vS, vT are called
source and target respectively. By PvS ,vT we denote a set of all paths from vS
to vT . Next, we define a cost of the path to be a function defined by formula
cost(pvS ,vT) =

∑n
k=1 c

k.
We say that pvS ,vT is the shortest path from source vS to target vT , if and

only if ¬∃p′vS ,vT such that cost(p′vS ,vT) < cost(pvS ,vT). By Pmin
vS ,vT

we denote a
set of all shortest paths from vS to vT .

Let m = minvT∈VT
cost(pvS ,vT) for some VT ⊆ V . Then we define Pmin

vS ,VT
to

be a set of all paths from vS to any vT ∈ VT with cost equal to m, i.e. Pmin
vS ,VT

= {p | ∀vT ∈ VT , ∀p ∈ Pmin
vS ,vT

such that cost(p) = m}.
Finally, given a path pvS ,vT we define a function vertices returning a set

of vertices on a given path, i.e. vertices(pvS ,vT) = {v | ∃k ∈ N, 1 ≤ k ≤ n,
vk1 = v or vk2 = v}.

Shortest paths are computed using the concept of the cost function, first
introduced for edit operations and then adopted by repairing instructions. It is
important to recall that we only consider paths with distinct edges and vertices.
This avoids involving whole cycles of the multigraph as parts of paths. Since we
have presented that the correction multigraph can only contain cycles inside a
stratum in the connection with insert intents, we can show that if the cost of
addLeaf edit operation is strictly greater then 0, then the shortest path would
never involve whole cycles even if paths with repeated edges or vertices would
be allowed. According to this finding we can justify the restriction for simple
paths.

4.5.3 Repairing Multigraph

We present two modifications of the repairing multigraph. The first one is ded-
icated to correction intents, that should return separated corrections for each
individual target state in the last stratum, and the second one aggregate all
found corrections to any specified target state into only one common repair. In
both cases, the repairing multigraph is a subgraph of the corresponding cor-
rection multigraph. Its purpose is to therefore prune the correction multigraph
and store only the required portion of information needed to encode found
corrections.

87

Separated Repairing Multigraph

Definition 4.35 (Separated Repairing Multigraph). Let C(I) = (V,E) be a
correction multigraph for some correction intent I = (y, RN , RA, sI , qI , sE,
QE, u, d, C, fS, fT , qS, QT , Ya), where fT = separated and u = ⟨u1, . . . ,
un⟩ for some n ∈ N0.

Assume that vS ∈ V is a source vertex such that vS = (0, qS) and VT ⊆ V ,
VT = {vT | vT = (n, qT), qT ∈ QT} is a set of target vertices.

We define RS(I) to be a separated repairing multigraph, where RS(I) =
(V ′, E ′, pathPrev, pathCost, termCost) is a directed subgraph of C(I) such
that:

• V ′ = {v | ∀vT ∈ VT , ∀p ∈ Pmin
vS ,vT

: v ∈ vertices(p)}.

• E ′ = {e | ∀vT ∈ VT , ∀p ∈ Pmin
vS ,vT

, ∀k ∈ N, 1 ≤ k ≤ n: e = ek}.

• pathPrev is a partial function V ′ → P(V ′) assigning to a vertex v ∈ V ′

a set of vertices preceding v on any of the shortest paths from vS to v,
i.e. pathPrev(v) = {w | ∃p ∈ Pmin

vS ,v
, p = ⟨e1, . . . , en⟩, en = (w, v, i, Ri, c)

for some intent i, repair Ri and cost c}.

• pathCost is a partial function V ′ → R+
0 assigning to a vertex v ∈ V ′ the

cost of the shortest path from vS to v, i.e. pathCost(v) = cost(p) for any
p ∈ Pmin

vS ,v
.

• termCost is a function VT → R+
0 such that ∀vT ∈ VT : termCost(vT) =

pathCost(vT).

The separated repairing multigraph contains all shortest paths to each in-
dividual target vertex separately, thus there can be paths with different costs,
but whenever there is a path to a selected target vertex, then it is the shortest
path to this vertex. Conversely, the aggregated repairing multigraph contains
all shortest paths to any of the target vertices, but all of these paths are of the
same and minimal cost.

Aggregated Repairing Multigraph

Definition 4.36 (Aggregated Repairing Multigraph). Let C(I) = (V,E) be a
correction multigraph for some correction intent I = (y, RN , RA, sI , qI , sE,
QE, u, d, C, fS, fT , qS, QT , Ya), where fT = aggregated and u = ⟨u1, . . . ,
un⟩ for some n ∈ N0.

Assume that vS ∈ V is a source vertex such that vS = (0, qS) and VT ⊆ V ,
VT = {vT | vT = (n, qT), qT ∈ QT} is a set of target vertices.

We define RA(I) to be an aggregated repairing multigraph, where RA(I) =
(V ′, E ′, pathPrev, pathCost, termCost) is a directed subgraph of C(I) such
that:

• V ′ = {v | ∀p ∈ Pmin
vS ,VT

: v ∈ vertices(p)}.

88

• E ′ = {e | ∀p ∈ Pmin
vS ,VT

, ∀k ∈ N, 1 ≤ k ≤ n: e = ek}.

• pathPrev and pathPrev are partial functions defined in the same way as
corresponding functions in Definition 4.35.

• termCost is a constant such that termCost = cost(pmin) for some pmin ∈
Pmin
vS ,VT

.

The former repairing multigraph is used only for pull intent, the latter
one is used for all other correction intents. This can also be explained by a
fact, that in the first case we continue processing at the same depth of a data
tree, even though we have entered the next level of recursion. Thus we do not
want to end at accepting states in the last stratum, but we need to carry the
computed information up to the previous level of recursion and then resume
and continue the processing from corresponding states.

4.5.4 Repairs Construction

Finally, having formally introduced the notion of the repairing multigraph, we
can complete the definition of repairs for sequences of nodes and repairs for
intents, which have tentatively been introduced in the Subsection 4.4.2.

Repairs of Node Sequences

Definition 4.37 (Node Sequence Repair). A node sequence repair for a cor-
rection intent I is a repairing multigraph RS(I) or RA(I) depending on the
type of the correction intent.

The previous definition directly follows expectations and we only note that
the node sequence repair structure can be seen only as an encapsulation for
the corresponding repairing multigraph.

Repairs for Correction Intents

Now we need to precisely define the overall repair for a correction intent.
The correction algorithm processes the provided data tree from top to down,
attempting to consider all correction ways derivable using introduced model
of correction intents. During the backtracking, we gather the found solutions,
encapsulate them in a compact data structure and pass them one level up
towards the original root node.

Definition 4.38 (Correction Intent Repair). Assume that I = (y, R′
N , R

′
A,

sI , qI , sE, QE, u, d, C, fS, fT , qS, QT , Ya) is a correction intent, where u =
⟨u1, . . . , un⟩ for some n ∈ N0.

We define a repair for correction intent I to be a tuple RI = (RN , RA,
RS, cost), where:

• RN = R′
N is a node repair.

89

• RA = R′
A is an attribute repair.

• If I is a terminating correction intent:

– RS = ⊥.
– cost = 0.

• If I is not a terminating intent and fT = aggregated:

– RS = RA(I) = (V ′, E ′, pathPrev, pathCost, termCost) is a node
sequence repair represented by the repairing multigraph for I.

– cost = cost(RN) + cost(RA) + termCost.

• If I is not a terminating intent and fT = separated:

– RS = RS(I) = (V ′, E ′, pathPrev, pathCost, termCost) is a node
sequence repair represented by the repairing multigraph for I.

– ∀qT ∈ QT : cost(qT) = cost(RN) + cost(RA) + termCost(qT).

Each repair for a given correction intent has essentially three main com-
ponents and one supporting function for easier requesting costs of involved
nested repairs.

The first component stands for a node repair, the second for an attribute
repair and the third for a node sequence repair, all associated and derived from
the given correction intent. The last named one represents the nested recursive
processing, the first two components directly define the correction intent itself.

Since we need to encapsulate either aggregated or separated repairing multi-
graphs, we need to differentiate the definition of the cost function. In the first
case it behaves only as an ordinary constant representing the overall minimal
cost, in the second case we need to provide direct access to all targets and
provide both repairs and costs separately.

The special attention is needed in case of terminating correction intents,
since these intents do not have any nested level of recursion and thus compo-
nent RS remains undefined. From the definition of correction intents we know,
that there cannot be any terminating intent that would be separated.

4.6 Repairs Presentation

The correction algorithm starts the processing of a provided potentially in-
valid data tree at its root node. We have introduced the notion of correction
intents in order to describe all possible directions, the correction algorithm
can choose to find requested corrections. The algorithm recursively proceeds
the tree and when the bottom of the recursion is reached, we backtrack and
construct compact repair structures holding all found corrections.

The first problem of these repair structures is the already outlined fact,
that we cannot directly use edit or update operations in them, because these

90

operations need specifying of explicit positions, i.e addresses of nodes in the
underlying tree. Since we store different corrections together, there is no sim-
ple way how to determine the required positions already during the recursive
processing.

Thus we use repairing instructions, which only define actions to be per-
formed, but the particular position is omitted. Since we restricted processing
of each sequence of nodes only in a left to right manner, we can retrospectively
translate found repairs and obtain standard sequences of edit operations.

The purpose of this section is to first describe the mechanisms, how we
unroll compact repairs into individual sequences of repairing instructions, and
then how we perform the mentioned translation to update sequences.

The outlined problem also relates to a way, how we plan to present found
corrections. The algorithm proposed in this thesis assumes that there is no
interaction with the user and thus we only need to find the best corrections
and directly apply them in order to gain a valid data tree. On that account
we will describe the mechanism for creating monolithic edit sequences for root
nodes, capable of correcting the entire original data tree.

On the other hand, we can also traverse the given data tree to the depth
and find isolated locations, where corrections to errors are proposed. Then we
can independently offer these local corrections to the user.

4.6.1 Repairs for Nodes and Attributes

Node repairs are very simple and since they contain only trivial sequences
of repairing instructions, their evaluation and translation is easy. Attribute
repairs are simple data structures too, however we first need to generate all
suitable sequences of repairing instructions.

Attribute Repairs Translation

The problem with repairing sequences for attributes of a selected node in a
data tree is hidden in the very quickly increasing number of combinations de-
pending on the number of attributes to be removed or added. The prospective
implementation of the correction algorithm should therefore consider to sug-
gest repairs for attributes completely independently on corrections of the tree
structure itself. However, we will follow the introduced formal model of edit
operations.

As a consequence, we first need to generate all sequences of repairing in-
structions, that are capable to correct attributes with respect to given sets of
required and optional attributes from the grammar context for a given node,
thus with respect to given sets of invalid existing attributes and required miss-
ing attributes.

