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Chapter 1

Introduction

The Extensible Markup Language (XML) [6] has become a popular standard for

data representation and exchange. Its prevalence is based on its simplicity and,

at the same time, its flexibility and expressive power.

With XML used to represent data themselves, it is often needed or convenient

to somehow specify the structure of the represented data, their format, internal

relations or restrictions, etc. In order to this need, several so-called XML schema

languages (XML schemata) have been created. The most used of them are Doc-

ument Type Definition (DTD) [6] and XML Schema (or XSD as XML Schema

Definition) [34, 30, 20] proposed by the World Wide Web Consortium (W3C).

Despite a conveyed encouragement to use an XML schema along with an XML

data representation, in practise it is done sparsely. Commonly, XML documents

are not assigned with their respective XML schema at all or the schema is outdat-

ed due to modifications done to a structure of data without updating the schema

[23].

Recently in reaction to this situation, a significant number of approaches

dealing with automatic construction of an XML schema has been proposed. The

aim is to exploit a provided set of XML documents and infer an XML schema, so

that the XML documents are valid against it. In addition, the inferred schema

should be reasonable in views of human-readability, preciseness and conciseness.

Most of published approaches to XML schema inference are of this type - the

input is a set of XML documents. They are based on various ideas and can be

classified by several aspects as discussed in Chapter 3.

Besides the mentioned type, some approaches that utilize other or additional

sources have been developed, for example [24] and [17]. If there are available

sources like an out-dated XML schema, operations upon the XML data such as

a set of XQuery [11] queries, or other, these sources can be exploited to refine
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the process of inference. The refinement can be achieved in various aspects such

as increasing the speed of the process, getting a more precise, more concise or

more readable result or inference of statements about the data which cannot be

(easily) extracted from the data themselves.

Recently, the main effort has been focused on a research of the approaches

that utilize XML documents, and thus, there are only few approaches of the latter

type (as also discussed in Chapter 3), leaving a wide space for a possible future

research and improvements.

1.1 Aim of this Work

Our aim is to perform a research on the problem of inference of an XML schema

for the given set of XML data in a situation when we are provided also with a

set of related operations (XML queries, XSLT scripts [8] etc.).

Firstly, we analyze existing inference solutions in general and discuss their ad-

vantages and disadvantages. Then, we identify and discuss information that can

be extracted from a given set of XML operations and how they can be exploited

to achieve more precise and realistic XML schema.

The work results in a proposal of own approach involving the improvements,

its implementation and suitable experiments that show its advantages.

1.2 Structure of the Thesis

The thesis is structured as follows.

In Chapter 2, we introduce XML technologies used in this thesis and we briefly

explain their basic principles.

Chapter 3 contains summaries of several existing approaches of XML schema

inference. One of them proposes an utilisation of XQuery queries, which interests

us the most.

We made an analysis of XQuery technology from a view of XML schema

inference, where we suggest several ideas on how XQuery queries can be exploited

in the inference process. This is a content of Chapter 4.

In Chapter 5, we discuss some essential questions that we needed to decide

before a development of an algorithm.

The algorithm itself is proposed in Chapter 6. And Chapter 7 describes how

to combine results of the algorithm with existing grammar inferring methods of

XML schema inference.
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An implementation of the proposed algorithm using the jInfer framework is

described in Chapter 8. Chapter 9 then discusses performed experiments and

their outcomes. And, finally, Chapter 10 concludes.
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Chapter 2

Used Technologies and Definitions

2.1 XML Schema

An XML schema refers to a description of an XML document in terms of its

structure and various constraints. Commonly, the XML schema describes element

and attribute names, their parent-child relations, their order and type of their

content. Other constraints often expressed in the XML schema are restrictions on

numbers of occurrences of elements, specification of (non-)obligatory attributes,

uniqueness and specification of keys.

Various languages have been proposed to express XML schemata. The most

known are Document Type Definition (DTD) [6] and XML Schema Definition

(XML Schema, XSD) [34, 30, 20] which are briefly described in the following

sections. Another examples of the XML schema languages are RELAX NG [10]

and Schematron [16].

Validity of an XML document against its XML schema expresses whether the

document is well-formed [6] and, at the same time, whether it conforms to the

XML schema.

2.1.1 An XML Example

To demonstrate the described technologies, we introduce a part of a simple XML

document (see Figure 2.1). It represents books in a bookstore. Each book has a

mandatory id, a title, a list of authors and an optional ISBN.

2.1.2 DTD

Document Type Definition (DTD) expresses the structure of XML documents by

declarations of elements. An element has its name and a content declared using

4



<bookstore>

<book id="b1">

<title>

Compilers: Principles, Techniques, and Tools

(2nd Edition)

</title>

<authors>

<author>Alfred V. Aho</author>

<author>Monica S. Lam</author>

<author>Ravi Sethi</author>

<author>Jeffrey D. Ullman</author>

</authors>

</book>

<book id="b2">

<title>XQuery</title>

<authors>

<author>Priscilla Walmsley</author>

</authors>

<isbn>0596006349</isbn>

</book>

</bookstore>

Figure 2.1: A simple XML example
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syntax <!ELEMENT name content>.

The content of an element can be denoted by EMPTY for an empty element,

ANY for any content, (#PCDATA) allowing only textual content (without any other

subelements), or specified using regular expressions. Names of subelements are

combined using operators (|, +, *, ? and ,(comma)). To express the mixed

content #PCDATA can be used in an alternation list with the subelement names

and this alternation has to be enclosed in * operator.

Attributes of an element are specified in an attribute list <!ATTLIST

element_name attribute_name type default_value>. Each attribute has its

name, its type and its default value or definition of obligation of occurrence.

The type can be an enumeration of values (value1 | value2 | . . . | valuen) or

one of the following values.

• CDATA Character data - any string.

• ID A unique identifier.

• IDREF An ID reference - a value of the ID.

• IDREFS A space-separated list of ID references.

• NMTOKEN A valid XML name.

• NMTOKENS A space-separated list of valid XML names.

• ENTITY An entity.

• ENTITIES A space-separated list of entities.

• NOTATION A name of a notation.

The default value is either a literal value or one of the following specifiers.

• #REQUIRED The attribute is mandatory.

• #IMPLIED The attribute is optional.

• #FIXED value The attribute value is constant value.

The DTD also provides other constructs such as declaration of entities and

notations not mentioned in this work.

An example of DTD describing the book element from the XML example in

Figure 2.1 is shown in Figure 2.2.
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<!ELEMENT book (title, authors, isbn?)>

<!ATTRLIST book id ID #REQUIRED>

<!ELEMENT title #PCDATA>

<!ELEMENT authors (author+)>

<!ELEMENT author #PCDATA>

<!ELEMENT isbn #PCDATA>

Figure 2.2: A simple DTD example

2.1.3 XSD

Since the XSD language, containing many constructs and features, is quite com-

prehensive, we will describe just its basic principles. An important fact is that

each XSD instance is a valid XML document. Its root element is always <schema>

and the XSD instance begins with the following two lines.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

Definition of an element in the XSD is

<xs:element name="name" type="type"/>

where type is either one of the built-in types or a user-defined type. Definition of

an attribute is similar.

<xs:attribute name="name" type="type"/>

Attributes are optional by default. If an attribute is mandatory, it is expressed

by adding use attribute to its definition.

<xs:attribute name="name" type="type" use="required"/>

The user-defined type in the XSD language is either a simple type, if it does not

contain other elements and attributes, or a complex type otherwise. Attributes

are only allowed to be of the simple types. Definition of a simple type is

<xs:simpleType name="name">

type details

</xs:simpleType>

7



The user-defined simple types often serve to restrict the built-in types in various

ways such as limiting lengths of strings, allowing only certain values and thus

creating an enumeration type, and other.

A complex type is defined in the same way.

<xs:complexType name="name">

type details

</xs:complexType>

The complex types can contain many constructs. Subelements are declared using

<xs:sequence>, <xs:choice> and <xs:all> schema elements. If the order of

the subelements is significant, we use <xs:sequence>, where the subelements in

an XML instance must occur in the same order as they are defined in the se-

quence. If the order is not significant, we use <xs:all>. Construct <xs:choice>

is equivalent to the alternation of several elements in the DTD.

Moreover, these three constructs can be nested and combined, assuming the

combination is not ambiguous.

Many schema elements (including <xs:element>, <xs:sequence>, <xs:choice>,

<xs:all>) can be assigned with an occurrence interval. The occurrence interval is

expressed using minOccurs and maxOccurs attributes. For instance, if an element

is optional, it definition can be

<xs:element name="name" type="type" minOccurs="0" maxOccurs="1"/>

An element can have a mixed content (can contain text and other elements

at the same time). Such element has to be of a complex type and definition of

the type has to contain attribute mixed with value true. The following example

demonstrates the mixed content along with the definition of the element type

inside <xs:element> schema element.

<xs:element name="name">

<xs:complexType mixed="true">

complex type details

</xs:complexType>

</xs:element>

The XSD language consists of many more constructs we do not mention such

as substitution groups, type extensions, integrity constraints and other.

The book element from the sample XML document in Figure 2.1 can be

described using the XSD as shown in Figure 2.3.
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<xs:element name="book">

<xs:complexType>

<xs:sequence>

<xs:element name="title" type="xs:string"/>

<xs:element name="authors">

<xs:complexType>

<xs:sequence>

<xs:element name="author" type="xs:string"

maxOccurs="unbounded"/>

</xs:sequnce>

</xs:complexType>

</xs:element>

<xs:element name="isbn" type="xs:string" minOccurs="0"/>

</xs:sequence>

<xs:attribute name="id" type="xs:string" use="required"/>

</xs:complexType>

</xs:element>

Figure 2.3: A simple XSD example
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2.2 XPath

XML Path Language (XPath, version 1.0) [9] is a language to select fractions

of XML documents using so-called path expressions. XPath considers an XML

document as a tree of nodes. It recognizes seven types of nodes: document node,

element node, attribute node, text node, namespace node, processing instruction

node, and comment node. The root of the tree is the document node representing

the entire XML document.

2.2.1 Path Expressions

A path expression is composed of individual path steps separated by / and can be

absolute or relative. The absolute path begins with / representing the document

node. The relative path needs a non-empty starting node-set to be evaluated. A

path step is

axis::node_test[predicate1]. . .[predicaten]

where all predicates are optional.

2.2.2 Axes

An axis specifies a node-set relative to the current node. The default axis is

child selecting all child nodes of the current node. Another important axes are

attribute, selecting attributes of the current node, and descendant-or-self

selecting the current node and all its descendants in the tree. The remaining axes

are: ancestor, ancestor-or-self, descendant, following, following-sibling,

namespace, parent, preceding, preceding-sibling, and self.

2.2.3 Node Tests

A node test identifies node(s) within all nodes selected by an axis. It can be a

node type and/or node name. Examples of the node tests follow.

• node() All nodes selected by an axis.

• text() Text nodes.

• * All nodes assigned with their name (elements and attributes).

2.2.4 Abbreviations

Abbreviations for several most widely used constructs are defined as follows.
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• P/identifier stands for P/child::identifier (child is a default axis)

• P/@identifier stands for P/attribute::identifier

• P/../identifier stands for P/parent::*/identifier

• P//identifier stands for P/descendant-or-self::node()/identifier

2.2.5 Predicates

Predicates place additional conditions upon nodes that passed the node test.

They can be either relative XPath paths or comparison expressions. The path

predicates evaluate to true if they select a not empty set of nodes. Operators in

the comparison expressions are =, !=, <, >, <=, >=, &eq;, &ne;, &lt;, &gt;, &le;,

and &ge;. Operands are any XPath expressions (paths, literal values, etc).

2.2.6 Built-in Functions

XPath also provides a set of built-in functions. Few examples are count(path),

returning a number of nodes selected by path, position(), returning the position

of the current node in the current node-set, and sum(path), returning the sum of

all nodes selected by path.

2.2.7 Usage Examples

Finally, we introduce several examples of XPath expressions, with their descrip-

tion, using the sample XML document in Figure 2.1.

A path that selects author elements of the book with id b1:

/bookstore/book[@id = "b1"]/authors/author

An expression returning the number of all books:

count(//book)

A path selecting the ISBN element of the book entitled XQuery:

/bookstore/book[title = "XQuery"]/isbn

A path returning the titles of the books written by more than one author:

/bookstore/book[count(authors/author) > 1]/title/text()
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2.3 XQuery

An XML Query Language (XQuery, version 1.0) [11] is a language designed to

query XML data. It is based on XPath 2.0. XPath 2.0 is an extension of XPath

1.0 (but not entirely compatible), adding ordered sequences, their iterations, set

operations, conditional expressions, quantified expressions, and XML Schema

types.

In the remainder of this section, basic features of the XQuery languages are

briefly described. Many query examples can be found in Chapter 4.

2.3.1 Sequences

A sequence is an ordered set of items. The result of each XPath 2.0 (and also

XQuery 1.0) path is a sequence. An item is either an atomic value or a node. An

atomic value is a value of an XML Schema simple type. A node is an instance of

one of the node types.

Each node has its identity, data type (simple or complex, according to the

XML Schema types), typed value (which can be retrieved by function fn:data()),

and string value (which can be retrieved by function fn:string()).

2.3.2 FLWOR Expressions

A basic construct of the XQuery language is FLWOR. It is an abbreviation of

its five clauses: for, let, where, order by, return. For clause is

for var in expr

Expression expr is evaluated and its result is a sequence. Items of the sequence

are iteratively assigned to var variable, which is valid also in the following clauses.

Let clause is

let var := expr

which evaluates expr expression and its result is assigned to var variable.

Where clause is

where expr

Expression expr can (and usually should) contain the variables from the for

clause(s) and the remaining clauses are executed for only those tuples of values

of the for variables, that the expr evaluates to true.

Order by clause is

order by expr

and it orders the tuples of values that passed the where clause by the specified

criterion.
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Return clause is

return expr

The result of the whole FLWOR expression is expr. It is constructed using the

tuples of the for variable values and the let variables.

2.3.3 Conditional Expressions

XQuery provides common if-then-else conditional expressions with common

syntax.

if (condition)

then expr1

else expr2

If condition expression evaluates to true, expr1 is evaluated, else expr2 is evalu-

ated. The else branch is optional.

2.3.4 Quantified Expressions

XQuery provides two types of quantified expressions, every and some. Their

syntax follows.

every var in expr1

satisfies expr2

some var in expr1

satisfies expr2

Firstly, expr1 is evaluated, and then the result of the quantified expression is

true if expr2 is true for every (some) item, represented by var, of the result of

expr1 (which is a sequence).

2.3.5 Functions

XQuery provides a wide set of built-in functions.

And also new functions can be defined using the following syntax.

define function name(parameters) as type

{

expr

}
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where name is the function’s name, parameters is a list of parameters (with or

without specification of their types), and type is a type of a return value, which

is the result of expr.
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Chapter 3

Analysis of Recent Approaches

Existing approaches to XML schema inference can be classified using several

criteria. A basic classification is based on the language the resulting schema is

written in. Commonly used languages are DTD and XML Schema.

According to [23], the type of the inference method can be divided into heuris-

tic and grammar-inferring. Heuristic methods [7, 13, 25, 35, 31] are based on

experience with manual construction of schemas, motivated by real-world usages

of XML schema, and their result commonly does not belong to any class of gram-

mar. Two of these approaches are described in Chapter 3.2 and Chapter 3.3.

The former one incorporates so-called MDL principle to create the (sub)optimal

result. The latter one combines several verified methods together to improve the

quality of the result.

On the contrary, the grammar-inferring methods [3, 4, 5, 15, 22, 12] are based

on theoretical knowledge of automata and their results belong to a particular

class of languages. Thus, these methods guarantee specific characteristics of the

results.

Another important criterion is the type of input data. Most of the approaches

process XML documents as the input of the inference process and the documents

are supposed to be valid against the resulting schema. Besides approaches ex-

ploiting XML data, approaches that utilize other or additional sources may be

developed. An approach utilizing XML data along with an obsolete XML schema

is described in [24]. However, the most significant approaches in terms of this

work are those utilizing operations over XML data. According to our best knowl-

edge at the time of writing, there is just one approach of this category, described

in [26]. It utilizes a set of XQuery queries to discover keys and foreign keys.

15



3.1 Common Caracteristics

The process of XML schema inference commonly used by a significant number

of approaches is summarized in [23] as the following one: For each occurrence

of element e from the input XML documents and its subelements e1, e2, ..., ek a

production e → e1e2...ek is constructed. The productions form so-called initial

grammar (IG). For each element type the productions are then merged, simplified

and generalized using various methods and criteria. A common approach is so-

called merging state algorithm, where a prefix tree automaton (PTA) is built from

the productions of the same element type and the automaton is generalized via

merging of its states. Finally, the generalized automaton/grammar is expressed

in syntax of the respective XML schema language.

3.2 XTRACT

The XTRACT [13] system is an example of a heuristic merging state algorithm

creating the result in DTD. Its process of inference consists of three steps:

1. Generalization - Generates a set of DTD candidates by searching the input

for certain patterns and generalising corresponding fragments using regular

expressions.

2. Factoring - Groups of generalized candidate DTDs are factorized to a new

ones by finding common sub-expressions to make them more concise.

3. Minimum Description Length (MDL) Principle - Composing a near-optimal

DTD schema from the set of all generalized candidate DTDs.

3.2.1 Generalization

The purpose of generalization is to create a set of DTD candidates - schemata

that cover fractions of the input XML data. In the last step, this set will be

used to compose a (sub)optimal result with respect to a trade-off between its

preciseness and conciseness. Therefore, it is desirable to create DTD candidates

with various degrees of these two characteristics.

Generalization is based on replacing fragments (sequences of subelements of

a given element) from the input XML data by regular expressions, thus, using

metacharacters like *, +, ?. To provide a wide set of DTD candidates, each

sequence is processed several times using various values of input parameters.
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Due to the very large number of possible DTD candidates, the authors employ

certain real-life motivated heuristics.

For instance, paper [13] introduces the following example: Sequences abab

and bbbe are generalized to (ab)*, (a|b)*, b*e.

3.2.2 Factoring

Factoring is a process of creating a new DTD candidate from two or more DTD

candidates, decreasing their summed size without modifications in their seman-

tics. The aim of this step is to decrease the MDL cost of DTD candidates calcu-

lated in the MDL step and thus refine the process of construction of the resulting

DTD.

An example is introduced it paper [13]: DTD candidates ac, ad, bc and bd

are factored into (a|b)(c|d).

Alike the generalization step, also in this step the set of possible factored

DTDs is huge and the authors propose certain heuristics to make the factorization

effective.

3.2.3 Minimum Description Length (MDL) Principle

This is an important step trying to create the resulting DTD with the best trade-

off between its preciseness and conciseness.

Paper [23] summarizes this step as follows: It expresses the quality of a DTD

candidate using two aspects – conciseness and preciseness. Conciseness of a DTD

is expressed using the number of bits required to describe the DTD (the small-

er, the better). Preciseness of a DTD is expressed using the number of bits

required for description of the input data using the DTD. In other words, the

more accurately the structure is described, the fewer bits are required. Since the

two conditions are contradictory, their balancing brings reasonable and realistic

results.

3.3 Even an Ant Can Create an XSD

This work, described in [31], combines several previously proposed approaches in-

cluding the XTRACT system discussed in the previous section. Its improvements

of the process of XML schema inference include:

• Distinguishing elements with the same name but different context.
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• Improvements of algorithms adopted from the previous works.

• Incorporating inference of an unordered sequence.

• Creating a result in the XML Schema language.

3.3.1 Clustering of Elements

This phase clusters elements on the basis of their context and structure. It is done

by creating tree structures for each input XML document where vertices represent

elements and attributes and an edge between two vertices expresses their parent-

child relationship. These trees and their subtrees are then compared using an

imposed tree similarity measure to find elements with the same semantics.

3.3.2 Schema Generalization

For each cluster, a trivial schema is created, which is then generalized to achieve

a reasonable result. In search for the optimal schema, Ant Colony Optimization

(ACO) heuristic is incorporated. The idea behind the ACO heuristic is that a

set of artificial ants is searching a space of possible solutions, each ant given a

subspace of the space to find a local suboptimum. An ant is performing steps

(schema modifications), dying after a predefined number of steps and providing an

information - positive feedback - on the quality of a solution found. The search is

performed in a defined number of iterations (or it stops if a good enough solution

is found) and the positive feedback from one iteration is used to find better results

in the following iterations. Every step of an ant represents a modification of a

schema, in particular, a merge of states in a corresponding PTA.

One of the improvements of this heuristic is an inclusion of a negative feed-

back after each step of an ant, visible only in the current iteration. Due to this

improvement, a larger subspace of solutions is searched.

Another improvement lies in a way how an ant decides for a particular step to

perform. To achieve better results, the authors propose a combination of several

verified approaches. A set of all possible steps is created using k,h-context [3]

and s,k-string [28, 35] methods. The optimal step is then selected employing the

MDL principle [14, 13].

3.3.3 Result in XSD

Unlike the majority of recent approaches, this methods creates its result in XML

Schema. The authors of this method focused on inferring elements with the
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same name but different context and the unordered sequences which can be in

XSD expressed by xs:all construct. Elements with the same name but different

context cannot be expressed in DTD and, although, the unordered sequence can

be also expressed in DTD as alternations of ordered sequences, such expression

in not practical nor well human-readable.

3.4 On Inference of XML Schema with the Knowl-

edge of an Obsolete One

The aim of approach described in [24] is to exploit an obsolete XML schema as

an additional input information to infer a new schema more efficiently. An XML

schema can become obsolete due to changes in a set of XML documents, without

capturing these changes in the schema. Thus, the schema becomes outdated and

according to the paper, this case is quite common.

On input, the method is given:

• An original XML schema.

• A set of XML documents. Not all have to be valid against the original

schema.

The algorithm consists of two independent steps:

1. Correction of the input schema.

2. Specialization of the input schema.

In the first step the input schema is corrected to conform to the whole set

of input XML documents. This is done by creating a PTA for each production

extracted from the input schema and merging it with a respective production

from the initial grammar, involving ACO and MDL heuristics.

In the second step, regular expressions from the corrected schema are spe-

cialized with regard to the XML documents, resulting in a more precise and

readable schema. Optional substeps are pruning of unused schema fragments,

correction of lower and upper bounds of occurrences, transcription of operators

to a more restrictive but simpler form, if this transcription preserves the validity,

and refactorization to improve readability.
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for $e1 in P1

return

for $e2 in

P2[L2 = $e1/L1]

return CR

Listing 3.1: For join pattern.

3.5 Discovering XML Keys and Foreign Keys in

Queries

The method described in paper [26] improves automatic XML schema inference

by discovering keys and foreign keys from a set of XQuery queries. Just the

queries are utilized in inference, no XML data are used. The output of this

method is a set of keys and foreign keys that can be captured using XML Schema

key, keyref and unique constructs.

3.5.1 Assumptions and Observations

To discover keys and foreign keys, the method utilizes element/element joins.

Assume a query Q that joins a sequence of elements S1 targeted by a path P1

with a sequence of elements S2 targeted by a path P2 on a condition L1 = L2.

For instance, see Listing 3.1 and Listing 3.2.

The method is based on an assumption that each join is done via key/foreign

key pair. It means it is supposed that L1 is a key of the elements in S1 and L2 is

its respective foreign key or vice versa.

The authors describe two possible cases:

(O1) L1 is a key of the elements in S1, L2 is a respective foreign key and it itself

is not a key of the elements in S2.

(O2) L2 is a key of the elements in S2, L1 is a respective foreign key and it cannot

be decided whether L1 is a key of the elements in S1 or not.

3.5.2 Join Patterns and Key Inference

For a certain join, the decision for one of the cases (O1) and (O2) is made by

the form of the join. The query is searched for so-called join patters. These are

for join pattern and let join pattern and they are proclaimed in Listing 3.1 and

Listing 3.2.
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for $e1 in P1

return

let $e2 :=

P2[L2 = $e1/L1]

return CR

Listing 3.2: Let join pattern.

Each occurrence of a join pattern is classified by application of the following

rules R1 - R5 in this specific order. The first satisfied rule is applied. The

occurrence is also assigned with a weight determining how sure the method is

about the inferred statement.

The pattern occurrence is considered of case (O1) if it is the for join pattern

(R1, weight: 1), if aggregation function avg, min, max or sum is applied on a

target return path (R2, weight: 1) or if aggregation function count is applied on

a target return path (R3, weight: 0.75), where target return paths are paths in

CR starting with $e2 (see Listing 3.1).

Otherwise, the pattern occurrence is considered of case (O2) and the assigned

weight depends on the number of target return paths. If the number is greater

than one, the weight is one (R4, weight: 1), else (the number equals zero or one)

the weight is one half (R5, weight: 0.5).

3.5.3 Summarization of the Results

The assumption the method is based on may not be fulfilled for every join in a

supplied set of queries. A key K may be inferred from some query and processing

of another query may result to denial of K as a key.

Therefore, the authors introduce a scoring function to summarize the positive

and the negative statements about keys using the assigned weights. The value

of the score expresses the probability that a respective key statement is satisfied.

Finally, the scores of the inferred keys are normalized to be comparable with each

other.

3.5.4 Conclusion

The output of the method is a list of scored keys and for each key a list foreign

keys referencing the key. Since the method deals only with the inference of keys,

it is not a complete method of the XML schema inference. It is meant to be used

in collaboration with other schema-inferring methods to refine their results.
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Method name and/or paper Input Output Year

[3] XML documents DTD 1996

XTRACT [13] XML documents DTD 2000

DTD-miner [25] XML documents DTD 2000

[12] XML documents DTD 2001

ECFG [7] XML documents XSD 2002

sk-ANT [35] XML documents DTD 2003

[22] XML documents DTD 2003

[4] XML documents DTD 2006

XStruct [15] XML documents XSD 2006

[5] XML documents XSD 2007

SchemaMiner [31] XML documents XSD 2008

[24] XML documents, XML schema DTD, XSD 2009

[26] XQuery queries –1 2009

[17] XML documents, XML schema DTD, XSD 2011

1 The result of this method is a list of discovered keys and foreign keys.

Table 3.1: Summary of Recent Approaches

Since the method is based on intuition of how XQuery constructs are com-

monly applied in practice, it can be imprecise in certain cases.

3.6 Summary

As shown in Table 3.1, most of the recent approaches of XML schema inference

are based on utilization of XML documents. These incorporate various verified

methods and the newer approaches often improve the older ones and/or combine

them together to achieve better results.

Lately, several approaches that utilize other input sources have been proposed.