Definition 4.39 (Evaluation of Attribute Repairs). Assume that a tuple RA =
(R,A) is an attribute repair as introduced in Definition 4.21, where R, A ∈ A
are sets of attributes to be removed and added respectively.

91

We define a value of an attribute repair RA to be a set seq(RA) of mu-
tually not equivalent sequences of repairing instructions having the minimal
cost, without redundancies and correcting attributes with respect to given sets
of required and optional attributes.

For ∀m ∈ N0, 0 ≤ m ≤ min(|R|, |A|) we put:

• rm = |R| −m and am = |A| −m.

• R′
m = {N | N ∈ P(R) and |N | = m}.

• A′
m = {N | N ∈ P(A) and |N | = m}.

• Xm = R′
m × A′

m is the Cartesian product of R′
m and A′

m.

For each selection of m source and target attributes to be involved in the at-
tribute renaming procedure, i.e. ∀xm = (NR, NA) ∈ Xm, we define sequence sm
to be any sequence of the form:

⟨(renameAttribute, nS
1 , n

T
1), . . . , (renameAttribute, n

S
m, n

T
m),

(removeAttribute, nD
1), . . . , (removeAttribute, n

D
rm),

(addAttribute, nI
1), . . . , (addAttribute, n

I
am)⟩

and satisfying the following conditions:

• ∀i ∈ N, 1 ≤ i ≤ m: nS
i ∈ NR, n

T
i ∈ NA.

• ∀i, j ∈ N, 1 ≤ i < j ≤ m: nS
i ̸= nS

j , n
T
i ̸= nT

j .

• ∀i ∈ N, 1 ≤ i ≤ rm: n
D
i ∈ R \NR.

• ∀i, j ∈ N, 1 ≤ i < j ≤ rm: n
D
i ̸= nD

j .

• ∀i ∈ N, 1 ≤ i ≤ am: n
I
i ∈ A \NA.

• ∀i, j ∈ N, 1 ≤ i < j ≤ am: n
I
i ̸= nI

j .

For ∀m we define Sm to be a set of all such sequences sm described above.
In other words Sm represents a set of all sequences, where exactly m attribute
pairs are corrected using the renameAttribute operation and all other using
the appropriate addAttribute or removeAttribute.

Assuming cn = cost(renameAttribute), cr = cost(removeAttribute) and
ca = cost(addAttribute), we define seq(RA) depending on the definition of the
cost function:

• If cn < ca + cr, then seq(RA) = Smin(|R|,|A|).

• If cn = ca + cr, then seq(RA) =
∪min(|R|,|A|)

m=0 Sm.

• If cn > ca + cr, then seq(RA) = S0.

92

We only consider those sequences that are not equivalent. Since all these
sequences modify only one particular node, their translation into edit sequences
is simple. For technical reasons we will always use 0 as a base address for
translations. This idea will be kept in all other translations too.

Note as well, that each sequence of repairing instructions generated using
the previous definition has a cost corresponding to the minimal cost requested
by Definition 4.21. We only need to discuss different relations between costs of
individual edit operations and as a consequence to choose the minimal, what-
ever or maximal number of pairs of attributes to be involved in the renaming
operation.

Definition 4.40 (Translation of Attribute Instructions). Given a sequence SA

= ⟨s1, . . . , sn⟩ of attribute repairing instructions for some n ∈ N0, we define a
translation of this sequence to be a sequence of attribute edit operations fix(SA)
= ⟨f1, . . . , fn⟩ such that ∀k ∈ N, 1 ≤ k ≤ n:

• If sk = (addAttribute, a),
then fk = addAttribute(0, a).

• If sk = (removeAttribute, a),
then fk = removeAttribute(0, a).

• If sk = (renameAttribute, a0, a1),
then fk = renameAttribute(0, a0, a1).

We assumed that a, a0 and a1 ∈ A were attribute names.
Having a set S of sequences of attribute repairing instructions, we define

fix(S) = {fix(SA) | SA ∈ S}.

Node Repairs Translation

Since a node repair contains only one sequence of repairing instructions, the
evaluation simply encapsulates this sequence into a set with one element.

Definition 4.41 (Evaluation of Node Repairs). For a given node repair RN

we define seq(RN) = {RN} to be a value of the node repair RN .

Each particular node repairing instruction is translated in a way presented
in the following definition. We keep the concept of a base address equal to 0.
One of the reasons to do it is connected with addNode edit operation. From
the first point of view, address ϵ seems to be more suitable, but this would lead
to inability to represent mentioned operation. The better idea is therefore to
treat all base nodes as a sequence of nodes numbered from 0.

Definition 4.42 (Translation of Node Instructions). Given a sequence SN

= ⟨s1, . . . , sn⟩ of node repairing instructions for some n ∈ N0, we define a
translation of this sequence to be a sequence of node edit operations fix(SN)
= ⟨f1, . . . , fn⟩ such that ∀k ∈ N, 1 ≤ k ≤ n:

93

• If sk = (addLeaf, n), then fk = addLeaf(0, n).

• If sk = (removeLeaf), then fk = removeLeaf(0).

• If sk = (renameLabel, n), then fk = renameLabel(0, n).

• If sk = (addNode, n, i), then fk = addNode(0, 0 + i, n).

• If sk = (removeNode), then fk = removeNode(0).

We assumed that n ∈ E was an element name and i ∈ N0.
Having a set S of sequences of node repairing instructions, we define fix(S)

= {fix(SN) | SN ∈ S}.

4.6.2 Repairs for Sequences and Intents

Now we will focus the problem of generation and translation of sequences for
repairs of node sequences and intents. Contrary to the previously discussed
repairs, these two are not isolated only within one level of recursion and we
need to introduce an inductive definition. At the bottom of the recursion,
we construct repairing sequences only from repairs of nodes and attributes.
Backtracking towards the root of a processed data tree, we need to inspect
repairing multigraphs depending on particular intent types.

Auxiliary Translation Functions

Before we can continue, we need to introduce three auxiliary functions, which
will be used for manipulating addresses of nodes occurring in edit operations.
The first function calledmodPre prepends specified non-negative integer before
addresses of all nodes, function modAlt modifies the first number in addresses
to a new number and, finally, function modCut truncates the first number in
addresses.

Definition 4.43 (Auxiliary Translation Functions). Assume that SE = ⟨s1,
. . . , sn⟩ is a sequence of edit operations for some n ∈ N0. We define modPre,
modAlt and modCut to be functions transforming SE into S ′

E = ⟨s′1, . . . , s′n⟩
such that ∀k ∈ N, 1 ≤ k ≤ n:

• If sk = addAttribute(u, a),
then s′k = addAttribute(f(u), a).

• If sk = removeAttribute(u, a),
then s′k = removeAttribute(f(u), a).

• If sk = renameAttribute(u, a0, a1),
then s′k = renameAttribute(f(u), a0, a1).

• If sk = addLeaf(u, n), then s′k = addLeaf(f(u), n).

94

• If sk = removeLeaf(u), then s′k = removeLeaf(f(u)).

• If sk = renameLabel(u, n), then s′k = renameLabel(f(u), n).

• If sk = addNode(u0, u1, n), then s′k = addLeaf(f(u0), f(u1), n).

• If sk = removeNode(u), then s′k = removeNode(f(u)).

We have assumed that u, u0, u1 ∈ N∗
0, a, a0, a1 ∈ A, n ∈ E and that function f

is defined depending on modPre, modAlt and modCut alternatives this way:

• For modPre(SE, c), where c ∈ N0, we define f(u) = c.u.

• For modAlt(SE, c), where c ∈ N0, we furthermore assume that u = i.v
for some i ∈ N0, v ∈ N∗

0, and then we define f(u) = (i+ c).v.

• For modCut(SE), we furthermore assume that u = i.v for some i ∈ N0,
v ∈ N∗

0, and then we define f(u) = v.

Having a set S of sequences of edit operations, we analogously define:

• modPre(S, c) = {modPre(SE, c) | SE ∈ S},

• modAlt(S, c) = {modAlt(SE, c) | SE ∈ S} and

• modCut(S) = {modCut(SE) | SE ∈ S}.

Node Sequence Repairs Translation

Having a particular repairing path in the repairing multigraph, we can generate
all repairing sequences by combining repairs associated with edges of such path.

Our goal is however not only to generate all sequences of repairing instruc-
tions, we also need to translate them. For one particular path this translation
is easy, because we need only to monitor correction intents along the processed
path and determine the number of nodes the given intents involve at their top
level.

Definition 4.44 (Translation of Node Sequence Repairs). Assume that RS is
a node sequence repair corresponding to a repairing multigraph R(I) = (V ′,
E ′, pathPrev, pathCost, termCost) for a correction intent I = (y, RN , RA,
sI , qI , sE, QE, u, d, C, fS, fT , qS, QT , Ya), where u = ⟨u1, . . . , un⟩ for some
n ∈ N0.

We define fix(RS) or fix(RS, qT) to be a translation of a node sequence re-
pair RS, where fix(RS) is a set of all sequence mends for shortest paths in the
given aggregated repairing multigraph for correction intent I and fix(RS, qT)
for ∀qT ∈ QT a set of all sequence mends for shortest paths to state qT in the
last stratum in the given separated repairing multigraph.

A sequence mend for a particular shortest path is a pair (S, shift), where S
is a corresponding sequence of edit operations derived from the path and shift
is a number of processed nodes as defined subsequently.

95

If fT = aggregated, then ∀p ∈ Pmin
vS ,VT

, p = ⟨e1, . . . , em⟩, where m ∈ N0

and ∀i ∈ N, 1 ≤ i ≤ m, ei = (vi1, v
i
2, I i, RIi, ci), vi2 = (si2, q

i
2):

• Sp = {(modAlt(s1, a0).modAlt(s2, a1) . . .modAlt(sm, am−1), shift) | ∀i ∈
N, 1 ≤ i ≤ m, (si, shifti) ∈ fix(I i), ai = ai−1 + shifti, a0 = 0}.

• Value shift in each previous mend is defined this way:

– If y ∈ {insert, repair, rename, push}, then shift = 1.

– If y = delete, then shift = 0.

– If y = pull, then shift = am.

• Finally, we define fix(RS) =
∪

p∈Pmin
vS,VT

Sp.

If fT = separated, then ∀qT ∈ QT , vT = (n, qT), ∀p ∈ Pmin
vS ,vT

, p = ⟨e1,
. . . , em⟩, where m ∈ N0 and ∀i ∈ N, 1 ≤ i ≤ m, ei = (vi1, v

i
2, I i, RIi, ci), vi2

= (si2, q
i
2):

• We first determine Sp in the same way as above,

• and then we define fix(RS, qT) =
∪

p∈Pmin
vS,vT

Sp for ∀qT ∈ QT .

The processing of aggregated and separated repairing multigraphs is very
similar. In fact it differs only in paths, which are considered, and the way of
their separation.