Paper [24] introduces a method that utilizes an XML schema besides XML docu-

ments. The method described in [26] utilizes XQuery queries; however, the result

of this method is a list of discovered keys and foreign keys, not an XML schema.

Also, to our best knowledge, implementation that combines this method with

another approach to get the XML schema has not been proposed yet.

There are plenty of additional sources that can be exploited in the process of

inference such as other XML schema languages, queries, XSLT scripts, negative

examples (XML documents that should not conform to the resulting schema). In

this work we focus on utilizing XQuery queries.
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Chapter 4

Analysis of XQuery

This chapter discusses selected constructs of XQuery language and denotes how

they could be exploited in the XML schema inference process. It is divided into

sections by particular domains of the inference.

Most of sample queries in this chapter are taken from [33] and [21], with or

without modifications, as these were the main sources for this XQuery analysis.

4.1 Structure of XML documents

Most of queries can be exploited to obtain some information about the structure of

respective XML documents. The structure of XML documents captures elements

from these documents along with their names, attributes and their organization.

What the root elements in these documents are, which elements can be contained

within a certain element, whether they are optional or mandatory, etc.

Path expressions without predicates which use only child axis are the simplest

example of such queries. For example, path expression /bib/book/author indi-

cates that element bib is the root element and it contains one or more elements

book and these contain one or more elements author.

Additional path expressions /bib/book/title, //author/name indicate that

element book also contains element title and element author contains element

name. The latter one uses also descendant axis. That means the query considers

all elements author in the document, thus it is a hint that maybe there are

several elements named author but with different absolute paths and some of

them contain an element name.

Besides elements, attributes can be processed exactly in the same way. Path

expression /bib/book/@ISBN indicates that element book can have attribute

ISBN.
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Statements of this kind are necessary for the XML schema inference, however

their obtaining from queries is not significant due to the following reason. These

statements could be determined directly from the XML documents and it could

be easily done in a more convenient way. In addition, queries may not cover the

whole relevant content of the documents. Let E be an element occurring in an

XML document and let Q be an XQuery query. Consider the following cases:

1) E is directly mentioned in Q. For example elements bib, book and author

are mentioned in path expression /bib/book/author.

2) E is not mentioned in Q but it does occur in a result of the evaluation of

Q. For example path expression /bib/book/author returns elements author

along with their subelements name, birthdate and nationality.

3) E is neither mentioned in Q, nor it occurs in the result, but it is processed by

the evaluation of Q. For example the evaluation of path expression //author

processes amongst others elements bib and book, in a search for elements

author.

4) E occurs in a part of the XML document not related to Q at all.

How we can obtain any information about element E from query Q? In case

1), Q can be directly exploited in the inference process. Case 2) requires the

result of Q and additional processing of the result. Case 3) requires a step-by-

step evaluation of Q, hence, the XML document is also required. And in case 4),

it is not possible to obtain any information.

In addition, these statements do not express any obligation of occurrence of

elements and attributes nor clearly determine multiple occurrence of elements.

We also cannot be sure that queries target nodes actually presented in the XML

documents. Although query /bib/book/author indicates that element author is

contained in element book, the query is valid whether this is true or not. In con-

trast, even basic methods of XML schema inference that utilize XML documents

do not have these inadequacies.

On the other hand, the structural inference could be useful when the entire

set of all XML documents is not available and the provided XML documents do

not cover the structure completely.
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4.2 Number of Occurrences of Elements

Some XQuery constructs indicate multiplicity of a particular element or limit the

element to occur at most once. Consider the following query assuming variable

$book1 is bound to a certain book element.

for $a in $book1/author

order by $a/last, $a/first

return $a

Apparently, this query expects more than one author element to be a child

of the element the variable $book1 is bound to. Otherwise, any sorting would

lack a reason. Although we cannot be absolutely sure about it again, assuming

common-sense usage of XQuery, it is very likely that author element can occur

multiple times as a subelement of element from variable $book1.

4.2.1 Multiple Occurrence

A similar approach could be applied in many other situations. Another exam-

ples are particular usages of function count(), indexation, usage of set opera-

tors (union, intersect, except) and usage of function one-or-more(). Sample

queries with a respective description follow.

<section_count>{ count(/book/section) }</section_count>

Function count() returns the number of items in a provided sequence. If the

sequence is a sequence of elements, the number of these elements will probably

not be limited to one. The sample query indicates that the root element book

can contain more than one element section. An exception is usage of function

count() in a predicate in expressions where it is used to determine if the number

of some nodes is greater than zero. Often, this form is used to test presence of a

certain node instead of actual counting of its occurrences. In this case, the node

could be still limited to occur at most once.

($s/incision)[2]/instrument

($s/instrument)[position()>=2]

Indexation of nodes and common usage of function position() suggest that

the author of such query assumes a sequence of respective nodes.

one-or-more(/catalog/product[@id = 5]/color)
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In this query, the number of elements color in element product with attribute

id equal to 5 has to be at least one, otherwise an error is raised upon execution. If

we assume that this query is written correctly, with common sense and it should

not raise the error, we can infer that element product has to contain one or more

elements color.

4.2.2 Occurrence Limited to One

Contrary to the multiple occurrence, numerous XQuery constructs limit number

of occurrences of an element to at most one or exactly one. Sample queries with

description follow.

/catalog/product[1]/number lt 10

lt is a representant of so called value comparison operators (eq, ne, lt, le,

gt, ge, see [11]) which operate two sequences of zero or one item. If an operand

of a value comparison operator is a sequence of more than one item, then a type

error (see [11]) is raised.

for $item in //item

order by $item/num

return $item

Alike the previous example, an expression in order by clause can be evaluated

to at most one item or the type error is raised. Therefore, every element item

contains zero or one element num but not more.

Other similar examples are arithmetic expressions and functions accepting a

sequence of at most one item. Function zero-or-one() will raise the type error

when supplied with a sequence of more than one item.

Those are constructs indicating limitation to zero or one occurrence. Function

exactly-one() works similarly to the function zero-or-one() but accepts only

sequences of exactly one item (which are in XQuery equal to this item itself).

4.3 Element and Attribute Types

4.3.1 XML Schema Built-in Types

XML Schema built-in types of elements and attributes can be inferred from the

XML documents by analysing their content. Since the number of built-in types is

44 and inheritance is involved, such analysis may be imprecise, especially when a
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large enough set of XML documents is not available. This is the case when a set

of XQuery queries may bring optimizations. For example, consider the following

occurrences of element a.

<a>1</a>

<a>6</a>

<a>18</a>

These three occurrences are not sufficient enough to determine the accurate

type of element a, because values 1, 6, 18 are valid values of several types:

decimal, integer, byte, short, unsignedInt, positiveInteger and many oth-

ers.

If a value of an element or attribute is used in an expression, then this expres-

sion could be often exploited to determine a type of the value. Comparing the

value to another value of a known type and supplying the value to a function call

as an argument of a particular type are examples of these expressions as shown

below.

//event/date = current-date()

/catalog/product/price < 24.5

declare function local:byteFunction($arg as xs:byte) as xs:byte

{...};

/catalog/product/local:byteFunction(@id)

The determined types are xs:date for element date, xs:decimal for element

price and xs:byte for attribute id.

Alongside common expressions, there are other XQuery constructs indicating

types, such as type casting, type constructors and so called type declarations (see

[11] for specification), demonstrated in the following examples.

Assuming variable $var bound to a value of some element or attribute, the

following two fractions of queries indicate its type to be xs:integer.

$var cast as xs:integer

xs:integer($var)

The latter one is usage of type casting, the former one is type constructor.

Similarly, the following two queries are examples of type declarations. Value

of element number is declared to be of type xs:integer.
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every $number as element(*,xs:integer) in //number

satisfies ($number > 0)

declare variable $firstNumber as xs:integer

:= data(//product/number[1]);

4.3.2 Enumeration

In several cases, XQuery if-then-else construct may be used to branch the ex-

ecution of query by all possible values of a certain variable. This is equivalent

to switch construct from other programming languages. When the control vari-

able is bound to some element or attribute, type of this node can be inferred as

enumeration and its individual values can be determined as well.

Query

let $cat := doc("catalog.xml")/catalog

for $dept in distinct-values($cat/product/@dept)

return <li>Department: {if ($dept = "ACC")

then "Accessories"

else if ($dept = "MEN")

then "Menswear"

else if ($dept = "WMN")

then "Womens"

else ()

} ({$dept})</li>

Results

<li>Department: Womens (WMN)</li>

<li>Department: Accessories (ACC)</li>

<li>Department: Menswear (MEN)</li>

Finding such patterns in queries could be useful in combination with analy-

sis of respective XML data. XML data could help to confirm or disprove this

assumption based on the query analysis or vice-versa.
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4.4 Keys

4.4.1 Approach from [26]

Paper [26] introduces a method of discovering keys and foreign keys by investiga-

tion of joins in queries. The basis of this discovery is a search for particular forms

of joins, so called join patterns, but the joins are processed only if they are found

in a particular syntactic form. Therefore joins with the same semantics written

in different syntax are not taken into consideration.

The following examples are queries that could be processed by a similar

method, but the actual method will not use them.

<result>

{

for $u in doc("users.xml")//user_tuple

for $i in doc("items.xml")//item_tuple

where $u/rating > "C"

and $i/reserve_price > 1000

and $i/offered_by = $u/userid

return

<warning>

{ $u/name }

{ $u/rating }

{ $i/description }

{ $i/reserve_price }

</warning>

}

</result>

Clause where is used for the join condition $i/offered_by = $u/userid

instead of the join condition in predicate of the second for expression.

<result>

{

for $i in doc("items.xml")//item_tuple

where empty(doc("bids.xml")//bid_tuple[itemno = $i/itemno])

return

<no_bid_item>

{ $i/itemno }
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{ $i/description }

</no_bid_item>

}

</result>

This query illustrates a join where the value of one of the joined elements is

not required, thus the knowledge of its existence is sufficient. Therefore the query

does not have to contain the second for or let keyword and its expression can

be moved to where clause.

for $item in doc("order.xml")//item,

$product in doc("catalog.xml")//product,

$price in doc("prices.xml")//prices/priceList/prod

where $item/@num = $product/number and $product/number = $price/@num

return <item num="{$item/@num}"

name="{$product/name}"

price="{$price/price}"/>

A common three-way join can be also utilized to infer keys and foreign keys,

however, the respective XML data and their analysis would be needed to tell

what is a key and what is a foreign key.

4.4.2 Join of Self-referencing Data

By the term “self-referencing data” are meant XML elements that somehow refer-

ence items from the same set. Example of a query that operates upon such data

follows.

declare function local:one_level($p as element()) as element()

{

<part partid="{ $p/@partid }" name="{ $p/@name }" >

{

for $s in doc("partlist.xml")//part

where $s/@partof = $p/@partid

return local:one_level($s)

}

</part>

};
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<parttree>

{

for $p in doc("partlist.xml")//part[empty(@partof)]

return local:one_level($p)

}

</parttree>

Apparently, element part can contain attributes partid and partof. Ele-

ments with unspecified attribute partof are at the top of the recursive hierarchy,

while each element with this attribute specified references an element with at-

tribute partid of the same value.

By using a similar approach as described in [26] attribute partid can be

marked as a key and attribute partof as its foreign key.

4.4.3 Negative Statements about Uniqueness

In many cases a statement refusing uniqueness of element or attribute values can

be inferred. Such statements may be helpful in combination with other methods

in its process of making a decision whether a particular element or attribute is

unique or not.

Basic representant is a common FLWOR query.

<bib>

{

for $b in doc("http://bstore.example.com/bib.xml")//book

where $b/publisher = "abcde" and $b/@year > 2000

order by $b/title

return

<book>

{ $b/@year }

{ $b/title }

</book>

}

</bib>

Usage of for construct indicates that a sequence of book elements which

satisfy the condition in where clause is expected. It is a condition composed of

two single conditions joined by and logical operator. Therefore, in order to satisfy
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the whole condition, both single conditions must be satisfied as well. Thus, it is

expected that several elements satisfy each of the single conditions.

The first of them is a test of equality of book’s subelement publisher to a

string literal. Based on the expectation, element publisher cannot be unique.

However, the second condition is greater-than comparison of year attribute to

an integer literal, it cannot be inferred whether this attribute is unique or not.

The reason is that even if it was unique, there still might be more than one

book element meeting this condition. Also, any statement, positive nor negative,

cannot be inferred about title subelement.

Other simple examples are passing a result of basic path expression to a call

of distinct-values() function and usage of aggregation functions.

<results>

{

let $doc := doc("prices.xml")

for $t in distinct-values($doc//book/title)

let $p := $doc//book[title = $t]/price

return

<minprice title="{ $t }">

<price>{ min($p) }</price>

</minprice>

}

</results>

According to the use of distinct-values() function, it can be easily seen

that the author of this query assumes possible occurrence of more than one book

element with the same value of their title subelement. Thus, title element is

not unique.

Alike, variable $p is bound to a price of each title and then passed to min()

function call. That indicates that one book title is supposed to have several

prices, however, it cannot be said if a certain occurrence of element book can

contain more than one price subelement.

Also, many other types of queries could be exploited to obtain negative

uniqueness statements like occurrence of element or attribute in stable order

by clause or selection of an element set based on a value of particular attribute

and consecutive treatment of this set as a sequence of elements.

let $prods := doc("catalog.xml")//product

for $prod in $prods
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where $prod << $prods[@dept = $prod/@dept][last()]

return $prod

Usage of predicate [last()] indicates that $prod is a sequence of elements.

4.4.4 Uniqueness

Contrary to non-uniqueness discovery, some XQuery constructs can indicate unique-

ness of elements or attributes; however, it seems to be more difficult. One of the

approaches of uniqueness discovery could be an investigation of what the query

does return. Consider the following query.

for $product in /catalog/product

let $number := $product/number

return <prod xml:id="{concat(’prod’, number)}"/>

For each product element, new element prod with attribute xml:id is created.

Since attribute xml:id is supposed to be unique and there is a direct transfor-

mation of the values of number elements to the values of attribute xml:id, it is

very likely that element number is unique in the source data.

4.5 Other Constructs

4.5.1 XML Schema xs:sequence and xs:all constructs

If an order of appearance of some element set, for example subelements of a

certain element, is important, this can be expressed by XML Schema construct

xs:sequence. On the other hand, xs:all is involved when the elements may

occur in any order.

If there is a large enough set of XML documents available, it should be possible

to correctly detect where to use xs:sequence and xs:all constructs (paper [31]

deals with this problem). However, if the inference is made using a smaller set

of XML documents, it may happen that every occurrence of some element set

is in the same order but the input data are not representative enough to be

sure. Comparison of element order in queries can help to decide for the use of

xs:sequence.

Every two elements in an XML document that are not siblings with the same

name and none of them is the root element have the nearest common ancestor

determining their relative order. If there is a lack of evidence to choose between
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the two constructs in the ancestor, then available queries can be searched for an

order comparison of these two elements like in the following query.

let $i := //incision[2]

for $a in //action[. >> $i]

return $a//instrument

Apparently, the relative order of elements incision and action is important,

because the query composes the result using only those action elements that

succeed the second incision element. Therefore, in a respective type definition

part of their nearest common ancestor xs:sequence should be used in favour of

xs:all.

4.5.2 Intermediate XML structure

Intermediate XML structure represents XML data that are neither read from in-

put XML documents nor created as an output of queries but they are somehow

used by the queries. Objective of this section is intermediate XML structure cre-

ated directly in the queries. It may serve to various purposes and it can be created

in various ways, hard-coded in queries, computed from the input XML documents

to simplify their structure. The former is demonstrated in the following example.

let $deptNames := <deptNames>

<dept code="ACC" name="Accessories"/>

<dept code="MEN" name="Menswear"/>

<dept code="WMN" name="Womens"/>

</deptNames>

let $catalog := doc("catalog.xml")/catalog

for $dept in distinct-values($catalog/product/@dept)

return <li>Department:

{data($deptNames/dept[@code = $dept]/@name)} ({$dept})

</li>

Intermediate XML structure in this query can be used to identify possible

values of attribute dept in product element and therefore determine its type as

enumeration.

This is a very simple example of intermediate structure. Since there are

admittedly many means of utilization of intermediate structure, further research

would be needed.

34



Chapter 5

Pre-creation of Algorithm

According to the analysis in the previous chapter, there is quite a wide range of

possible utilizations of XQuery queries. Besides analysis of what information can

be extracted from queries, it is needed to devise how the queries will be processed.

This chapter discusses some questions and issues that emerged in an early phase

of the algorithm fabrication.

5.1 Input Data

The first important question is what is the input of the algorithm. A basic

query utilization can be achieved by analysis of queries without any other input

data. The analysis of XQuery in the previous chapter discusses mostly XQuery

constructs which can be utilized without respective XML data, for example the

inference of built-in types. This independence is also the main advantage of this

approach, if there are no XML data available, this approach can be still used.

A more complex method can utilize queries along with the respective XML

data. As discussed in the previous chapter, an element and attribute structure

can be inferred from the XML data in a more convenient way. Also, the XML

data can be used to verify information inferred from the queries or vice-versa. For

example, utilizing the queries, some attribute is considered a key of its element.

But in the data there are elements with the same value of this attribute, and

thus, it cannot be the key. Vice-versa, we have a notion that the attribute might

be the key but we are not sure about that. Analysing of the data and finding

that values of the attribute are unique can increase our confidence.

Another step can be evaluation of the queries using the XML data and con-

secutive analysis of the results. And even the process of evaluation itself can

be analysed to obtain some useful information. For instance, these are partial
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results of evaluating of expressions (elements selected by each path expression,

real arguments in function calls, etc).

5.2 Forms of Query Precessing

Another important question is how the queries can be processed. Will they be

just searched for certain patterns like it is performed in method [26] or will they

be processed in a more sophisticated way? That can mean incorporating lexical

and syntax analyses, known from creation of compilers, or even a form of an

analysis of semantics [2].

The result of lexical and syntax analyses can be a kind of so-called syntax

tree [2]. It is a structure representing a word according to a formal grammar of

a language. In our case, the language is XQuery, its grammar is defined in [11]

and every query is a word of the XQuery language. Leaves of the tree represent

terminals of the grammar while inner nodes represent non-terminals. From the

point of view of this work, the syntax tree can be perceived as a preprocessed form

of a query keeping its complete meaning and making its further processing more

convenient. For instance, the tree can simplify a search for FLWOR statements.

It is transitioned and nodes representing FLWORs are found. Then each subtree

determined by one of the found nodes represents a FLWOR statement and it can

be analysed further.

The syntax tree can be also extended by additional information. An example

is a static analysis of expression types. Types of literal expressions are defined,

functions have return types, path expressions can return nodes, etc. Types of

complex expressions can be determined applying the rules defined in [11]. The

inferred expression types can be helpful for example in the analysis of built-in

types of nodes as discussed in the previous chapter.

The following text is an example of inference of a more complex query pro-

cessing. Consider the following part of a query.

declare function local:getB($id as xs:string) as element() {

//A[@id = $id]/B

}

... local:getBs("id") > 10 ...

The query consists of a function declaration and an arithmetic comparison. The

comparison compares the result of the function call and literal value 10. Since

the type of 10 is xs:integer, the type of the function call has to be convertible
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to xs:double. Thus, it has to be a numeric type. The function returns a path

expression typed as element(). That means the function returns one element. In

the path expression, the argument $id can be substituted by the real value spec-

ified in the call. Thus, the return expression is //A[@id = "id"]/B. Therefore,

we can infer that element B in element A with attribute id equalling string value

"id" is of some numeric type. And, since the function is parametrized, there is

a notion that this statement may be correct also for other elements A and B.

While simpler approaches of the query processing such as the pattern finding

limit possibilities of the query utilization, a more complex processing of queries

provides a better starting point for consecutive analyses and also for further

refinements and additions. Therefore, we decided to incorporate query processing

using the lexical and syntax analyses.

5.3 Inference of XML Structure

The question of inference of XML structure from queries is partially discussed in

the previous chapter. We are able to infer XML structure from queries without

their evaluation, but in a limited way. This inference is based on an analysis of

path expressions. Its limitation involves the following issues. When we infer some

subelements of a certain element we often cannot be sure about their number of

occurrences. Also, we cannot be sure if every occurrence of a certain element

contains the subelements and we even do not know if at least one occurrence

of the element contains them. Thus, the inferred statement is more likely an

indication than a fact about the structure.

Since the inference of XML structure utilizing only queries is not clear, we

need the XML data, if we want to infer the structure more precisely. And, if

we have the XML data, we can infer the structure directly from them using an

existing approach and utilize queries to refine its result.

5.4 Extension of an Existing Approach

The existing approaches of XML schema inference deal mainly with inference of

XML structure. Hence, the extension of an existing approach will be a kind of an

independent addition instead of modification and refinement of its core algorithm.

The existing approaches take the XML data on their input. Therefore, the

basic idea is that the input will be extended also for XQuery queries and the

algorithm will consist of three phases. The first phase will be taken from an
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existing approach and it will process the XML data to infer the XML structure.

The second phase will process the XQuery queries and it will infer statements

that can be inferred independently of the XML data. The third phase will merge

the statements inferred in the second phase into the resulting schema. This phase

may also infer additional statements from both the XML data and the queries

or it may try to verify the statements from the second phase with respect to the

XML data.

A more advanced method can exploit queries to refine a core algorithm (e.g.

merging of PTA) of an existing approach. The approach described in [31] distin-

guishes elements with the same name, but a different content model and context.

Some information from queries may help to improve this algorithm. For example,

consider an XML representation of company data containing names of employees,

costumers, and products represented by element name. The names of employees

and costumers consists of two subelements for first name and surname. The

names of products are atomic strings. During analysis of available queries, we

may find that elements representing the names of employees and elements rep-

resenting the names of costumers are processed in the same way (e.g. they are

mixed in one sequence), while elements representing the names of products are

processed separately. This suggests that the elements representing the names of

employees and costumers have the same semantic and the same content model

which is different from the content model of the elements representing the names

of products.
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Chapter 6

Proposed Algorithm

In this thesis we are developing an approach dealing with inference of XML

schema, whose input consists of two components; a set of XML documents and

a set of XQuery queries related to the documents. The proposed algorithm in-

troduced in this chapter describes the processing of XQuery queries only and a

combination of its output with an existing method of XML schema inference (to

produce a complete XML schema) is discussed in the next chapter.

There is an important assumption placed upon the input XQuery queries

saying that each query must be syntactically and semantically correct. That

means that if a query was evaluated (using a XQuery processor meeting the

XQuery specification), the evaluation would not raise any error, neither static

nor dynamic. In other words, each query is syntactically correct and it correctly

queries the data in the XML documents.

6.1 Motivation

There is a large space of possible XQuery utilizations, but obviously, they all

cannot be covered by one thesis. Hence, we had to choose only some of them.

We decided to focus on inference of XSD built-in atomic types of elements and

attributes, and key discovery.

The inference of types is included in several recent works ([7, 15]), but gener-

ally, it is considered a side problem and it is omitted by most of the works. Since

a presence of XSD simple types in an inferred schema may be often desired or

demanded, and an information on types of elements and attributes can be conve-

niently extracted from several XQuery constructs, we decided to incorporate the

inference of simple types in our proposed algorithm and to implement it.

As a second part of the algorithm, we decided to extend the only method [26]
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XQuery query

Step 1: Syntax Tree Construction

Step 2: Static Analysis of Expression Types

Step 3: Inference of Built-in Types Step 4: KeyDiscovery

Inferred type statements Inferred key statements

Figure 6.1: Steps of the proposed algorithm

which utilizes XQuery queries and infers keys and foreign keys. The extension is

based on a more general and precise processing of queries, addition of a new case

of query patterns that are used in the process, and a more accurate summary of

key statements by incorporating searching for statements that reject uniqueness

of certain elements and attributes.

Moreover, the original method has not been implemented and experimentally

proven yet. We will do that as well.

6.2 Overview

The proposed algorithm consists of the following four main steps, show in Figure

6.1 and described in detail in the rest of the chapter.

1. Construction of a syntax tree. We use lexical and syntax analyses pro-

posed in [29] and for each XQuery on input, we construct a data structure

defined in Definition 6.1.

2. Static Analysis of expression types. The algorithm searches for ex-
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pressions in the syntax trees and statically (without evaluation) determines

their types. See Section 6.5.1.

3. Inference of built-in types. When the types of expressions are deter-

mined, selected forms of expression are utilized to infer types of elements

and attributes.

4. Key discovery. The final step is an extension of approach [26] inferring

keys and foreign keys.

As can be seen in Figure 6.1, step 4 is independent on step 3. They both

depend on step 2.

6.3 Step 1: Construction of a Syntax Tree

The first step of the algorithm involves lexical and syntax analyses known from

the construction of compilers and produces a so-called syntax tree. The analyses

are taken from Jiří Schejbal’s master thesis [29]. Since they are not directly

related to the inference, and thus, they are not directly related to the topic of

this thesis, we will not describe them. Nevertheless, they provide us with a helpful

processing of XQuery queries and we can focus on the inference.

The syntactic analysis needs to be slightly modified to suit our case. It writes

its result into a file in an XML representation. Instead, we need to keep the result

in the main memory and pass it to consecutive steps of our algorithm. Though this

requirement concerns modifications of implementation, the core of the processing

remains untouched. Therefore, we also do not describe these modifications.

6.4 Definition of the Syntax Tree

Firstly, we formally define the syntax tree.

Definition 6.1 (Syntax tree). Syntax tree of XQuery query Q is tuple T =

(V,E, c,P, o) where

• V ⊂ N is a set of nodes, each node representing a particular XQuery con-

struct in query Q,

• E is a set of pairs (v, w) where v, w ∈ V and for every a, b ∈ V, a 6= b :

(a, b) ∈ E if and only if a construct represented by b is a direct component

of a construct represented by a (b is a child of a) in query Q,
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• c : V → C is function assigning each node with its class from set C of all

XQuery language constructs listed in Tables 6.1, 6.2,

• P is a set of functions specifying additional properties of the nodes and

distinguishing the nodes of the same classes,

• and o : V → O is a function specifying an order of children of the nodes,

where O = {ov : Ev → N|v ∈ V,Ev = {(v, w)|w ∈ V, (v, w) ∈ E}} is

set of functions specifying the children order for each node. For every

v ∈ V, o(v) = ov so that ov(v, w) is a sequential number of a construct

represented by w amongst constructs represented by children of v in query

Q.