Intent Repairs Translation

Finally, we can inspect the translation of repairs for correction intents. Since
individual intents combine associated node, attribute and node sequence re-
pairs in different order, we need to handle each intent type separately. We also
need to handle terminating intents specially, since these intents do not have
nested the node sequence repair.

The general idea is fortunately common to all intents. We compute the
translations for all sequences derived from the associated node and attribute
repairs and then we combine these edit sequences with edit sequence already
translated from shortest paths in the repairing multigraph. In case of correct
starting correction intent, we only process the nested sequence repair and,
finally, we need to truncate the leading 0 from addresses of all nodes occurring
in any edit operation, since the root node of the entire data tree has an address
equal to ϵ.

Definition 4.45 (Translation of Intent Repairs). Let RI = (RN , RA, RS,
cost) be a repair for a correction intent I = (y, RN , RA, sI , qI , sE, QE, u, d,
C, fS, fT , qS, QT , Ya).

We define a translation of the intent repair RI to be a set of all intent
mends for sequences of edit operations having the minimal cost and reflecting
the given correction intent I.

96

If I is an aggregated correction intent, we denote this translation by fix(RI),
otherwise for a separated intent we define a translation for ∀qT ∈ QT separately
by fix(RI, qT).

• If y = correct:

– fix(RI) = {(modCut(rS),⊥) | (rS, shift) ∈ fix(RS)}.

• If y = insert:

– If I is a terminating intent, then fix(RI) = {(rN .rA, 0) |
rN ∈ fix(seq(RN)), rA ∈ fix(seq(RA))}.

– Otherwise fix(RI) = {(rN .rA.modPre(rS, 0), shift) |
rN ∈ fix(seq(RN)), rA ∈ fix(seq(RA)),
(rS, shift) ∈ fix(RS)}.

∀f ∈ fix(RI): f = insertSubtree(0) update operation.

• If y = delete:

– If I is a terminating intent, then fix(RI) = {(rA.rN , 0) |
rN ∈ fix(seq(RN)), rA ∈ fix(seq(RA))}

– Otherwise fix(RI) = {(modPre(rS, 0).rA.rN , shift) |
rN ∈ fix(seq(RN)), rA ∈ fix(seq(RA)),
(rS, shift) ∈ fix(RS)}

∀f ∈ fix(RI): f = deleteSubtree(0).

• If y = repair, then:

– If I is a terminating intent,
then fix(RI) = {(rA, 0) | rA ∈ fix(seq(RA))}.

– Otherwise fix(RI) = {(rA.modPre(rS, 0), shift) |
rA ∈ fix(seq(RA)), (rS, shift) ∈ fix(RS)}.

∀f ∈ fix(RI): f = repairSubtree(0).

• If y = rename, then:

– If I is a terminating intent, then fix(RI) = {(rN .rA, 0) |
rN ∈ fix(seq(RN)), rA ∈ fix(seq(RA))}.

– Otherwise fix(RI) = {(rN .rA.modPre(rS, 0), shift) |
rN ∈ fix(seq(RN)), rA ∈ fix(seq(RA)),
(rS, shift) ∈ fix(RS)}.

∀f ∈ fix(RI): f = renameSubtree(0).

97

• If y = push:

– fix(RI) = {(rN .rA.modPre(rS, 0), shift) |
rN ∈ fix(seq(RN)), rA ∈ fix(seq(RA)),
(rS, shift) ∈ fix(RS)}.

∀f ∈ fix(RI): f = pushSiblings(0, sE − sI − 1).

• If y = pull, then for ∀qT ∈ QT :

– fix(RI , qT) = {(rA.rN .rS, shift) | rN ∈ fix(seq(RN)),
rA ∈ fix(seq(RA)), (rS, shift) ∈ fix(RS, qT)}.

∀f ∈ fix(RI , qT): f = pullSiblings(0).

Note that addresses of nodes are reconstructed in a bottom up way and
we do not use any direct knowledge about positions from the original data
tree. Moreover performing an edit operation we can achieve changes in ad-
dresses of former or newly subordinated nodes, thus we need to be aware of
this addressing variability.

The previous definition also declares the connection of correction intents
and update operations. Once having a particular sequence of repairing in-
structions translated into a sequence of edit operations, we can classify such
sequence using definitions for update operations. As already outlined, the cor-
rection algorithm is not able to generate all potentially existing sequences that
would conform to introduced update operations. But the algorithm is always
able to find corrections and these can be viewed via updates.

4.7 Correction Algorithms

The purpose of the previous section was to completely introduce the correc-
tion capabilities of the proposed correction algorithm. We have abstracted the
proceeding of the algorithm using multigraphs. Their purpose was to statically
describe all repairs that can be generated in the limits of introduced correction
intents.

The basic idea of these multigraphs originates from the complete traversal
of the state space of the Glushkov automaton, which is derived from the regular
expression restricting the element content of a given node in a data tree. We
are generally able to perform this processing dynamically, or we can construct
the multigraph and then inspect all possible repairs statically. This has also
another advantage, because multigraphs not only record the algorithm flow,
but also store the computed results in a form of the shortest paths to some
specified vertices, usually corresponding to the accepting output states of the
automaton itself.

In this section we will describe four different versions of the correction
algorithm. Starting with the naive correction algorithm we will directly follow
introduced formal framework of multigraphs. Next, we will discuss dynamic

98

algorithm, which directly constructs only the required portion of the repairing
multigraph. The last but one algorithm stands for caching correction algorithm
capable to avoid repeated computations of identical intents. Finally, we will
present incremental algorithm, which is able to work efficiently even to the
depth of recursively invoked intents.

4.7.1 Naive Correction Algorithm

The first presented algorithm strictly follows the idea of defined multigraphs.
Therefore, the naive correction algorithm really first constructs the complete
exploration multigraph, then it evaluates all its edges by invoking the compu-
tations of recursively nested correction intents and, finally, it constructs the
repairing multigraph, which can be simply turned into the repair for the given
intent.

Algorithm Description

The correction starts by the invocation of the recursive routine with the start-
ing context I•. At each level of the recursion we first prepare the entire explo-
ration multigraph with its all vertices and edges.

The second step represents the evaluation of all nested intents. This means
that we compute all generated correction intents and bind returned repairs
to corresponding edges in the correction multigraph. The last but one step
represents the searching for all shortest paths, since these paths involve all
found suitable repairs, which are as close to the original data tree as the notion
of correction intents admits.

The following enumeration gives an overview of all input and output pa-
rameters, which are passed into and from the correction routine respectively:

• The problem defining input parameters: data tree T = (D, lab, val, att)
and single type tree grammar G = (N , T , A, S, P).

• The intent description input parameters: correction intent type y, node
repair RN and attribute repair RA, initial stratum number sI and state
qI in sI , ending stratum number sE and set of ending states in sE.

• The intent assignment input parameters: sequence of nodes u = ⟨u1, . . . ,
un⟩ to be processed, depth d of processed nodes in a new tree, grammar
context C = (aR, nR, Nc, Pc, map, r, C, O), flags fS and fT , starting
state qS of Ar, set of terminating states QT of Ar and set of allowed
correction intent types Ya.

• The output parameter: repair structure RI = (RN , RA, RS, cost).

99

Main Procedure Definition

The main procedure presented in Algorithm 1 reflects the sequence of steps
that should be executed. First we prepare the exploration multigraph, then
we compute the correction multigraph, derive the repairing multigraph and,
finally, encapsulate the found repairs into the repair structure.

Algorithm 1: naiveCorrectionAlgorithm

Input : Data tree T , single type tree grammar G, intent I.
Output: Repair RI for correction intent I.

1 E(I) ← createExplorationMultigraph(T , G, I);
2 C(I) ← createCorrectionMultigraph(T , G, I, E(I));
3 R(I) ← createRepairingMultigraph(T , G, I, C(I));
4 RI ← composeIntentRepair(I, R(I));
5 return RI

Procedure for Exploration Multigraph Creation

The procedure introduced in Algorithm 2 for the exploration multigraph con-
struction starts with an empty multigraph and then successively adds new
vertices and edges following Definition 4.27 of recursive correction intents.

Algorithm 2: createExplorationMultigraph

Input : Data tree T , single type tree grammar G, intent I.
Output: Exploration multigraph E(I).

1 E(I) = (VE, EE) ← (∅, ∅);
2 VE ← {(0, qS)};
3 NewV ertices ← {(0, qS)};
4 while ∃v1 ∈ NewV ertices, v1 = (s, q) do
5 foreach correction intent I ′ = (y′, R′

N , R
′
A, s

′
I , q

′
I , s

′
E, Q

′
E, u

′, d′,
C ′, f ′

S, f
′
T , q

′
S, Q

′
T , Y

′
a) defined in stratum s and state q do

6 foreach q′E ∈ Q′
E do

7 v2 ← (s′E, q
′
E);

8 if v2 /∈ VE then
9 Add vertex v2 into VE and NewV ertices;

10 Add edge (v1, v2, I ′) into EE;

11 Remove v1 from NewNodes;

100

Procedure for Correction Multigraph Creation

The purpose of Algorithm 3 is to derive the corresponding correction multigrap
from a provided and fully constructed exploration multigraphh. Thus the main
task is to invoke the recursive computations of prepared correction intents and
then store returned repairs inside edges of the correction multigraph.

Algorithm 3: createCorrectionMultigraph

Input : Data tree T , single type tree grammar G, correction intent I,
exploration multigraph E(I) = (VE, EE).

Output: Correction multigraph C(I).
1 C(I) = (VC , EC) ← (VE, ∅);
2 foreach v1 ∈ VC, v1 = (q, s) do
3 foreach correction intent I ′ = (y′, R′

N , R
′
A, s

′
I , q

′
I , s

′
E, Q

′
E, u

′, d′,
C ′, f ′

S, f
′
T , q

′
S, Q

′
T , Y

′
a) defined in stratum s and state q do

4 repair ← naiveCorrectionRoutine(T , G, I ′);
5 foreach q′E ∈ Q′

E do
6 v2 ← (s′E, q

′
E);

7 if f ′
T = aggregated then c ← cost(repair);

8 else c ← cost(repair, q′E) ; f
′
T = separated

9 Add correcting edge (v1, v2, I ′, repair, c) into EC ;

Procedure for Repairing Multigraph Creation

The repairing multigraph is a subgraph of the correction multigraph with only
those vertices and edges that are involved in the found shortest paths to the
given set of target vertices.

Its construction is presented in Algorithm 4, where we have just followed
the idea of standard Dijkstra’s algorithm [24] for searching shortest paths in
graphs.

We start the processing of the multigraph in the source vertex specified by
the correction intent itself. Then we step by step walk through the multigraph
and in each step, we first select the previously reached vertex, which has the
minimal pathCost between all reached vertices. The algorithm ensures that
this cost becomes final for this vertex, since it cannot be improved any more.