Regarding the additional properties, two constructs in Q represented by two

nodes of the same class from C may differ in certain ways, and, therefore, it is

needed to distinguish them. For instance, two different literal values in Q are

represented by nodes l1, l2 ∈ V and c(l1) = c(l2) = LiteralNode but each has a

different value and type. Therefore P contains functions

typeLiteralNode : VLiteralNode → Typesliteral

valueLiteralNode : VLiteralNode → V aluesliteral

where VLiteralNode is set {v|v ∈ V, c(v) = LiteralNode}, Typesliteral is set of all

types of literal values {DECIMAL, INTEGER, DOUBLE, STRING}, and V aluesliteral is

a set of all literal values (all valid XQuery decimal numbers, integers, double

numbers and strings).

Set P contains other similar functions but due to their large number, we

do not define them formally. Functions varNameV arRefNode, axisKindAxisNode,

operatorOperatorNode are examples of commonly used functions from P. Their

meaning will be explained in a place of their usage. For details, see [29].

6.4.1 Syntactic Abbreviations

Since we need to use the syntax tree in pseudo-algorithms, we define the following

abbreviations to make its usage more simple.

For every v ∈ V , abbreviation

• v.p stands for pc(v)(v) if pc(v) ∈ P. This is a shortened syntax for functions

from P. Assuming v ∈ V , c(v) = VarRefNode, and varNameV arRefNode ∈

P; expression varNameV arRefNode(v) can be abbreviated to v.varName.

• v.getChildren() stands for {w|w ∈ V, (v, w) ∈ E} which is a set of all

children of v.

42



• v.getChild(i), i ∈ N ∪ {0}, stands for w ∈ V so that o(v)(v, w) = i+ 1. In

other words, it is a child of v with sequential number i in order specified by

o, starting with 0.

• v.getChild(class), class ∈ C, stands for w ∈ V so that (v, w) ∈ E and

c(w) = class, if
∣

∣

∣
{u|u ∈ V, (v, u) ∈ E, c(u) = class}

∣

∣

∣
= 1. It is a node

satisfying two conditions; it is a child of v and its class is class. The

function is defined when there is exactly one child of v of class class.

• If exists u ∈ V so that (u, v) ∈ E, v.getParent() stands for that u, which

is a parent of v.

6.4.2 Closer Look at the Nodes of the Syntax Tree

The node classes of the syntax are organized in an is-a hierarchical structure,

commonly used in the object oriented programming languages, where an object

can be of several types. This hierarchy is shown in tables in Tables 6.1, 6.2. The

tables are composed of classes in italic and their subclasses. The classes with

names in bold represent a common class of a group of subclasses, and these classes

cannot be directly used in the syntax tree (abstract classes). The remaining non-

bold nodes represent particular constructs of the XQuery language and nodes of

these classes can be used in the syntax tree.

For example, an instance of the syntax tree cannot directly contain nodes of

Node and ExprNode classes (for every v ∈ V, c(v) 6= Node, c(v) 6= ExprNode), but

it can contain nodes of AttributeNode and LiteralNode classes. Regarding the

multiplicity of types, a node of LiteralNode class is also considered to be of two

indirect types: ExprNode and Node.

The node classes can be classified into three groups: inner node classes, leaf

node classes and node classes that can be both inner and leaf. Inner node classes

(marked I) stand for XQuery constructs that are composed of other constructs

and can be further divided. An example of such class is FLWORExprNode which

is composed of TupleStreamNode, WhereClauseNode, OrderByClauseNode and

ReturnClauseNode classes. Leaf node classes (marked L) represent elements of

XQuery language that cannot be further divided. For example, LiteralNode.

Node FunctionCallNode is an example of the third group (marked IL). Function

call of a function without arguments is represented by a leaf node while function

call with arguments is represented by an inner node and its subnodes are nodes

representing those arguments.
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Node ExprNode

AttributeNode (I) ModuleNode (I) CommaOperatorNode (I)

AttrListNode (IL) NameNode (IL) ConstructorNode (I)

AxisNode (I) OrderByClauseNode (I) ContextItemExprNode (L)

CaseClauseNode (I) OrderSpecNode (I) EmptySequenceNode (L)

CaseClausesNode (I) ParamListNode (I) ExtensionExprNode (I)

CDataSectionNode (L) ParamNode (I) FLWORExprNode (I)

ContentNode (IL) PITargetNode (IL) FunctionCallNode (IL)

DefaultCaseNode (I) PragmaListNode (I) IfExprNode (I)

EntityRefNode (L) PragmaNode (L) LiteralNode (L)

ExprHolderNode PredicateListNode (I) OperatorNode (I)

ExprNode PrologChildNode OrderedExprNode (I)

FunctionBodyNode (IL) StepExprNode (I) PathExprNode (I)

CharRefNode (L) StringNode (L) QuantifiedExprNode (I)

InClausesNode (I) TupleStreamNode (I) TypeswitchExprNode (I)

ItemTypeNode TypeNode (L) UnorderedExprNode (I)

LocationHintNode (L) VariableBindingNode ValidateExprNode (I)

LocationHintsNode (IL) VarValueNode (IL) VarRefNode (L)

ModuleChildNode

Table 6.1: Syntax tree node types part 1. For details, see [29].
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PrologChildNode ExprHolderNode

BaseURIDeclNode (L) BindingSequenceNode (I)

BoundarySpaceDeclNode (L) DefaultValueNode (I)

ConstructionDeclNode (L) ElseExpressionNode (I)

CopyNamespacesDeclNode (L) OperandExpressionNode (I)

DefaultCollationDeclNode (L) ReturnClauseNode (I)

DefaultNamespaceDeclNode (L) TestExpressionNode (I)

EmptyOrderDeclNode (L) ThenExpressionNode (I)

FunctionDeclNode (I) WhereClauseNode (I)

ImportNode ItemTypeNode

NamespaceDeclNode (L) AnyItemNode (L)

OptionDeclNode (L) AtomicTypeNode (L)

OrderingModeDeclNode (L) KindTestNode (IL)

VarDeclNode (I) NameTestNode (L)

ImportNode VariableBindingNode

ModuleImportNode (I) ForClauseNode (I)

SchemaImportNode (I) InClauseNode (I)

ModuleChildNode LetClauseNode (I)

ModuleDeclNode (L) StepExprNode (I)

PrologNode (IL) SelfOrDescendantStepNode (L)

QueryBodyNode (I)

Table 6.2: Syntax tree node types part 2. For details, see [29].
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Some pseudo-code algorithms in the following sections need to determine a

class of a node. The node’s direct class can be determined by function c from the

definition of the syntax tree in Definition 6.1, and hence, we also can determine its

indirect classes. For the purpose of pseudo code, we define the following function.

Definition 6.2 (Function is(v, class)). For every v ∈ V and every class ∈ C,

function is(v, class) returns boolean value true if c(v) = class or c(v) is a (direct

or indirect) subclass of class, according to the described principle. Otherwise, it

returns false.

For instance, assuming v ∈ V, c(v) = LiteralNode, calls is(v, LiteralNode)

and is(v, ExprNode) return true, while call is(v, ContentNode) returns false.

6.4.3 Characteristics of the Syntax Tree

An important characteristic of the syntax tree is related to a definition of local

variables and their scope in the XQuery language. The representation of a def-

inition of a local variable in the syntax tree is a node of VariableBindingNode

class. Nodes of that class have only two children; a node representing the type of

the variable and a node representing the binding expression (expression defining

the value of the variable, and thus, it cannot use the variable). Hence, the entire

subtree does not contain any expressions that use the variable. Therefore the

scope of the new variable is not the subtree of the VariableBindingNode class

node. It depends on the type of XQuery construct that the variable binding is

an (indirect) component of.

For example, a node of FLWORExprNode class contains four subnodes of

TupleStreamNode, WhereClauseNode, OrderByClauseNode and

ReturnClauseNode classes. The TupleStreamNode class node contains a list of

nodes of VariableBindingNode class which define variables valid in all other

three subnodes of the FLWOR node.

This characteristic is explicitly described, because several algorithms later in

this chapter rely on it.

6.4.4 Syntax Tree Example

A syntax tree constructed from sample query in Listing B.19 is shown in Figure

6.2.
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ModuleNode

PrologNode QueryBodyNode

N a m e s p a c e D e c l N o d e
"http://www.foobar.org"

"local"

FunctionDeclNode
functionName = "local:convert" FLWORExprNode

ParamListNode TypeNode
cardinality = zero-or-one FunctionBodyNode

P a r a m N o d e
name = "v"

AtomicTypeNode
typeName = "xs:decimal"

OperatorNode
operator = MULTIPLY

TypeNode
cardinality = zero-or-one

AtomicTypeNode
typeName = "xs:decimal"

LiteralNode
type = DECIMAL
value = 2.20371

VarRefNode
varName = "v"

TupleStreamNode ReturnClauseNode

ForClauseNode
varName = "i"

FunctionCallNode
fncName = "local:convert"

B i n d i n g S e q u e n c e N o d e

PathExprNode
/site/open_auctions/open_auction

FunctionCallNode
fncName = "zero-or-one"

PathExprNode
$i/reserve

Figure 6.2: Sample syntax tree 1

6.5 Step 2: Static Analysis of Expression Types

In the second step, we statically (i.e. without evaluation of the queries) determine

types of expressions in the syntax tree. Information on the types of expressions

can be used by consecutive steps of the algorithm. The consecutive steps will not

use the determined types of all expressions, however this step may be useful in a

future extending.

The analysis of expression types can be divided into three substeps. Deter-

mination of return types of functions, determination of types of global variables,

and finally determination of types of expressions.

But firstly, we describe types of expressions we want to capture and their

features.

6.5.1 Expression Types

• XML Schema built-in atomic types. See Figure 6.3.

• Types ElementType, AttributeType, NodeType, TextNodeType,

CommentType, ProcessingInstructionType, DocumentType representing an

element, attribute, node, text node, comment, processing instruction, doc-
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Figure 6.3: XSD built-in atomic types

48



ument node.

• Type representing a node or a set of nodes selected by a certain path ex-

pression. The path expression is included in this type. Let this type be

identified as PathType.

• UnknownType representing a type without known details, which does not

suit one of the three previous types. An example is XSD type anyType.

6.5.2 PathType

PathType contains additional information. The represented path is contained by

a list of its steps, in particular instances of StepExprNode. If a step is a reference

to a variable whose type is PathType, we also want to include this information.

Therefore, PathType contains association between the steps and other PathTypes

and this association is defined for the PathType variable steps.

To distinguish between a common PathType selecting a set of nodes and a

PathType bound to a for variable in a FLWOR expression, PathType structure

contains a flag isForBound.

Additionally, PathType contains a list of special functions that were called

with an argument of PathType type. The motivation is that in some cases of

function calls, we want to know that the function call is performed with an

instance of PathType because then, we can determine a type of the function call

more precisely. Those special functions are built-in functions data, min, max, avg,

sum, distinct-values, zero-or-one, exactly-one. And other may be added,

when needed.

In summary, we represent PathType as a structure with the following member

variables.

• steps - A list of PathExprNode instances.

• substeps - An association between variable-referencing steps and instances

of PathType type.

• isForBound - Boolean flag determining if the type was bound to a for

variable in a for clause.

• specialFunctionCalls - List of special functions called with this instance

as an argument.
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6.5.3 Cardinality of Types

To capture sequences, we assign the first two categories of types (all types except

for PathType and UnknownType) with its cardinality as proposed in [29]. Each

of those types can be perceived as a sequence. A type representing one value or

one item can be perceived as a sequence of exactly one item. The cardinality

expresses one of the following five sequence types.

• An empty sequence.

• A sequence of exactly one item.

• A sequence containing zero or one item (modifier ?).

• A sequence containing zero or more items (modifier *).

• A sequence containing one or more items (modifier +).

PathType is not assigned with the cardinality since we do not evaluate the

queries, and therefore, we cannot determine if a certain XQuery path targets zero,

one or more nodes. Alike, UnknownType is neither assigned with the cardinality.

Expressions of UnknownType are not utilized it the inference, therefore, their

cardinality is not needed.

6.5.4 Determination of Function Return Types

Determination of return types of functions is needed because function calls can

appear in expressions. A return type of a function can be determined at the

moment the analysis of expressions encounters a call of the function; however, it

involves multiple transitions of the syntax tree in a search for a definition of a

particular function.

Instead, the syntax tree can be searched just once, before the analysis of

expressions, and return types of all functions found are stored.

A simple algorithm is presented in Algorithm 6.2. It uses

getFunctionDeclarationNodes function, defined in Algorithm 6.1, which re-

turns a list of all function declaration nodes in the syntax three. Actually, it does

not have to search the whole syntax tree as the function declaration nodes can

be present only in the query prolog section.

Without loss of generality, we will focus on locally defined functions. We will

not determine types of functions defined in other modules since the principle is

similar but it is needed to look up the definitions in syntax trees of other queries.
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Algorithm 6.1 Function getFunctionDeclarationNodes: Retrieval of Function

Declaration Nodes
Input: syntaxTree: A reference to the root node of a syntax tree.

Output: A list of syntax tree nodes representing function declarations.

1: prologNode := null

2: for each moduleChildNode ∈ syntaxTree.getChildren() do

3: if is(moduleChildNode, PrologNode) then

4: prologNode := moduleChildNode

5: end if

6: end for

7: functionDeclarationNodes := an empty list

8: if prologNode 6= null then

9: for each prologChildNode ∈ prologNode.getChildren() do

10: if is(prologChildNode, FunctionDeclNode) then

11: add prologChildNode to functionDeclarationNodes

12: end if

13: end for

14: end if

15: return functionDeclarationNodes

Return types of built-in functions are fixed and, thus, there is no need to analyze

them. Also, since a determination of a prefix for built-in functions is a technical

issue, we assume that built-in functions are either prefixed by fn or not prefixed.