If we need to generate an aggregated repair, we have already closed the
first target vertex and if the current path cost has strictly greater value than
the cost of the target vertex that has been wiped as the first item from the
working set of target vertices, we can stop the loop. Analogously if we need to
generate separated repair, we are forced to operate until the last vertex from
the set of target vertices is marked as closed and then wait until the current
cost exceeds the fixed value from the last wiped target vertex.

101

Algorithm 4: createRepairingMultigraph

Input : Data tree T , single type tree grammar G, correction intent I
= (y, RN , RA, sI , qI , sE, QE, u, d, C, fS, fT , qS, QT , Ya),
correction multigraph C(I) = (VR, ER).

Output: Repairing multigraph R(I).
1 R(I) = (VR, ER, pathPrev, pathCost, termCost) ← (VR, ER, ∅, ∅,⊥);
2 vS ← (0, qS); pathCost(vS) ← 0; pathPrev(vS) ← ∅;
3 reachedV ertices ← {vS}; closedV ertices ← ∅;
4 targetV ertices ← {(n, qT) | qT ∈ QT};
5 while reachedV ertices ̸= ∅ do
6 m ← minv∈reachedV erticespathCost(v);
7 v1 = (s, q) for some v1 ∈ reachedV ertices, pathCost(v1) = m;
8 if [(targetV ertices = {v1}) or (fT = aggregated and

v1 ∈ targetV ertices)] and [finalCost is not defined] then
9 finalCost ← pathCost(v1);

10 Remove v1 from reachedV ertices and targetV ertices;
11 Add v1 to closedV ertices;
12 if finalCost is defined and finalCost < pathCost(v1) then
13 break

14 foreach e ∈ ER, e = (v1, v2, i, Ri, c) do
15 c′ ← pathCost(v1) + c;
16 if pathCost(v2) is defined and pathCost(v2) = c′ then
17 pathPrev(v2) ← pathPrev(v2) ∪ {v1};
18 if pathCost(v2) is not defined or pathCost(v2) > c′ then
19 pathCost(v2) ← c′; pathPrev(v2) ← {v1};
20 if v2 /∈ closedV ertices and v2 /∈ reachedV ertices then
21 Add v2 to reachedV ertices;

22 if fT = aggregated then termCost ← finalCost;
23 else ∀vT ∈ VT termCost(vT) ← pathCost(vT) ; fT = separated

Otherwise we process all outgoing edges from the current vertex and if we
are able to reach the given ending vertex with the same or better path cost,
we change it and update the set of preceding vertices. Thus we are able to
backtrack and reconstruct all shortest paths.

Finally, we need to clean the multigraph from unnecessary vertices and
edges. This step is easy and is not included in Algorithm 4.

102

4.7.2 Dynamic Correction Algorithm

The main disadvantage of the naive correction algorithm is that we usually
uselessly construct the entire exploration multigraph and later on in order
to create the derived creation multigraph, we evaluate all prepared nested
correction intents. It is easy to see, that we can propose an algorithm, that
directly attempts to search for all shortest paths and during this search it
constructs only the required part of the multigraph. This can lead to time
savings, since we do not need to compute all correction edges.

Suggested improvements are considered in Algorithm 5. It does not work in
the consecutive steps based on the exploration, correction and repairing multi-
graphs construction, but it straightforwardly builds the repairing multigraph,
which at the end only needs to be cleaned from vertices and edges, that are
not located at any of the found shortest paths.

Although we now evaluate only those nested intents, that we need to inspect
during the procedure of searching shortest paths, there still remains other
problems causing significant inefficiency. We will thus attempt to make two
more improvements.

4.7.3 Caching Correction Algorithm

During the computation of the naive or dynamic correction algorithm, we
are quite often forced to compute the same information, as we have already
computed probably many times before.

Suppose that we are in some of the nodes of a given data tree and we
have decided for example to change its label. This means that we consequently
need to recursively process all its child nodes in a few alternative ways, one for
each pair of allowed terminal and nonterminal symbol used for renaming. It is
highly probable that the processing of these nodes and all their subtrees will
be similar. In other words there would be chance for any type of correction
intent to be evaluated repeatedly.

As a particular example we can name for example the deletion intent. It
is easy to sea, that there can be various different chains of nested intents, but
whenever we decide to delete a subtree on a given position in the original data
tree, the deletion will always proceed identically, since only the data subtree
itself defines the generation of nested deletion intents and thus corresponding
repair.

Similarly whenever we decide to insert a subtree with a specified terminal
symbol as a label for a new root node and nonterminal symbol describing the
context to be used, the proceeding of this insert correction intent will always
be the same.

To harness this finding and in order to introduce much more efficient algo-
rithm, we are going to introduce the model of caching. Its main purpose is to
provide the environment, where nothing already computed is forgotten, since
it can be reused again.

103

Algorithm 5: dynamicCorrectionRoutine

Input : Data tree T , single type tree grammar G, intent I = (y, RN ,
RA, sI , qI , sE, QE, u, d, C, fS, fT , qS, QT , Ya).

Output: Repair RI for intent I.
1 R(I) ← ({(0, qS)}, ∅, ∅, ∅,⊥);
2 vS ← (0, qS); pathCost(vS) ← 0; pathPrev(vS) ← ∅;
3 reachedV ertices ← {vS}; targetV ertices ← {(n, qT) | qT ∈ QT};
4 while reachedV ertices ̸= ∅ do
5 m ← minv∈reachedV erticespathCost(v);
6 v1 = (s, q) for some v1 ∈ reachedV ertices, pathCost(v1) = m;
7 if [(targetV ertices = {v1}) or (fT = aggregated and

v1 ∈ targetV ertices)] and [finalCost is not defined] then
8 finalCost ← pathCost(v1);

9 if finalCost is defined and finalCost < pathCost(v1) then
10 break

11 foreach correction intent I ′ = (y′, R′
N , R

′
A, s

′
I , q

′
I , s

′
E, Q

′
E, u

′, d′,
C ′, f ′

S, f
′
T , q

′
S, Q

′
T , Y

′
a) defined in stratum s and state q do

12 repair ← dynamicCorrectionRoutine(T , G, I ′);
13 foreach q′E ∈ Q′

E do
14 v2 ← (s′E, q

′
E);

15 if f ′
T = aggregated then c ← cost(repair);

16 else c ← cost(repair, q′E) ; f
′
T = separated

17 if v2 /∈ VE then Add v2 into VE and reachedV ertices;
18 Add correcting edge (v1, v2, I ′, repair, c) into ER;
19 c′ ← pathCost(v1) + c;
20 if pathCost(v2) is defined and pathCost(v2) = c′ then
21 pathPrev(v2) ← pathPrev(v2) ∪ {v1};
22 if pathCost(v2) is undefined or pathCost(v2) > c′ then
23 pathCost(v2) ← c′; pathPrev(v2) ← {v1};

24 Remove v1 from reachedV ertices and targetV ertices;

25 if fT = aggregated then termCost ← finalCost;
26 else ∀vT ∈ VT termCost(vT) ← pathCost(vT) ; fT = separated

27 return RI ← composeIntentRepair(I, R(I));

Signatures of Correction Intents

Our goal is to describe correction intents, which certainly lead to the same
repairs, i.e. intents with the identical assignment for a nested recursion level
of processing. Having a particular type of a correction intent, the notion of an
intent signature solves our problem.

104

Definition 4.46 (Correction Intent Signature). Assume that T = (D, lab,
val, att) is a data tree and I = (y, RN , RA, sI , qI , sE, QE, u, d, C, fS, fT ,
qS, QT , Ya) is a correction intent where C = (aR, nR, Nc, Pc, map, r, C, O)
is a grammar context and u = ⟨u1 . . . un⟩ is a node sequence of length n.

We define a signature S(I) of a correction intent to be a tuple, which fulfils
the following conditions:

• If y = correct, then S(I) = (correct).

• If y = insert, then S(I) = (insert, nR, aR).

• If y = delete, then S(I) = (delete, baseNode(I)).

• If y = repair, then S(I) = (repair, baseNode(I), nR).

• If y = rename, then S(I) = (rename, baseNode(I), nR, aR).

• If y = push, then S(I) = (push, baseNode(I), n, nR, aR).

• If y = pull, then S(I) = (pull, baseNode(I), nR, aR, qS).

The insert correction intent is only described by the terminal symbol
and a production rule to be used. This rule uniquely implies the nonterminal
symbol. In case of delete intent, we only need to specify the position in the
original data tree.

Correction intents repair and rename are similar, but the former one does
not need to specify the terminal symbol, because this symbol equals to the
node label in the original data tree.

The push intent needs to be described by the range of sibling nodes that
should be pushed one level lower. The label and nonterminal symbol of their
new parent node uniquely defines the nested processing. Finally, the pull

intent is described by a pair of terminal and nonterminal symbol again, but
these symbols belong to the original grandparent of pulled nodes, thus their
new parent to whose context they should now conform. The source state is
required too, since it influences the set of reachable target states.

Caching Repository Model

Now we can introduce the notion for a caching repository, which serves for stor-
ing already computed repairs. The caching version of the correction algorithm
first attempts to ask this cache and only if the specified correction intent has
not yet been computed, we invoke its computation. Otherwise we can access
the cached repair we need.

Definition 4.47 (Caching Manager). A caching manager is a data structure
acting as a partial function, which is able to assign a corresponding repair to a
given signature of an intent I , denoted by cacheRepair(signature(I)) = RI.

105

At the beginning of the correction algorithm the caching repository is empty
and this means, that the internal cache function is not defined for any signa-
ture. During the recursive processing, whenever we finish computation of a
given level and thus have evaluated a repair for a given correction intent, we
extend this function, i.e. insert newly computed repair into the cache.

Algorithm Description

The newly presented caching Algorithm 6 is almost identical to the dynamic
correction algorithm. We only need to modify the code near the place of the
nested recursion level invocation. We first attempt to fetch the already com-
puted repair from the caching repository and only if we are not successful, we
invoke its computation.

Algorithm 6: cachingCorrectionRoutine

Input : Data tree T , single type tree grammar G, intent I.
Output: Repair for correction intent I.
// Lines 1 to 11 from Algorithm 5

// Adjusted line 12 from Algorithm 5

1 if cache(signature(I)) is defined then
2 repair ← cacheRepair(signature(I));
3 else
4 repair ← cachingCorrectionRoutine(T , G, I ′);
5 cacheRepair(signature(I)) ← repair;

// Lines 13 to 27 from Algorithm 5

4.7.4 Incremental Correction Algorithm

The dynamic correction algorithm efficiently processes each level of recursion,
because it only invokes evaluation of those edges that need to be inspected
in order to find all required shortest paths. Therefore, we are able to avoid
processing of those directions in a given partial repairing multigraph, which
seem not to be perspective. The main problem however remains. Although
we ignore some edges, whenever we decide to evaluate one edge, we need to
inspect the entire recursion hidden in this single edge. Even if this edge would
not be the good direction to acquire the shortest path, we need to evaluate it
completely.