For the rest of the thesis, we assume function getFunctionReturnType which

takes a function name and returns the return type of the function if the function

is either built-in or it is recorded in the associative array. Otherwise, null is

returned.

Later phases of the algorithm need to process the declarations of certain func-

tions. Therefore, we also store references to the entire function declaration nodes,

accessible using function getFunctionDeclNode.

6.5.5 Auxiliary Functions

Before proceeding to the next phase of the algorithm, we introduce auxiliary

functions used in pseudo algorithms.

Function memorizeType takes two arguments node and type and it memorizes

the given type of the specified expression node. This information can be then

retrieved by function getType, specifying the particular node as its argument.
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Algorithm 6.2 Processing of Functions
Input: syntaxTree: A reference to the root node of a syntax tree.

Output: An associative array of function names with their types and references

to the their declaration nodes.

1: functionArray := an empty associative array

2: for each functionDeclarationNode ∈

getFunctionDeclarationNodes(syntaxTree) do

3: functionName := functionDeclarationNode.funcName

4: typeNode := functionDeclarationNode.getChild(TypeNode)

5: functionArray[functionName] :=

(getTypeTN(typeNode), functionDeclarationNode)

6: end for

7: return functionArray

Algorithm 6.3 Function getTypeTN: Extraction of a Type from TypeNode
Input: typeNode: Syntax tree node of TypeNode class.

Output: Type extracted from typeNode.

1: type := UnknownType

2: cardinality := typeNode.cardinality

3: itemTypeNode := typeNode.getChild(ItemTypeNode)

4: if is(itemTypeNode, AtomicTypeNode) then

5: type := XSD atomic built-in type itemTypeNode.typeName, cardinality

6: else if is(itemTypeNode, KindTestNode) then

7: type := itemTypeNode.nodeKind, cardinality

8: end if

9: return type
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Another group consists of functions set, add, and get. Function set memo-

rizes a given value of a specified property of a specified node. It is used to assign

a node with a named value, for example, set(someNode, color, "red") will

assign someNode with string value "red" which can be then retrieved by function

get, specifying the node and the property name. For example,

get(someNode, color) returns "red". A subsequent call of set assigning a

node with a value of already assigned property will overwrite it, leaving the prop-

erty with the newer value. However, a property can have several values and this

can be achieved using function add with the same syntax as function set but

instead of overwriting the existing property, add will append the new value to

the existing ones. Then, a call of get on this node and property returns a list of

all its values, preserving the order of their addition.

6.5.6 Determination of Global Variable Types

A similar approach as in the case of functions can be applied to determine types

of global variables. Alike the functions, the global variables are defined in the

prolog section. A type of a variable can be explicitly specified in its definition, for

instance declare variable $x as xs:byte := 12;. If it is not, it may often

be deducible from the binding expression. Again, we do not analyze external

variables for the same reason as in case of external functions.

The algorithm iterates through the variable declaration nodes from the prolog

and if the variable is explicitly assigned with its type, the type is noted. Other-

wise, an attempt of the type deduction of the binding expression is made. The

deduction of the type from the expression is presented in Algorithm 6.4. On in-

put, it takes an expression node and types of local variables that are valid in the

expression (also called context of variables or variable context). The presented

algorithm is just shortened illustration since the complete version is too long to be

presented in this text. Nevertheless, the principle is straightforward. Depending

on the class of the expression node (show in Table 6.1), its type can be either

determined directly or it depends on its subexpressions.

The meaning of the code at lines 6-14 is the following. If a variable is bound

to an expression whose type is PathType, we want to assign the variable reference

expression with PathType which represents path containing exactly one step, the

variable reference. Some algorithm in later sections searches for paths starting

with a certain variable and we want them to include also that types of expressions.

A parts of the function’s semantic are separated in other functions, like the

one in Algorithm 6.5, which is not presented completely because of the same
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Algorithm 6.4 Function determineExpressionType

Input:

exprNode: An expression node in the syntax tree.

contextV arTypes: Types of local variables valid in the current subtree.

Output: The expression type.

1: type := UnknownType

2: if is(exprNode, LiteralNode) then

3: type := XSD atomic type exprNode.type, exactly-once cardinality

4: else if is(exprNode, FunctionCallNode) then

5: type := getFunctionReturnType(exprNode.fncName)

6: else if is(exprNode, VarRefNode) then

7: type := getV ariableType(contextV arTypes, exprNode.varName)

8: if type is PathType then

9: step := a path step (new instance of StepExprNode) representing the

variable reference

10: substeps := an empty associative array

11: substeps[step] := type

12: steps := an array containing one item which is step

13: type := PathType containing steps and substeps

14: end if

15: else if is(exprNode, PathExprNode) then

16: type := createPathType(exprNode)

17: else if is(exprNode, OperatorNode) then

18: type := determineOperatorType(exprNode, contextV arTypes)

19: else if is(exprNode, FLWORExprNode) then

20: returnClauseNode := exprNode.getChild(ReturnClauseNode)

21: type := createForUnboundType(getType(returnClauseNode))

22: end if

23: return type
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Algorithm 6.5 Function determineOperatorType

Input:

operatorNode: An operator expression node in the syntax tree.

contextV arTypes: Types of local variables valid in the current subtree.

Output: The operator expression type.

1: type := UnknownType

2: operator := operatorNode.operator

3: if isOperatorClassComparison(operator) then

4: type := boolean, exactly-one cardinality

5: else if isOperatorClassAddition(operator) then

6: leftOperandType := getType(exprNode.leftSide)

7: rightOperandType := getType(exprNode.rightSide)

8: if isNumericType(leftOperandType)

∧ isNumericType(rightOperandType) then

9: type := selectMoreGeneralNumericType(leftOperandType,

rightOperandType)

10: else if isNumericType(leftOperandType) then

11: type := leftOperandType

12: else if isNumericType(rightOperandType) then

13: type := rightOperandType

14: end if

15: end if

16: return type

Algorithm 6.6 Function isOperatorClassComparison

Input: operator: A representation of a XQuery operator.

Output: true if operator is a comparison operator, false otherwise.

1: if operator equals one of GEN_EQUALS, GEN_GREATER_THAN,

GEN_GREATER_THAN_EQUALS, GEN_LESS_THAN,

GEN_LESS_THAN_EQUALS, GEN_NOT_EQUALS, VAL_EQUALS,

VAL_GREATER_THAN, VAL_GREATER_THAN_EQUALS,

VAL_LESS_THAN, VAL_LESS_THAN_EQUALS,

VAL_NOT_EQUALS then

2: return true

3: else

4: return false

5: end if
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Algorithm 6.7 Function isOperatorClassAddition

Input: operator: A representation of a XQuery operator.

Output: true if operator is an addition operator, false otherwise.

1: if operator equals one of PLUS, MINUS, UNARY_PLUS, UNARY_MINUS

then

2: return true

3: else

4: return false

5: end if

Algorithm 6.8 Function isNumericType

Input: type: A representation of a type.

Output: true if type represents one of the XSD atomic built-in numeric types,

false otherwise.

1: if type represents one of float, double, decimal, integer, long, int, short, byte,

nonPositiveInteger, negativeInteger, nonNegativeInteger, positiveInteger, un-

signedLong, unsignedInt, unsignedShort, unsignedByte then

2: return true

3: else

4: return false

5: end if
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reason.

Function determineExpressionType is called within function analysisOf-

ExpressionTypes presented in Algorithm 6.9, which recursively determines types

of all subexpressions. Two important questions about this function emerge. How

(in which order) are the tree nodes recursively processed and how does the func-

tion handle definitions (bindings) of new variables which may also appear in the

expressions?

The order of the recursion is firstly to process children of a node and then the

node itself. The order of child processing is specified by function o from the defi-

nition of the syntax tree in Definition 6.1. The reason is that an expression node

may need to know types of its subexpressions to determine its own type and we

want to determine types of all expressions. Therefore, using the described order,

subexpressions of an expression are processed first, and then the expression itself

without any need for further recursion, because the types of the subexpressions

are already determined.

The handling of new variable definitions relies on the fact that the definitions

make the new variables valid only in nodes with a higher sequence number when

numbered in the order described in the previous paragraph. Therefore, the left-

most (the first amongst the ordered subnodes) subnode of a certain node can

be processed without an extension of the variable context. And, if the left-most

subnode extends the variable context for the following nodes in the numbering,

it can be easily handled, because the types of the new variables can be directly

determined since the binding expressions are already processed (thus, their types

are known). Every node ”knows” whether or not it may define new variables for

nodes with higher sequence numbers. This is expressed in the algorithm by the

condition stating at line 10. If it does define new variables, they are memorized.

Later, upon processing of its parent, they are retrieved and the variable context

is extended. This is done at lines 4 and 5. Function mergeContextVarTypes pre-

sented in Algorithm 6.10 writes every record from its second argument (the new

variables) into its first argument (the variable context). If there are records for

variables with the same names in the context, they are overwritten to correspond

to the variable overlapping. It is important to note that we assume the variable

context is not passed by reference but by value, and hence, the variable context

of a certain node is not affected by the recursive processing of its subnodes.

Function analysisOfExpressionTypes called upon a binding expression of

a global variable determines the type of the binding expression, and hence, the

type of the variable. In case of global variables, the argument contextVarTypes
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Algorithm 6.9 Function analysisOfExpressionTypes

Input:

startingNode: A node determining a subtree to perform the analysis on.

contextV arTypes: Types of local variables valid in the current subtree.

1: for each i ∈ {1, . . . , |startingNode.getChildren()|} ordered from the lowest

to the highest do

2: subnode := startingNode.getChild(i)

3: analysisOfExpressionTypes(subnode, contextV arTypes) // recursion

4: newV ars := get(subnode, newV ars)

5: contextV arTypes := mergeContextV arTypes(contextV arTypes, newV ars)

6: end for

7: if is(startingNode, ExprNode) then

8: memorizeType(startingNode, determineExpressionType(startingNode))

9: end if

10: if is(startingNode, VariableBindingNode) then

11: type := null

12: typeNode := startingNode.getChild(TypeNode)

13: if typeNode 6= null then

14: type := getTypeTN(typeNode)

15: else

16: type := determineExpressionType(startingNode.

getChild(BindingSequenceNode).getChild(ExprNode),

contextV arTypes)

17: if is(startingNode, ForClauseNode) then

18: type := createForBoundType(type)

19: end if

20: end if

21: set(startingNode, newV ars, (startingNode.varName, type))

22: else if is(startingNode, TupleStreamNode) ∨ is(startingNode,

InClausesNode) then

23: for each varBindingNode ∈ startingNode.getChildren() do

24: add(startingNode, newV ars, get(varBindingNode, newV ars))

25: end for

26: end if
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Algorithm 6.10 Function mergeContextVarTypes

Input:

contextV arTypes: Types of local variables valid in current context.

extendingV arTypes: New variables in the same structure as the first argu-

ment.

Output: The context variable types extended with the variable types from the

second argument.

1: for each varName ∈ keys(extendingV arTypes) do

2: contextV arTypes[varName] := extendingV arTypes[varName]

3: end for

4: return contextV arTypes

is empty, because there are no local variables valid in the prolog section.

Algorithm 6.11 Function getVariableType

Input:

contextV arTypes: Types of local variables valid in current context.

var: A variable to determine the type of.

Output: The type of variable var.

1: if contextV arTypes[var] is defined then

2: return contextV arTypes[var]

3: else

4: return getGlobalV ariableType(var)

5: end if

The types of processed global variables are available trough function

getGlobalVariableType. If the function gets a variable that is not a global

one, it returns null. Function getVariableType called in Algorithm 6.4 is de-

fined in Algorithm 6.11. It checks if the specified variable is amongst the given

local variables. If so, it returns its type, else it handles the variable as a global

one and if such global variable does not exist the result is null.

6.5.7 Determination of Expression Types

To determine types of expressions, we use already introduced function

analysisOfExpressionTypes. The starting node (its first argument) is the node

representing the query body and the variable context is empty as there cannot

be any local variable valid in the body node.

We can also determine expression types in functions. To do this for a certain
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Algorithm 6.12 Function createPathType

Input: pathExprNode: A reference to a PathExprNode to create the PathType

from.

Output: The PathType of pathExprNode expression.

1: steps := an empty array

2: substeps := an empty associative array

3: for each step ∈ pathExprNode.getChildren() do

4: detailNode := step.getChild(ExprNode)

5: if detailNode 6= null then

6: if is(detailNode, VarRefNode) then

7: type := getType(detailNode) // PathType

8: if type.isForBound then

9: substeps[stepNode] := type

10: add step to steps

11: else

12: add all type.steps to steps

13: end if

14: else

15: add step to steps

16: end if

17: else

18: add step to steps

19: end if

20: end for

21: return PathType with steps, substeps, and isForBound set to false

Algorithm 6.13 Function createForBoundType

Input: type: A type to create the for bound type from.

Output: The for bound type from type.