The idea of the incremental correction algorithm is to work efficiently even
with the recursion. Suppose that we are at the top level, thus we are processing
the starting correction intent and we need to find the shortest paths to correct
the entire tree. This means that we still need to follow standard Dijkstra’s
algorithm, but we can act lazily. This means that whenever we need to evaluate

106

a correction intent associated with a given edge, we only initiate the process
of its incremental computation. The algorithm will work in steps, permanently
attempting to give more precision to partially evaluated intents. Step by step
we will obtain more precise estimations of edge costs and dynamically follow
only directions, which seem to be the most promising.

Tasks Model

The main difference to all previously introduced correction algorithms is the
fact that we cannot directly use nested calls of the correction routine. We need
to introduce the model, where we only tell what to compute and the particular
computations will be controlled by some manager. This also means that we
need a data structure with ability to store the complete context describing the
state of elaboration for each single correction intent.

Definition 4.48 (Intent Computation Task). Assume that I = (y, RN , RA,
sI , qI , sE, QE, u, d, C, fS, fT , qS, QT , Ya) is a correction intent. We define
a task for I to be a tuple KI = (I, R(I), state, stamp, Vreached, Ereached,
Edelayed, VT , creached, cfixed, WA, WD), where:

• I is the correction intent.

• R(I) is the partially evaluated repairing multigraph for I. This means
that the multigraph is not complete and function or constant termCost
returns only estimated values.

• state ∈ {suspended, blocked, activated, signalled}

• stamp ∈ N0 is a timestamp of the last incremental processing.

• Vreached ⊆ VC is a set of reached vertices.

• Ereached ⊆ EC is a set of reached edges.

• Edelayed ⊆ EC is a set of delayed edges.

• VT ⊆ VC is a set of opened target vertices.

• creached is a value of reached cost.

• cfixed is a value of fixed cost or ⊥.

• WA is a set of correction tasks waiting for KI.

• WD is a set of correction tasks for which KI is waiting.

It is easy to see that we have in principle only encapsulated local variables
from Algorithm 5. These are especially items Vreached for storing reached and
not yet closed vertices, VT representing a set of not yet closed target vertices,
creached for reached cost of the inspected node and also cfixed for storing the

107

fixed value of reached cost in order to stop the entire intent processing as soon
as it is clear that no better paths cannot certainly be found.

Passing over the item for correction intent reference I, we need to little bit
discuss R(I). It has been sketched that this repairing multigraph is not fully
constructed, but also not fully evaluated. The dynamic correction algorithm
always fully evaluates the corresponding intent repair, whenever the correction
edge is inserted into the graph. Unfortunately this is not our goal, thus we will
support also partially defined edges. If the reference to the intent repair is not
defined in the edge, we know that the given intent has not yet been completely
computed. In this case the cost value stored in the given edge only estimates
its final value. Moreover this estimation even needs not to be continuously
current.

After a new task is created, it is assigned with suspended state. If another
task requests computation of its nested and not yet computed intent, the nested
one is assigned activated state and the parental one blocked state. If all tasks
the given parent is waiting for are executed, we assign state signalled to this
parental task.

In order to have the complete overview of existing relations between blocked
tasks, there are two sets WA and WD storing lists of waiting tasks.

Item stamp is an auxiliary timestamp value representing the last time the
given task was refined. Even though the incremental correction algorithm does
not need to handle with these stamps, they enable easier detection of changes.
Assume that a given intent has requested computation of several nested in-
tents. It is easy to remember their references and after these computations are
finished, we can renew the knowledge of cost estimations of all involved edges.
Unfortunately there can be other edges that have also made some progress.

Finally, there are Ereached and Edelayed items representing the sets of reached
and delayed edges respectively. Note that whenever we discover new vertices in
the partially constructed repairing multigraph, we postpone their evaluation.
Thus we need to know which edges are considered and from this set, which
edges end at the currently most perspective vertex.

Computation Manager

The computation manager is a data structure capable to store all existing tasks.
In other words it acts similarly as the caching manager for caching repairs.
Furthermore it contains a provider for timestamps. We do not actually need
to use real timestamps, ordinary increasing sequence of natural numbers fulfils
the same objective.

Definition 4.49 (Computation Manager). A computation manager is a data
structure containing a cacheTask function, timeStamp function and a tuple
M = (Suspended,Blocked, Signalled, Activated), where:

• cacheTask is a partial function, which is able to assign to a given sig-
nature of an intent I assign its associated existing task, denoted by
cacheTask(signature(I)) = KI.

108

• timeStamp provider is a function returning values from N serving as
timestamps. Whenever this function is called, it returns a value equal to
the previously returned value increased by 1.

• Suspended is a set of tasks having state = suspended.

• Blocked is a set of tasks having state = blocked.

• Signalled is a set of tasks having state = aignalled.

• Activated is a set of tasks having state = activated.

All existing tasks are cached within the computation manager in four dis-
joint sets separated by task states. We actually only need the direct access to
sets of Signalled and Activated, because the main correction routine works in
a cycle and in each step it invokes the computation of some task corresponding
one of these two states.

Whenever we first encounter a correction intent, we create a task encapsu-
lating this intent and we put this task structure into the cache of tasks in the
computation manager. After its computation is fully finished, we destroy the
task structure and put the intent repair into the standard caching repository
for repairs.

Main Correction Routine

The main routine of the incremental correction algorithm is presented in Al-
gorithm 7. Its purpose is to create the starting intent for correction of the
entire tree, start up its processing, continuously manage it and, finally, fetch
the repair structure with corrections for the data tree itself.

The life cycle of each task begins in the state suspended. This is quite im-
portant, because this means that the given task cannot be passed to processing
until some running task explicitly requests this. In a such situation there is a
clear relation between the requesting task and the requested tasks.

The main loop continually fetches prepared and requested tasks and in-
vokes their incremental computation. Note that there is at most one running
task in each moment. Although we could probably extend the incremental cor-
rection algorithm to multithreaded environment with parallel computations,
this version only works task by task.

After the execution of activated task is started, we attempt to do the
best in order to complete its mission, i.e. to find repair for a sequence of
nodes, thus to find shortest paths in the constructed repairing multigraph.
But we need to manage this effort and therefore only the starting intent has
no limitations. All other tasks have only one opportunity to request the further
steps of nested intents computation. This stands for the explanation of the last
boolean parameter in the procedure invoked in the loop.

109

Algorithm 7: incrementalCorrectionRoutine

Input : Data tree T , single type tree grammar G.
Output: Repair RI• for correction intent I•.

1 M = (Suspended,Blocked, Signalled, Activated) ← (∅, ∅, ∅, ∅);
2 cacheTask ← ∅;
3 createCorrectionTask(I•);
4 activateCorrectionTask(⊥, I•);
5 while ∃KI ∈M.Signalled ∪M.Activated do
6 switch KI .state do
7 case signalled

8 creative ← (I = I•);
9 processCorrectionStep(T , G, KI, creative);

10 case activated

11 processCorrectionStep(T , G, KI, true);

12 R(I•) ← cacheRepair(signature(I•));
13 return RI•;

Incremental Correction Step

The main principle of the incremental algorithm is to compute progressively
into the depth. This means that at each level of the nested intents we first need
to follow the idea of the shortest paths searching, but concurrently we need to
suppress excessive activity to really achieve the comfortable behaviour inside
the top intent. Thus whenever the particular intent task is requested for the
next headway, we need to create a mechanism for its well-timed interruption.

Each activated intent except the top one is able to process without limits
until it first requests computation of some not yet fully computed tasks. This
condition seems rather strict, but after there are already some intents finished
and their repairs cached, there is a chance to go through larger parts of the
multigraph.

Suppose that we have selected the most perspective vertex from the set
of reached vertices. The dynamic version of the correction algorithm does the
same, but now we cannot automatically declare this vertex as fully defined,
since we only have the estimation of costs of edges leading to this vertex. Even
though it now seems the given node is the best one, further computations may
reverse this state. Thus in order to declare the given candidate vertex as final,
there must be at least one fully evaluated ingoing edge to this vertex from
the set of reached edges and all other not yet fully evaluated edges must have
strictly greater cost estimation.

Only under these conditions we can declare the given perspective vertex
as final, terminate its processing and explore other probably not yet explored

110

vertices beyond it. If we cannot close the given candidate, we need to refine all
its ingoing edges that have not yet been fully evaluated. We therefore request
computation of these tasks and then we end in order to wait until these nested
intents bring progress to edges in constructed multigraph.

Algorithm 8: processCorrectionStep

Input : Data tree T , single type tree grammar G, correction task KI
= (I, R(I), state, stamp, Vreached, Ereached, Edelayed, VT ,
creached, cfixed, WA, WD), boolean creative.

1 foreach e ∈ KI .Ereached do
2 renewEdgeRatings(e, KI .stamp);

3 foreach v ∈ KI .Vreached do
4 renewVertexRatings(R(I), KI, v);

5 while KI .Vreached ̸= ∅ do
6 v1 ← selectBestCandidate(R(I), KI .Vreached);
7 KI .creached ← pathCost(v1);
8 if [(KI .VT = {v1}) or (I.fT = aggregated and v1 ∈ KI .VT)] and

[KI .cfixed is not defined] then KI .cfixed ← KI .creached;
9 if KI .cfixed is defined and KI .cfixed < KI .creached then

10 KI .Vreached ← ∅; break
11 if resolveVertexCompleteness(R(I), KI, v1) then
12 processCompleteVertex(T , G, I, R(I), v1);
13 else
14 if creative then
15 processIncompleteVertex(KI, v1);

16 break

17 if KI .Vreached = ∅ and KI .Edelayed ̸= ∅ and creative then
18 processDelayedEdges(R(I), KI);

19 renewRepairRatings(I, R(I), KI);
20 KI .stamp ← timeStamp();

21 if KI .Vreached = ∅ and KI .Edelayed = ∅ then
22 repair ← composeIntentRepair(I, R(I));
23 cacheRepair(signature(I)) ← repair;
24 signalCorrectionTask(KI);
25 destroyCorrectionTask(KI);

26 else
27 if creative then blockCorrectionTask(KI);
28 else signalCorrectionTask(KI);

111

Structuring Algorithm 8 into main parts, we can start with the initial re-
newing of the knowledge about the acquired progress in nested intents, then
the main loop of processing reached vertices and, finally, the code for task
processing termination. This ending essentially consists of the intent repair
structure composition in case we have successfully completed the entire pro-
cessing of a given task, or blocking and signalling requests in case we need to
wait for nested executions or, conversely, inform ascendent tasks respectively.