1: if type is UnknownType then

2: return UnknownType

3: else if type is NodeType or XSD atomic type then

4: return type with cardinality set to exactly-one

5: else

6: // It is PathType

7: return type with isForBound flag set to true

8: end if
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ModuleNode

PrologNode QueryBodyNode

N a m e s p a c e D e c l N o d e
"http://www.foobar.org"

"local"

FunctionDeclNode
functionName = "local:convert"

FLWORExprNode
xs :dec imal ,  zero-or -more

ParamListNode TypeNode
cardinality = zero-or-one FunctionBodyNode

P a r a m N o d e
name = "v"

AtomicTypeNode
typeName = "xs:decimal"

OperatorNode
operator = MULTIPLY

xs:decimal, zero-or-one

TypeNode
cardinality = zero-or-one

AtomicTypeNode
typeName = "xs:decimal"

LiteralNode
type = DECIMAL
value = 2.20371

xs:decimal, exactly-one

VarRefNode
varName = "v"

xs:decimal, zero-or-one

TupleStreamNode ReturnClauseNode

ForClauseNode
varName = "i"

FunctionCallNode
fncName = "local:convert"

xs:decimal, zero-or-one

B i n d i n g S e q u e n c e N o d e

PathExprNode
/site/open_auctions/open_auction

PathType

FunctionCallNode
fncName = "zero-or-one"

PathType

PathExprNode
$i/reserve
PathType

Figure 6.4: Sample syntax tree 1 after the static analysis of types

function, analysisOfExpressionTypes function has to be called with a function

declaration node as the starting node. In this case, the function declaration node

contains a subnode specifying function’s formal arguments. These arguments are

set as the variable context for the function body represented by another subnode.

Figure 6.4 shows the syntax tree from Figure 6.2 after the static analysis of

expression types. The types are shown in red color. Note that the node represent-

ing zero-or-one function call is of a PathType type, as well as its argument. It

is so, because the function returns its argument unchanged, and thus, we included

the function in the special functions list in the PathType definition.

Also note, that the function call node of local:convert in the FLWOR return

clause has zero-or-one cardinality and the FLWOR node has zero-or-more

cardinality. The change of cardinality is a result of the for unbinding shown in

Algorithm 6.14.

6.6 Step 3: Inference of Built-in Types

In this step, the algorithm goes through the syntax tree to infer types of elements

and attributes from expressions using the type information from the previous

step. These two steps could be merged together but for better comprehension we

present it separately.

How are the types inferred from the expression types? We do not exploit all
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Algorithm 6.14 Function createForUnboundType

Input: type: A type to create the for unbound type from.

Output: The for unbound type from type.

1: if type is UnknownType then

2: return UnknownType

3: else if type is NodeType or XSD atomic type then

4: return type with cardinality set to zero-or-more

5: else

6: // It is PathType

7: return type with isForBound flag set to false

8: end if

expressions. Only expressions of a particular type are exploited. Specifically, an

expression has to contain a subexpression E of PathType type (expression rep-

resenting a certain element or attribute or a set of elements or attributes). In

the following text, the set represented by expression E is denoted S. Another

requirement is that the expression has to be either a function call or an arith-

metic operation. As discussed in Chapter 4, also other XQuery constructs can be

utilized to infer built-in types, but, since the principle is similar, we focus on the

two mentioned.

Likewise the previous step, the syntax tree is recursively searched for expres-

sions meeting the conditions for the type inference. A little difference is that

the recursion stops at FunctionsBodyNode and PathExprNode nodes, because

the processing of these nodes requires a different approach, which we do not deal

with in this thesis.

The output of this step is a set of statements of the form P → T , where P is

an instance of PathType and T is an XML Schema built-in atomic type.

6.6.1 Function Calls

This case is quite straightforward. The algorithm encounters a function call

and one of the arguments is a set of elements of attributes (subexpression E

representing S) represented by PathType P . To determine the type of S, it is

only needed to determine the type of the corresponding formal argument from the

definition of the function. The function is either a built-in one so its definition is

known or it is defined in the prolog section. External functions are not processed

as was mentioned already.

If the type T of the formal argument is a built-in type or its sequence, then
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T is also the inferred type of S. The inferred statement is P → T . Otherwise,

no statement is inferred.

6.6.2 Arithmetic Operations

If the operator in an arithmetic operation is one of +, -, div, mod, *, / (the

class of the expression node is Operator and it represents one of PLUS, MINUS,

IDIV, MOD, MUL, DIV (for all operators, see Attachment A.1)), one operand is of

PathType P and the type T of the other operand is one of numeric built-in types,

then the inferred statement is P → T .

If the operator is one of <, >, <=, >=, =, != (the class of the expression

node is Operator and it represents one of GEN_LESS_THAN, GEN_GREATER_THAN,

GEN_LESS_THAN_EQUALS, GEN_GREATER_THAN_EQUALS, GEN_EQUALS,

GEN_NOT_EQUALS), one operand is of PathType P and the type T of the other

operand is one of built-in types, then the inferred statement is P → T .

6.6.3 Example

Figure 6.5 shows a fraction of the syntax tree from Figure 6.4. When the inference

of built-in types encounters the node marked by blue color, a statement will be

inferred using the principle described in Chapter 6.6.1. The node represents a

call of local:convert function.

This function has one formal argument of type T = xs:decimal, zero-or-one

cardinality. The real argument is of a PathType P . In particular, it is a PathType

representing path $i/reserve, where the $i variable refers to a PathType rep-

resenting for-bound /site/open_auctions/open_auction path, and one special

function call of zero-or-one function is noted.

Since the criteria for the inference from a function call are met, statement

P → T is inferred.

6.6.4 Possible Extensions

As mentioned, the proposed algorithm utilizes only a small portion of XQuery

constructs which can be be possibly utilized. Also, the algorithm does not perform

the inference of types inside user-defined functions (it just uses the return types

determined in earlier phases). That can be easily done as we know the definitions

of functions and types of their real arguments. An algorithm performing the

analysis in the user-defined functions can works as follows.

63



QueryBodyNode

FLWORExprNode
xs:decimal, zero-or-more

TupleStreamNode ReturnClauseNode

ForClauseNode
varName = "i"

FunctionCallNode
fncName = "local:convert"

xs:decimal, zero-or-one

B i n d i n g S e q u e n c e N o d e

PathExprNode
/site/open_auctions/open_auction

PathType

FunctionCallNode
fncName = "zero-or-one"

PathType

PathExprNode
$i/reserve
PathType

Figure 6.5: Example of an inference of a type from a function call
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If a currently processed expression is a function call of an user-defined function

and at least one of its real arguments is an instance of PathType, get the function

declaration node. In the function body, replace the formal arguments by the real

arguments and set them as the local variables, so the proposed algorithms can be

applied to process the function’s body. Analyze the types of expressions in the

body with the new information on the types of arguments by incorporating of the

proposed algorithms and replace the function’s return type by the one currently

determined.

A little complication is a recursion. A simple algorithm of that kind may never

end because of the infinite analysis of the same recursive function(s). Therefore,

we shall keep track of the currently analysed functions (e.g. in a stack of function

calls) and do not process the recursive calls.

6.7 Step 4: Key Discovery

In this step, the algorithm discovers keys of elements, incorporating the approach

from paper [26], described in Chapter 3.5, and extending it. Despite the approach

was proposed, it has not been implemented yet. Therefore we will be the first to

implement it and perform consecutive testing.

Firstly, the syntax tree is searched for forms of FLWOR expressions to infer

the keys from. Then, as described later, certain constructs are used to support

or degrade the evidence of inferred statements in a final summary.

6.7.1 Auxiliary Functions

Firstly, we define some auxiliary functions used by algorithms in this chapter.

Function usesOnlyChildAndDescendantAxes in Algorithm 6.15 takes an in-

stance of PathType as its arguments and returns true if the path uses only child,

descendant and descendant or self axes. Otherwise, it returns false. Function

usesOnlyChildAndDescendantAndAttributeAxes is the same except it allows

also attributes axis.

Function isWithoutPredicates in Algorithm 6.16 checks whether a path

represented by a given PathType instance does not contain predicates. A Simi-

lar function is isWithoutPredicatesExceptLastStep. This function is not ex-

plicitly defined, because its definition is the same as the definition of function

isWithoutPredicates, except it does not check the last step of the path. So the

last step may contain predicates and the function will return true.
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Algorithm 6.15 Function usesOnlyChildAndDescendantAxes

Input: pathType: A PathType instance.

Output: A boolean result.

1: for each step ∈ pathType.steps do

2: if step.isAxisStep then

3: axisKind := step.axisNode.getAxisKind()

4: if axisKind 6= CHILD ∧ axisKind 6= DESCENDANT ∧ axisKind 6=

DESCENDANT_OR_SELF then

5: return false

6: end if

7: end if

8: end for

9: detailNode := step.getChild(ExprNode)

10: if detailNode 6= null then

11: if is(detailNode, VarRefNode) then

12: if usesOnlyChildAndDescendantAxes(pathType.substeps[step]) =

false then

13: return false

14: end if

15: end if

16: end if

17: return true

Algorithm 6.16 Function isWithoutPredicates

Input: pathType: A PathType instance.

Output: A boolean result.

1: for each step ∈ pathType.steps do

2: if step.hasPredicates then

3: return false

4: end if

5: if pathType.substeps[step] 6= null then

6: if isWithoutPredicates(pathType.substeps[step] = false then

7: return false

8: end if

9: end if

10: end for

11: return true
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Function endsWithExactlyOnePredicate in Algorithm 6.17 checks if a path

represented by a given PathType instance contains exactly one predicate in its

last step and if so, the predicate is returned. Otherwise, it returns false.

Algorithm 6.17 Function endsWithExactlyOnePredicate

Input: pathType: A PathType instance.

Output: If pathType ends with exactly one predicate, return value is the pred-

icate, otherwise return value is false.

1: lastStep := the last item from pathType.steps

2: if lastStep.hasPredicates() = false then

3: return false

4: end if

5: if number of items in list lastStep.getChild(PredicateListNode)

.getChildren() is higher than 1 then

6: return false

7: end if

8: return the only item in lastStep.getChild(PredicateListNode)

.getChild(0)

Function isTargetPath in Algorithm 6.18 checks if a path represented by

a given PathType instance is so-called target path for the specified variable. A

target path for a variable is a path where its first step is a reference to the variable.

Function getTargetReturnPathTypes in Algorithm 6.19 searches the given

FLWOR for PathTypes representing so-called target return paths. A target re-

turn path is a return path in a where clause of a FLWOR. The FLWOR is

processed recursively using function getTargetReturnPathTypesRecursive in

Algorithm 6.20.

A similar couple of functions is function getTargetReturnPaths and func-

tion getTargetReturnPathsRecursive. The only difference between those two

couples of functions is that the former one searches for all expressions which are

of PathType representing a target return path, while the later one searches only

for instances of PathExprNode.

To illustrate this difference, we introduce the following example. Assuming

P is a return target path expression for variable var and flwor is a FLWOR ex-

pression with return clause data(P), function call getTargetReturnPathTypes(

flwor, var) returns two PathTypes. One is the type of expression P and the

other is the type of the function call data(P) which is also PathType. On the

other hand, function call getTargetReturnPaths(flwor, var) returns just one
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Algorithm 6.18 Function isTargetPath

Input:

pathType: A PathType instance.

varName: A variable name.

Output: Returns true, if the first step of path represented by the PathType

instance is a reference to the specified variable.

1: firstStep := first item from pathType.steps

2: detailNode := firstStep.detailNode

3: if detailNode = null then

4: return false

5: end if

6: if is(detailNode, VarRefNode) = false then

7: return false

8: end if

9: if detailNode.varName = varName then

10: return true

11: else

12: return false

13: end if

Algorithm 6.19 Function getTargetReturnPathTypes

Input:

flworNode: A FLWORExprNode instance to search for target return paths.

varName: A variable name.

Output: A list of target return paths for the specified variable, in the given

FLWOR, represented by PathType instances.

1: pathTypes := an empty array

2: getTargetReturnPathTypesRecursive(flworNode.

getChild(ReturnClauseNode), varName, pathTypes)

3: return pathTypes
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Algorithm 6.20 Function getTargetReturnPathTypesRecursive

Input:

node: A node to search for target return paths.

varName: A variable name.

pathTypes An output list to add found target return path types to.

1: if is(node, ExprNode) then

2: type := getType(node)

3: if type is PathType ∧ isTargetPath(type, varName) then

4: add type to pathTypes

5: end if

6: end if

7: for each child ∈ node.getChildren() do

8: getTargetReturnPathTypesRecursive(child, varName, pathTypes)

9: end for

PathType representing P .

Algorithm 6.21 Function getTargetReturnPaths

Input:

flworNode: A FLWORExprNode instance to search for target return paths.

varName: A variable name.

Output: A list of target return paths for the specified variable, in the given

FLWOR, represented by PathExprNode instances.

1: paths := an empty array

2: getTargetReturnPathsRecursive(flworNode.

getChild(ReturnClauseNode), varName, paths)

3: return paths

6.7.2 Definition of Keys

To define a key and a foreign key, we adopt the definitions introduced in the

original approach [26] with the following modifications.

• XPath paths are replaced by PathType instances.

• All paths can use also descendant or self axis.

• Key paths can use also attribute axis.

The modified definitions are as follows.
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Algorithm 6.22 Function getTargetReturnPathsRecursive

Input:

node: A node to search for target return paths.

varName: A variable name.

paths An output list to add found target return path types to.