Vertices Processing Routines

Now we will present procedures for processing vertices believed to be perspec-
tive candidates in the main loop of each step of task proceeding. First, we will
put attention to Algorithm 9 describing the processing of vertices that can be
declared as final, thus satisfying the outlined conditions of existence of some
fully evaluated ingoing edge having the cost better than all other estimations
from only partially evaluated edges.

Algorithm 9: processCompleteVertex

Input: Data tree T , single type tree grammar G, correction intent I,
partial multigraph R(I), task KI , vertex v1 = (s1, q1)

1 Remove v1 from KI .Vreached and KI .VT ;
2 Remove ∀e′ = (v′1, v

′
2, I ′, R′, c′), v′2 = v1 from KI .Ereached;

3 foreach I ′ ∈ intents(I), (I ′.sI , I ′.qI) = v1 do
4 s′ ← signature(I ′);
5 if cacheTask(s′) is not defined and cacheRepair(s′) is not defined

then createCorrectionTask(I ′);
6 foreach q′E ∈ I ′.QE do
7 v2 ← (I ′.sE, q′E); e ← (v1, v2, I ′, ⊥, ⊥);
8 if v2 /∈ R(I).VR then
9 Add v2 into R(I).VR and KI .Vreached;

10 if v2 ∈ KI .Vreached then
11 Add correcting edge e into R(I).ER and KI .Ereached;

12 else
13 Add correcting edge e into R(I).ER and KI .Edelayed;

14 renewEdgeRatings(e, 0);
15 renewVertexRatings(R(I), KI, v2);

Similarly to the original dynamic algorithm we need to inspect all outgoing
edges and newly discovered vertices terminating these edges.

In Algorithm 10 we present the processing of vertices that cannot be closed,
since we have not yet computed enough to be sure we can do it. In order to

112

achieve better estimations, we request further processing of all edges ingoing
to the vertex currently declared as the perspective one.

Algorithm 10: processIncompleteVertex

Input: Correction task KI , vertex v1 = (s1, q1).

1 foreach e = (v′0, v
′
1, I ′, R′, c′) ∈ KI .Ereached, v

′
1 = v1 do

2 if e.R′ = ⊥ then
3 activateCorrectionTask(KI, I ′);

During the process of searching for the shortest paths we sometimes come
across edges leading from the vertex being closed to some other already closed
one. It is easy to see that we do not need to evaluate these edges immediately,
because they cannot influence the traversal itself. However, we need to eval-
uate them at least partially in order to eliminate the possibility they can be
involved in other shortest paths. In our correction algorithm we have decided
to postpone their computation until we know that some superior task really
needs to terminate such intent. In Algorithm 11 we present the procedure of
deferred processing of these edges.

Algorithm 11: processDelayedEdges

Input: Partial multigraph R(I), task KI .

1 foreach e = (v1, v2, I ′, R, c) ∈ KI .Edelayed do
2 renewEdgeRatings(e, KI .stamp);
3 c′ ← pathCost(v1) + e.c;
4 if c′ > pathCost(v2) then
5 Remove e from KI .Edelayed;

6 else
7 if e.R′ = ⊥ then
8 activateCorrectionTask(KI, I ′);
9 else

10 pathPrev(v2) ← pathPrev(v2) ∪ {v1};
11 Remove e from KI .Edelayed;

Selection of Perspective Vertices

The candidate vertex regarded as the best vertex to work on is selected in a way
presented in Algorithm 12. Similarly to basic algorithms we again only select
such vertex from the set of reached vertices that have the lowest estimation
of cost. Although the presented function does not contain it, we can extend

113

this selection criterion in a way that we prefer those vertices with lowest cost,
which have also some already closed ingoing edge. This choice increases the
probability of the candidate termination.

Algorithm 12: selectBestCandidate

Input : Partial multigraph R(I), set of vertices V ⊆ R(I).VR.
Return: Selected perspective vertex vm.

1 m ← minv∈V [R(I).pathCost(v)];
2 vm = (s, q) for some vm ∈ V , R(I).pathCost(vm) = m;

3 return vm;

Algorithm 13 introduces the evaluation of condition the perspective candi-
date vertex should satisfy in order it can be treated as fully completed. Note
that an ordinary vertex in the exploration multigraph usually has more ingoing
edges, thus there is a chance that some edges need not to be fully evaluated
and only the lowest ones win and cause earlier progress in the shortest path
searching goal.

Algorithm 13: resolveVertexCompleteness

Input : Partial multigraph R(I), task KI , vertex v2 = (s2, q2).
Return: true for completed vertex, false otherwise.

1 InputEdges ← {e | e ∈ KI .Ereached and e.v2 = v2};
2 ClosedEdges ← {e | e ∈ InputEdges and e.R ̸= ⊥};
3 OpenedEdges ← {e | e ∈ InputEdges and e.R = ⊥};
4 if InputEdges = ∅ then return true;

5 if ∃e = (v1, v2, I ′, R, c) ∈ ClosedEdges then
6 m ← mine∈ClosedEdges(pathCost(e.v1) + e.c);
7 Let e0 be any edge from ClosedEdges corresponding to m;
8 if ∀e ∈ OpenedEdges, pathCost(e.v1) + e.c > m then return

true; else return false;

9 else return false;

Updates of Constructed Multigraph

Although the original purpose of Algorithm 14 was to renew values of estimated
costs in all reached edges that have showed some progress during the given
intent task was waiting blocked, we can also use it to correctly resolve values
for edges newly reached during the processing of candidate vertices.

114

Algorithm 14: renewEdgeRatings

Input: Edge e = (v′1, v
′
2, I ′, R′, c′) ∈ R(I).ER, v

′
2 = (s′2, q

′
2), timestamp

stamp of the last performed update of e.

1 if e.R′ = ⊥ then
2 if cacheTask(signature(I ′)) is defined then
3 K′ ← cacheTask(signature(I ′));
4 if K′.stamp > stamp then
5 if I ′.fT = aggregated then
6 e.c′ ← K′.R(I ′).termCost;

7 else I ′.fT = separated

8 e.c′ ← K′.R(I ′).termCost(q′2);

9 else
10 e.R′ ← cacheRepair(signature(I ′));
11 if I ′.fT = aggregated then e.c′ ← cost(e.R′);
12 else e.c′ ← cost(e.R′, q′2) ; I ′.fT = separated

Whereas the purpose of the previous procedure was only to update records
stored in the structure of the correction edge, Algorithm 15 introduces the
mechanism of updating the pathPrev and pathCost functions of the con-
structed repairing multigraph.

Algorithm 15: renewVertexRatings

Input: Partial multigraph R(I) = (VR, ER, pathPrev, pathCost,
termCost), task KI , vertex v to be updated.

1 if v ∈ KI .Vreached then
2 pathCost(v) ← ∞; pathPrev(v) ← {};
3 foreach e = (v1, v2, I, R, c) ∈ R(I).ER, v2 = v do
4 c′ ← pathCost(v1) + c;
5 if pathCost(v) = c′ then
6 pathPrev(v) ← pathPrev(v) ∪ {v1};
7 if pathCost(v) > c′ then
8 pathCost(v) ← c′; pathPrev(v) ← {v1};

9 else
10 foreach e = (v1, v2, I, R, c) ∈ R(I).ER, v2 = v do
11 c′ ← pathCost(v1) + c;
12 if pathCost(v) = c′ then
13 pathPrev(v) ← pathPrev(v) ∪ {v1};

115

The mechanism of updating vertices is different to basic correction algo-
rithms, since we need for each vertex inspect all its ingoing edges. In Algorithm
16 we renew the record about estimated cost for the entire intent repair we are
attempting to construct in a given correction task.

Algorithm 16: renewRepairRatings

Input: Correction intent I, partial repairing multigraph R(I) = (VR,
ER, pathPrev, pathCost, termCost) and task KI .

1 if I.fT = aggregated then
2 if KI .cfixed is defined then termCost ← KI .cfixed;
3 else termCost ← KI .creached;

4 else I.fT = separated

5 foreach qT ∈ I.QT do
6 vT ← (n, qT);
7 if vT ∈ KI .VT then termCost(qT) ← KI .creached;
8 else termCost(qT) ← pathCost(vT);

Tasks Managing Procedures

Finally, we will introduce five auxiliary procedures serving for management of
tasks processing. Their precise introduction is relatively important, since there
are some crucial aspects, which may not be obvious from the first point of
view.

Algorithm 17: createCorrectionTask

Input : Correction intent I.
1 vS ← (0, qS);

2 R(I) = (VR, ER, pathPrev, pathCost, termCost);
3 R(I) ← ({vS}, ∅, ∅, ∅, ⊥);
4 pathCost(vS) ← 0; pathPrev(vS) ← ∅;
5 Vreached ← {vS}; Ereached ← ∅; Edelayed ← ∅;
6 VT ← {(n, qT) | qT ∈ QT};
7 if fT = aggregated then termCost ← 0;
8 else foreach qT ∈ QT do termCost(qT) ← 0 ; fT = separated

9 KI ← (I, R(I), suspended, timeStamp(), Vreached, Ereached, Edelayed,
VT , 0, ⊥, ∅, ∅);

10 M.Suspended ←M.Suspended ∪ {KI};
11 cacheTask(signature(I)) ← KI ;

116

In Algorithm 17 we start with a new task creation routine. First a newly
created task is not automatically activated. This is because new tasks are usu-
ally constructed during the closure of perspective vertices when exploring new
parts of the multigraph, but in this step we do not invoke their computation.
Next, we need to initialize all task internal records.

When the correction routine processes the candidate vertex which needs
to be refined before its termination can be accounted, we need to request
the execution of all not yet fully computed ingoing edges and thus associated
correction tasks. For this purpose we use Algorithm 18.

Algorithm 18: activateCorrectionTask

Input: Parental intent task KI or ⊥, nested intent I ′.
1 KI′ ← cacheTask(signature(I ′));
2 formerState ← KI′ .state;

3 if formerState ∈ {activated, blocked, signalled} then
4 if KI ̸= ⊥ then KI′ .WA ← KI′ .WA ∪ {KI};

5 if formerState = suspended then
6 KI′ .state ← activated;
7 if KI ̸= ⊥ then KI′ .WA ← {KI};
8 M.Suspended ←M.Suspended \ {KI′};
9 M.Activated ←M.Activated ∪ {KI′};

10 if KI ̸= ⊥ then KI .WD ← KI .WD ∪ {KI′};

Note that we also need to handle situations, when we want to activate a
task that has already been activated, or even executed. These situations can
really arise, since there can be other tasks pursuing the same aims. After we
have requested computations of all suitable ingoing edges, we also need to
block the original task. This functionality is offered by Algorithm 19.

Algorithm 19: blockCorrectionTask

Input: Intent task KI to be blocked.

1 formerState ← KI .state;
2 KI .state ← blocked;

3 if formerState = activated then
4 M.Activated ←M.Activated \ {KI};
5 if formerState = signalled then
6 M.Signalled ←M.Signalled \ {KI};
7 M.Blocked ←M.Blocked ∪ {KI′};

117

The given task remains blocked until all its required nested tasks are not
executed. After this situation arises, the computation manager can execute
this task once again, but this time we can only continue its processing via can-
didate vertices that can be immediately finalised. Another recursive requests
are not allowed, otherwise we would not be able to achieve determined efficient
behaviour at the top level, thus in the starting intent. On the other hand we
can easily imagine minor modifications that would for example allow repeating
the requesting phase for some predefined number of attempts.

Anyway at the end we need to inform all superior tasks that have originally
requested the computation of this newly interrupted task. For this purpose we
use procedure presented in Algorithm 20.

Algorithm 20: signalCorrectionTask

Input: Intent task KI to announce signal.

1 formerState ← KI .state;

2 KI .state ← suspended;
3 M.Suspended ←M.Suspended ∪ {KI};
4 if formerState = activated then
5 M.Activated ←M.Activated \ {KI};

6 if formerState = signalled then
7 M.Signalled ←M.Signalled \ {KI};

8 foreach K′ ∈ KI .WA do
9 K′.WD ← K′.WD \ {KI};

10 if K′.WD = ∅ then
11 K′.state ← signalled;
12 M.Blocked ←M.Blocked \ {K′};
13 M.Signalled ←M.Signalled ∪ {K′};

14 KI .WA ← ∅;

Finally, we will present Algorithm 21, which is called after the given task
has fulfilled its mission. Such task is removed from all structures of the com-
putation manager and then we instantly insert composed repair structure into
the caching repository.

Algorithm 21: destroyCorrectionTask

Input: Intent task KI to be destroyed.

1 M.Suspended ←M.Suspended \ {KI};
2 cacheTask(signature(I)) ← ⊥;

118

Incremental Algorithm Summary

Having introduced all component routines of the incremental correction al-
gorithm, we can shortly discuss several questions. First the presented algo-
rithm does not directly allow the multithreaded environment and it is not
sure, whether the necessary overhead would be suppressed by acquired advan-
tages. On the other hand we can also modify the heuristic we use for detecting
perspective vertices when attempting to find shortest paths. It is easy to see
that we may not follow the standard Dijkstra’s algorithm too strictly, allow
more latitude in the multigraph exploration and in these cases there is higher
probability of the contribution of such parallel enabled algorithm.

119

Chapter 5

Conclusion

We have presented the framework for correcting structurally invalid XML doc-
uments with respect to single type tree grammars. Proposed repairs of elements
are based on finding new suitable sequences of their child nodes that conform
to corresponding content model, using efficient traversal and inspection of the
state space of associated finite automaton for recognising words from a lan-
guage of a regular expression.

Under any circumstances our framework is able to find all minimal repairs
according to the introduced cost function assigning to each edit operation a
non-negative cost. Using these elementary operations we are able to insert or
delete a leaf or internal node or rename a label of an existing node.

In order to compute repairs efficiently, we have presented four correction
algorithms. The most extended one is capable to incrementally evaluate only
promising directions from all possible corrections.

Approach Advantages

The first contribution of our framework lies in the consideration of the single
type tree grammar class. All studied approaches assumed only schemata in
DTD, thus at the level of the local tree grammar class. Although not all con-
structs from XML Schema in fact meet criteria for single type tree grammars,
this classification is widely accepted.

The advantage of our correction model is the fact that we are able to
generate repairs under any circumstances. Correction algorithms in [14, 44]
are able to find repairs only if the original data tree is not too far from the
grammar, i.e. if it does not contain too many errors. Our algorithm does not
need any form of threshold or pruning, we always find all minimal repairs.

Next, we have wider set of elementary and complex operations, through
which we can attempt to correct provided potentially invalid data trees. It is
easy to see that the set of proposed operations is the key factor of correction
framework abilities. Finally, it is worth saying that all proposed complex up-
date operations can be implemented using the same mechanism, we do not need
to introduce, for example, different routines for inserting or deleting subtrees.
All correction intents are handled in the same way.

120

The last proposed incremental correction algorithm is able to search for
repairs efficiently, ignoring directions that do not seem perspective. And we do
not only find shortest paths representing minimal repairs using this heuristic,
but we are able to evaluate repairs only partially, estimate their costs and
harness these estimations in the process of finding repairs for the entire data
tree. Moreover, the algorithm itself never computes any local repair repeatedly,
since all completed computations are cached.

Approach Disadvantages

The main disadvantage of the proposed set of edit and update operations is
the fact that they do not allow local transpositions within a sequence of sibling
nodes. This is a rather significant deficiency, since we can assume that local
moves would probably solve typical errors in content models with fixed order
of elements.

Moreover we only produce local corrections. Even though we have proposed
operations for pushing or pulling groups of sibling nodes connected with an
internal node insertion or deletion respectively, we are not able to suggest, for
example, moves of subtrees between distant parts of a data tree.

Another disadvantage is that we consider only corrections of attributes and
elements separately and do not permit their mutual switching.

Approaches Comparison

In contrast to the approach presented in [48], we have presented a wider set
of update operations. Although this extension can be seen only as a minor
improvement, in fact the situation is rather more complicated. It is because
this work only assumed operations for a subtree insertion, deletion and a re-
cursive repair without an option to rename a label. All these operations can be
implemented very efficiently and thus authors do not need to deal with related
problems.

Comparing to the approach presented in [14], we have wider set of opera-
tions too, but, first of all, we are able to return repairs under all conditions,
not only if the original data tree has small number of errors. In that case
this algorithm is able to return at least some repairs, it returns all minimal
repairs and also some other non-minimal. However, not all non-minimal. Our
correction algorithm returns always all minimal but only minimal repairs.

Our correction algorithm is also able to propose new suitable labels for
parental nodes with invalid sequence of their child nodes, which the discussed
approach is only able under certain conditions. Finally we have presented much
more efficient correction algorithm, which not only caches computed repairs,
but also behaves lazily.

121

Performance Experiments

Although we have introduced four different correction algorithms following
the same formal model, for practical applications are suitable only the caching
algorithm and especially the incremental one.

Having a simple recursive tree grammar and trees with even only a root
node, the naive correction algorithm may not be able to compute any repair,
terminating unexpectedly on the lack of memory. This behaviour is caused
by an enormously high number of pointlessly repeated computations. Even
though the dynamic algorithm directly constructs only the shortest paths, the
same problem remains.

Whilst these basic algorithms have problems with units of nodes in a data
tree, the incremental algorithm is able to process under the same tree grammar
hundreds of thousands nodes in a time less than a second. Not only that this
algorithm does not need to evaluate all intents, it seems that only units of
percents of reached edges in constructed repairing multigraphs are required to
be fully evaluated.

Possible Extensions

Except dealing with already named disadvantages, we can propose several
other interesting extensions that could improve the correction framework as it
has been introduced in this thesis.

It has already been sketched that we can attempt to find not only all
minimal repairs, but also some non-minimal or even all non-minimal repairs
within a certain threshold. This extension would first need to slightly extend
the model of multigraph edges in order to enable representation of repairs with
different costs. However, we would consequently need to significantly modify
the concept of finding paths. More paths bring more intents evaluation and,
moreover, we can lose the advantages based on introduced efficiency concepts.

Next, we can propose new edit and associated update operations. For ex-
ample, with the connection to presented existing implementations correcting
well-formedness of both HTML and XML documents, there would obviously
be interesting an operation dealing with potentially badly closed or opened
elements that originally had omitted closing or opening tags respectively. The
mentioned correction algorithm may not propose right locations for their plac-
ing and thus we can attempt to rectify these misses. An operation capable to
lift up a prefix or postfix of a sequence of sibling nodes one level up before or
behind their parent respectively and next an operation capable to press down
a sequence of sibling nodes preceding or following a given node under this node
as a prefix or postfix respectively seem sufficient for solving these situations.

Although we have ended with a presentation of the incremental correction
algorithm, there is an option of its further improvement based on enabling
parallel computations by more threads concurrently. On this account we can
probably relax the proposed heuristic for finding shortest paths and permit
more requested computations at once, not only working on edges ingoing to

122

the most perspective vertex in a multigraph.
Another extension can be introduced in a way how found repairs are pre-

sented to the user. Passing over an already outlined option of interactivity with
the user having the veto for choosing the best local repairs, we can separate
repairs for attributes and elements. First we can establish the final structure
of a data tree and later on we can walk through nodes and repair attributes.

Future Work

The main direction of our future work around introduced correction framework
is its integration into the Analyzer project [50, 3], robust framework designed
for massive parallel analyses of especially XML related documents. Although
it is able to provide an environment for computing miscellaneous analyses over
any types of documents, we will focus on the problem of processing structurally
invalid XML documents.

We will encapsulate the proposed correction algorithm into a plugin and
then use it for computing characteristics of real-world XML documents and
their degree and forms of invalidity.

123

Appendix A

Content of CD

The enclosed CD contains:

• PDF version of this thesis.

• Source files of the prototype implementation.

• Generated JavaDoc documentation.

• Performed experiments data.

124

Bibliography

[1] Abiteboul, Serge and Segoufin, Luc and Vianu, Victor. Representing and
Querying XML with Incomplete Information. ACM Trans. Database Syst.,
31(1):208–254, 2006.

[2] Alur, Rajeev and Madhusudan, P. Visibly Pushdown Languages. In
STOC ’04: Proceedings of the 36th annual ACM symposium on Theory
of computing, pages 202–211, New York, NY, USA, 2004. ACM.

[3] Analyzer 1.0. http://urtax.ms.mff.cuni.cz/anaxml/.

[4] Arenas, Marcelo and Fan, Wenfei and Libkin, Leonid. On Verifying Con-
sistency of XML Specifications. In PODS ’02: Proceedings of the 21st
ACM SIGMOD-SIGACT-SIGART symposium on Principles of Database
Systems, pages 259–270, New York, NY, USA, 2002. ACM.

[5] Barbosa, Denilson and Mendelzon, Alberto O. and Libkin, Leonid and
Mignet, Laurent and Arenas, Marcelo. Efficient Incremental Validation
of XML Documents. In ICDE ’04: Proceedings of the 20th International
Conference on Data Engineering, pages 671–682. IEEE Computer Society,
30 2004.

[6] Biron, P. V. and Malhotra, A. XML Schema Part 2: Datatypes (Second
Edition), 2004. http://www.w3.org/TR/xmlschema-2/.

[7] Boag, Scott and Chamberlin, Don and Fernandez, Mary F. and Florescu,
Daniela and Robie, Jonathan and Simeon, Jerome. XQuery 1.0: An XML
Query Language, 2007. http://www.w3.org/TR/xquery/.

[8] Boobna, Utsav and Rougemont, Michel de. Prototype Implementation of
Correctors for XML Data. http://www.lri.fr/ mdr/xml/.

[9] Boobna, Utsav and Rougemont, Michel de. Correctors for XML Data. In
Database and XML Technologies, volume 3186/2004 of Lecture Notes in
Computer Science, pages 69–96. Springer-Verlag Berlin Heidelberg, 2004.

[10] Boobna, Utsav and Rougemont, Michel de. Correctors for Ranking XML
Documents, 2008.

125

[11] Bouchou, B. and Duarte, D. and Halfeld, M. and Alves, Ferrari and Lau-
rent, D. Extending Tree Automata to Model XML Validation under El-
ement and Attribute Constraints. In ICEIS 2003, Proceedings of the 5th
International Conference on Enterprise Information Systems, pages 184–
190, 2003.

[12] Bouchou, Beatrice and Alves, Mirian Halfeld Ferrari. Updates and Incre-
mental Validation of XML Documents. In Database Programming Lan-
guages, volume 2921/2004 of Lecture Notes in Computer Science, pages
139–140. Springer-Verlag Berlin Heidelberg, 2004.

[13] Bouchou, Beatrice and Alves, Mirian Halfeld Ferrari and Musicante, Mar-
tin A. Tree Automata to Verify XML Key Constraints. In WebDB: In-
ternational Workshop on Web and Databases, pages 37–42, 2003.

[14] Bouchou, Beatrice and Cheriat, Ahmed and Alves, Mirian Halfeld Ferrari
and Savary, Agata. Integrating Correction into Incremental Validation.
In BDA, 2006.

[15] Bouchou, Beatrice and Cheriat, Ahmed and Ferrari, Mirian Halfeld and
Musicante, Martin. Incremental Constraint Validation of XML Docu-
ments under Multiple Updates. Technical report, Université François-
Rabelais de Tours, 2006.

[16] Bouchou, Beatrice and Cheriat, Ahmed and Ferrari, Myrian Halfeld and
Savary, Agata. XML Document Correction: Incremental Approach Ac-
tivated by Schema Validation. Database Engineering and Applications
Symposium, International, pages 228–238, 2006.

[17] Bray, Tim and Paoli, Jean and Sperberg-McQueen, C. M. and Maler, Eve
and Yergeau, Francois. Extensible Markup Language (XML) 1.0 (Fifth
Edition), 2008. http://www.w3.org/XML/.

[18] Bray, Tim and Paoli, Jean and Sperberg-McQueen, C. M. and Maler, Eve
and Yergeau, Francois and Cowan, John. Extensible Markup Language
(XML) 1.1 (Second Edition), 2006. http://www.w3.org/XML/.

[19] Cheriat, Ahmed and Savary, Agata and Bouchou, Beatrice and Alves,
Mirian Halfeld Ferrari. Incremental String Correction: Towards Correction
of XML Documents. In Stringology: Proceedings of the Prague Stringology
Conference, pages 201–215. Department of Computer Science and Engi-
neering, Faculty of Electrical Engineering, Czech Technical University,
2005.

[20] Chitic, Cristiana and Rosu, Daniela. On Validation of XML Streams using
Finite State Machines. InWebDB ’04: Proceedings of the 7th International
Workshop on the Web and Databases, pages 85–90, New York, NY, USA,
2004. ACM.

126

[21] Clark, James. XSL Transformations (XSLT) Version 1.0, 1999.
http://www.w3.org/TR/xslt.

[22] Clark, James and DeRose, Steve. XML Path Language (XPath) Version
1.0, 1999. http://www.w3.org/TR/xpath/.

[23] Cobena, Gregory and Abiteboul, Serge and Marian, Amelie. Detecting
Changes in XML Documents. In ICDE ’02: Proceedings of the 18th Inter-
national Conference on Data Engineering, pages 41–52, Washington, DC,
USA, 2002. IEEE Computer Society.

[24] Dijkstra, E. W. A Note on Two Problems in Connexion with Graphs.
Numerische Mathematik, 1(1):269–271, 1959.

[25] Document Object Model (DOM). http://www.w3.org/DOM/.

[26] Fallside, David C. and Walmsley, Priscilla. XML Schema Part 0: Primer
(Second Edition), 2004. http://www.w3.org/TR/xmlschema-0/.

[27] Flesca, Sergio and Furfaro, Filippo and Greco, Sergio and Zumpano, Ester.
Repairs and Consistent Answers for XML Data with Functional Depen-
dencies. In Database and XML Technologies, volume 2824/2003 of Lecture
Notes in Computer Science, pages 238–253. Springer-Verlag Berlin Hei-
delberg, 2003.

[28] Flesca, Sergio and Furfaro, Filippo and Greco, Sergio and Zumpano, Ester.
Querying and Repairing Inconsistent XML Data. In WISE ’05: Proceed-
ings of the 6th International Conference on Web Information Systems
Engineering, volume 3806/2005 of Lecture Notes in Computer Science,
pages 175–188. Springer-Verlag Berlin Heidelberg, 2005.

[29] HTML 4.01 Specification, 1999. http://www.w3.org/TR/html401/.

[30] HTML Tidy. http://tidy.sourceforge.net/.

[31] HtmlCleaner 2.1. http://htmlcleaner.sourceforge.net/.

[32] Java 6 Standard Edition. http://java.sun.com/javase/6/.

[33] Klarlund, Nils and Schwentick, Thomas and Suciu, Dan. XML: Model,
Schemas, Types, Logics, and Queries. In In Logics for Emerging Applica-
tions of Databases, pages 1–41. Springer, 2003.

[34] Kumar, Viraj and Madhusudan, P. and Viswanathan, Mahesh. Visibly
Pushdown Automata for Streaming XML. In WWW ’07: Proceedings of
the 16th International Conference on World Wide Web, pages 1053–1062,
New York, NY, USA, 2007. ACM.

127

[35] Lu, Shiyong and Sun, Yezhou and Atay, Mustafa and Fotouhi, Farshad.
A Sufficient and Necessary Condition for the Consistency of XML DTDs.
In ER (Workshops), volume 2814 of Lecture Notes in Computer Science,
pages 250–260, 2003.

[36] Megginson, David. SAX 2.0. http://www.saxproject.org/.

[37] Mlynkova, Irena and Toman, Kamil and Pokorny, Jaroslav. Statistical
Analysis of Real XML Data Collections. In Proceedings of the 13th Inter-
national Conference on Management of Data, 2006.

[38] Murata, Makoto and Lee, Dongwon and Mani, Murali and Kawaguchi,
Kohsuke. Taxonomy of XML Schema Languages using Formal Language
Theory. ACM Trans. Internet Technol., 5(4):660–704, 2005.

[39] NekoHTML Parser 1.9.14. http://nekohtml.sourceforge.net/.

[40] Neven, Frank. Automata Theory for XML Researchers. SIGMOD Rec.,
31(3):39–46, 2002.

[41] Ng, Patrick K. L. and Ng, Vincent T. Y. Structural Similarity between
XML Documents and DTDs. In Computational Science — ICCS 2003,
volume 2659/2003 of Lecture Notes in Computer Science, pages 412–421.
Springer-Verlag Berlin Heidelberg, 2003.

[42] Nierman, Andrew and Jagadish, H. V. Evaluating Structural Similarity
in XML Documents. In WebDB ’02: Proceedings of the 5th International
Workshop on the Web and Databases, pages 61–66, 2002.

[43] RELAX NG. http://www.relaxng.org/.

[44] Rougemont, Michel de. The Correction of XML Data. In ISIP ’03: First
Franco-Japanese Workshop on Information Search, Integration and Per-
sonalization, 2003.

[45] Schematron. http://www.schematron.com/.

[46] Schewe, Klaus Dieter and Thalheim, Bernhard and Wang, Qing. Vali-
dation of Streaming XML Documents with Abstract State Machines. In
iiWAS ’08: Proceedings of the 10th International Conference on Informa-
tion Integration and Web-based Applications & Services, pages 147–153,
New York, NY, USA, 2008. ACM.

[47] Segoufin, Luc and Vianu, Victor. Validating Streaming XML Documents.
In PODS ’02: Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART
symposium on Principles of Database Systems, pages 53–64, New York,
NY, USA, 2002. ACM.

128

[48] Slawomir Staworko, Jan Chomicky. Validity-Sensitive Querying of XML
Databases. In Current Trends in Database Technology – EDBT 2006,
2nd International Workshop on Database Technologies for Handling XML
Information on the Web (DataX’06), volume 4254/2006 of Lecture Notes
in Computer Science, pages 164–177. Springer-Verlag Berlin Heidelberg,
2006.

[49] Suzuki, Nobutaka. Finding an Optimum Edit Script between an XML
Document and a DTD. In SAC ’05: Proceedings of the 2005 ACM sym-
posium on Applied computing, pages 647–653, New York, NY, USA, 2005.
ACM.

[50] Svoboda, Martin and Starka, Jakub and Sochna, Jan and Schejbal, Jiri
and Mlynkova, Irena. Analyzer: A Framework for File Analysis. In Bench-
marX ’10: Proceedings of the 2nd International Workshop on Benchmark-
ing of Database Management Systems and Data-Oriented Web Technolo-
gies of DASFAA ’10: 15th International Conference on Database Systems
for Advanced Applications, Lecture Notes in Computer Science. Springer-
Verlag, 2010.

[51] Tan, Zijing and Wang, Wei and Xu, Jian Jun and Shi, Baile. Repairing
Inconsistent XML Documents. In Knowledge Science, Engineering and
Management, volume 4092/2006 of Lecture Notes in Computer Science,
pages 379–391. Springer-Verlag Berlin Heidelberg, 2006.

[52] Tan, Zijing and Zhang, Zijun and Wang, Wei and Shi, Baile. Computing
Repairs for Inconsistent XML Document Using Chase. In Advances in
Data and Web Management, volume 4505/2007 of Lecture Notes in Com-
puter Science, pages 293–304. Springer-Verlag Berlin Heidelberg, 2007.

[53] Thompson, H. S. and Beech, D. and Maloney, M. and Mendel-
sohn, N. XML Schema Part 1: Structures (Second Edition), 2004.
http://www.w3.org/TR/xmlschema-1/.

[54] Xing, Guangming and Malla, Chaitanya R. and Xia, Zhonghang and
Venkata, Snigdha Dantala. Computing Edit Distances between an XML
Document and a Schema and its Application in Document Classification.
In SAC ’06: Proceedings of the 2006 ACM symposium on Applied com-
puting, pages 831–835, New York, NY, USA, 2006. ACM.

129