1: if is(node, PathExprNode) then

2: type := getType(node)

3: if type is PathType ∧ isTargetPath(type, varName) then

4: add type to paths

5: end if

6: else if is(node, VarRefNode) then

7: if node.varName = varName then

8: type := getType(node)

9: if type is PathType ∧ isTargetPath(type, varName) then

10: add type to paths

11: end if

12: end if

13: end if

14: for each child ∈ node.getChildren() do

15: getTargetReturnPathsRecursive(child, varName, paths)

16: end for
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for $e1 in P1

for $e2 in

P2[L2 = $e1/L1]

return CR

Listing 6.1: Other form of the for join pattern.

for $e1 in P1

let $e2 :=

P2[L2 = $e1/L1]

return CR

Listing 6.2: Other form of the let join pattern.

Definition 6.3 (Key). A key is a construct (C, P, {L}), where C, P and L are

PathType instances without predicates and without special function calls that

use only child, descendant, and descendant or self (L also attribute) axes. C is

called context path, P target path and L key path. C can be omitted, i.e. we can

write (P, {L}). This is equivalent to (/, P, {L}). If C is omitted we call the key

global key. Otherwise, it is called relative key.

Definition 6.4 (Foreign key). A foreign key is a construct (C, (P1, {L1}) →

(P2, {L2})), where (C, P2, {L2}) is a key and P1 and L1 are PathType instances

without predicates and without special function calls that use only child, descen-

dant, and descendant or self (L also attribute) axes. C can be omitted as in the

case of keys.

An example of a global key is (/site/people/person, {@id}). An exam-

ple of a foreign key to that key is ((/site/closed_auctions/closed_auction,

{buyer/@person}) → (/site/people/person, {@id})).

for $e1 in P1

for $e2 in P2

where $e2/L2 = $e1/L1

return CR

Listing 6.3: Join pattern 3.
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6.7.3 Join Patterns

The two join patterns from the original approach are shown in Listings 3.1 and

3.2. Additional join patterns are introduced in Listings 6.1, 6.2 and 6.3. In all

join patterns P1, P2, L1, L2 are XQuery paths without predicates, using only

child, descendant, and descendant or self (L1, L2 also attribute) axes. Actually,

the join patterns from Listings 6.1 and 6.2 are covered by the for and let join

pattern in the original approach, but we introduce them explicitly, because their

structure in the syntax tree is different.

Since in this step we already know the types of all expressions in the syntax

tree, the requirement that P1, P2, L1, L2 are paths of the described form can be

replaced by a more general requirement that P1, P2, L1, L2 are expressions of

PathType satisfying the same requirements.

As described in the original method and summarized in Chapter 3.5 we rec-

ognize two cases (O1) and (O2) of inference of keys from occurrences of the join

patterns, and rules (R1 - R5) to classify each occurrence into one of these cases.

For the join pattern 3, we introduce a new rule, considering the join pattern 3 of

case (O1), assigned with weight of 0.5. The lesser weight is chosen because there

is a lower probability that join of the join pattern 3 type is done via a key/foreign

key pair.

To find the occurrences of the join patterns, the algorithm recursively, in pre-

order, searches the syntax tree and every node representing a FLWOR expression

is processed. The FLWOR processing is shown in Algorithm 6.23. Its input is

an array of couples containing names of variables which has been bound in for

clauses in FLWOR expressions represented by ancestor nodes, and references to

those respective for clause nodes. The processing iterates through subnodes of a

current node and the iteration consists of two logical parts.

In the first one, a subnode is checked if it is a for or let clause that forms

a join pattern occurrence with one of clauses from the input array. If it does,

the occurrence is noted. The responsible code is partially moved to function

determineJoinPattern in Algorithm 6.24. If the subnode does not form an

occurrence, and if it is a for clause binding a new variable satisfying the conditions

to be the first for clause of a join pattern, it is added to the array along with the

variable name. It can be then processed in the following clauses of the current

FLWOR node or in its descendant FLWOR nodes, later in the recursion.
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Algorithm 6.23 Processing of FLWOR expressions
Input:

flworNode: A node representing a FLWOR expression.

forV ars: An array of couples of for variables and their for clause nodes.

Output: Updated variable forV ars.

1: bindingNodes := bindingNode ∈ flworNode.getChild(TupleStreamNode).

getChildren()

2: whereClause := flworNode.getChild(WhereClauseNode)

3: checkJoinPattern3 := false

4: whereExpr := null

5: if whereClause 6= null then

6: whereExpr := whereClause.getChild(ExprNode)

7: if is(whereExpr, OperatorNode) ∧ whereExpr.operator =

GEN_EQUALS then

8: checkJoinPattern3 := true

9: end if

10: end if

11: for each bindingNode ∈ bindingNodes do

12: bindingExpr := bindingNode.getChild(BindingSequenceNode).

getChild(ExprNode)

13: type := getType(bindingExpr)

14: if type is PathType ∧ usesOnlyChildAndDescendantAxes(type) ∧

isWithoutPredicatesExceptLastStep(type) then

15: P := endsWithExactlyOnePredicate(type)

16: if P ∨ (checkJoinPattern3 ∧ isWithoutPredicates(type)) then

17: for each (var, node) ∈ forV ars do

18: forV ars := determineJoinPattern(bindingNode, P, node, var,

forV ars, checkJoinPattern3, whereExpr)

19: end for

20: end if

21: if isWithoutPredicates(type) then

22: if is(bindingNode, ForClauseNode) then

23: add (bindingNode.varName, bindingNode) to forV ars

24: end if

25: end if

26: end if

27: end for

28: return forV ars
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Algorithm 6.24 Function determineJoinPattern

Input:

curBindingNode: A variable binding node in the current FLWOR node.

P : A predicate from the binding expression.

forBindingNode: A for binding node from an ancestor FLWOR node.

forV ar: A variable from the ancestor for binding node.

checkJoinPattern3: A flag determining whether to analyze the join pattern

as possible join pattern 3.

whereExpr: An expression from a where clause of the current FLWOR node.

1: if P is of form forV ar/L1 = curBindingNode.varName/L2 ∧

usesOnlyChildAndDescendantAndAttributeAxes(L1) ∧

usesOnlyChildAndDescendantAndAttributeAxes(L2) then

2: if is(curBindingNode, ForClauseNode) then

3: memorize (forBindingNode, curBindingNode) as an occurrence of the

for join pattern

4: else if is(curBindingNode, LetClauseNode) then

5: memorize (forBindingNode, curBindingNode) as an occurrence of the

for let pattern

6: end if

7: end if

8: if checkJoinPattern3 ∧ is(curBindingNode, ForClauseNode) ∧

usesOnlyChildAndDescendantAndAttributeAxes(L1) ∧

usesOnlyChildAndDescendantAndAttributeAxes(L2) then

9: if whereExpr is of form forV ar/L1 = bindingNode.varName/L2 then

10: memorize (forBindingNode, curBindingNode) as an occurrence of the

join pattern 3

11: end if

12: end if
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6.7.4 Analysis of the Join Pattern Occurrences

For each found join pattern occurrence, the algorithm displayed in Algorithm 6.25

and Algorithms 6.26, 6.27, 6.28 decides whether it is (O1) or (O2) case, using the

rules from the original method and the rule for the join pattern 3 considering it

of case (O1) and assigning it with weight of 0.5.

As it can be seen in Algorithm 6.25, rules R2 and R3 are applied using in-

stances of PathType while, rules R4 and R5 use instances of PathExprNode. This

difference is partially explained in definition of the auxiliary functions in Chap-

ter 6.7.1. Rules R4 and R5 count target return paths. If they use instances of

PathType, they can count one path more times (as is described in the mentioned

chapter), and thus, give a wrong result.

6.7.5 Inference of Keys from Join Pattern Occurrences

Now, when the join patterns occurrences are classified into (O1) and (O2) cases,

we infer the key statements according to the original approach [26].

Let w be the weight assigned to a pattern occurrence π. If π is marked as

(O1), the following statements with weight w are inferred:

• (P2, {L2}) is not satisfied

• (P1, {L1}) is satisfied

• (P2, {L2}) → (P1, {L1}) is satisfied

If π is marked as (O2), the following statements with weight w are inferred:

• (P2, {L2}) is satisfied

• (P1, {L1}) → (P2, {L2}) is satisfied

The original approach [26] describes also inference of relative keys. Refer to

it for details.

6.7.6 Rejection of Uniqueness

While the previous steps of the key discovery produce mostly positive statements

about the keys, in this step, the algorithm searches for evidence on non-uniqueness

of elements and attributes. The aim of this step is to eliminate or decrease the

number of falsely inferred keys. A key can be inferred falsely when the assumption

that every join is done via a key/foreign key pair is not correct for a particular

join.
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Algorithm 6.25 Classification of join pattern occurrences
Input: O: A set of all found join pattern occurrences.

Output: O′: A set of the classified join pattern occurrences from O assigned

with their respective weights.

1: for each jpOccurrence ∈ O do

2: if jpOccurrence is the for join pattern then

3: mark jpOccurrence as case (O1), weight 1

4: else if jpOccurrence is the join pattern 3 then

5: mark jpOccurrence as case (O1), weight 0.5

6: else

7: secondBindingNode := the second binding node from jpOccurrence

8: flworNode := secondBindingNode.getParent().getParent()

9: secondV arName := secondBindingNode.varName

10: returnPathTypes := getReturnPathTypes(flworNode,

secondV arName)

11: if checkR2(returnPathTypes, jpOccurrence) then

12: continue

13: end if

14: if checkR3(returnPathTypes, jpOccurrence) then

15: continue

16: end if

17: targetReturnPaths := getTargetReturnPaths(flworNode,

secontV arName)

18: useR4R5(returnPaths, jpOccurrence)

19: end if

20: update jpOccurrence in O

21: end for

22: return O
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Algorithm 6.26 Function checkR2

Input:

returnPathTypes: A list of target return path types.

jpOccurrence: An occurrence of a join pattern to classify.

Output: True if the jpOccurrence was classified as case (O1) using the R2 rule.

False otherwise.

1: for each returnPathType ∈ returnPathTypes do

2: if returnPathType.specialFunctionCalls contains one of ’min’, ’max’,

’sum’, ’avg’ then

3: mark jpOccurrence as case (O1), weight 1 // R2

4: return true

5: end if

6: end for

7: return false

Algorithm 6.27 Function checkR3

Input:

returnPathTypes: A list of target return path types.

jpOccurrence: An occurrence of a join pattern to classify.

Output: True if the jpOccurrence was classified as case (O1) using the R3 rule.

False otherwise.

1: for each returnPathType ∈ returnPathTypes do

2: if returnPathType.specialFunctionCalls contains ’count’ then

3: mark jpOccurrence as case (O1), weight 0.75 // R3

4: return true

5: end if

6: end for

7: return false

Algorithm 6.28 Function useR4R5

Input:

targetReturnPaths: A list of target return paths.

jpOccurrence: An occurrence of a join pattern to classify.

1: retPathsNumber := a number of paths in targetReturnPaths

2: if retPathsNumber > 1 then

3: mark jpOccurrence as case (O2), weight 1 // R4

4: else

5: mark jpOccurrence as case (O2), weight 0.5 // R5

6: end if
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When the algorithm discovers that a certain element (or attribute) is probably

not unique, it assigns the element (or attribute) with a negative weight that will

decrease the sum of its weights in the summarizing step.

We can formally define negative uniqueness statements as follows:

Definition 6.5 (Negative uniqueness Statement). A negative uniqueness state-

ment is a construct (C, P ), where C and P are PathType instances that use only

child, descendant, and descendant or self (P also attribute) axes. C is called

context path, P target path. C can be omitted as in the case of keys.

Note that the restrictions placed on the paths C and P are less restrictive

than in the case of keys. If we find a negative uniqueness statement (C, P ),

where P or C contains predicates, then it implies that also (C ′, P ′) is a negative

uniqueness statement, where C ′ and P ′ are C and P stripped of predicates. In

the case of special function calls, the explanation is the same.

The first XQuery construct utilized by this step is a function call of

distinct-values function as discussed in Chapter 4.4.3 and shown in Algorithm

6.29. The algorithm searches for calls of the mentioned functions with a PathType

on their input. Elements and attributes selected by those PathTypes are then

considered to be not unique, and consequently, they cannot be keys.

Aggregation functions min, max, sum are not utilized by the function, because

they were utilized by the search for join patterns, and in the process of classifi-

cation of found join patterns, they were included in the computation of the key

weights.

Algorithm 6.29 Rejection of uniqueness - aggregation functions
Input: node: A node of the syntax tree.

1: if is(node, FunctionCallNode) then

2: if node.fncName = ’distinct-values’ then

3: argument := node.getChild(0)

4: type := getType(argument)

5: if type is PathType

∧ usesOnlyChildAndDescendantAndAttributeAxes(type)

∧ isWithoutPredicatesExceptLastStep(type) then

6: memorize (argument) as the negative key statement, weight 1

7: end if

8: end if

9: end if

Besides the distinct-values function, a certain form of FLWOR expressions
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is utilized in this step. They are FLWORs that iterate through a sequence of nodes

selected by a path expressions using only child, descendant, and descendant or self

axes, and either that path expressions end with a predicate comparing a value of

a subnode with some other value (literal constant, reference to a variable which is

constant in this expressions, etc), or, the comparison is located in a where clause

of a respective FLWOR.

As discussed in Chapter 4.4.3, when a for clause is used to iterate through

a set of items, it is expected that the number of the items may be more than

one. And, together with that, the set is restricted to contain only items which

satisfy a condition that a value of one of their subnodes (or descendant nodes)

equals a certain value. That implies that the value in those nodes is not unique,

and, alike the utilization of the aggregation functions, non-unique nodes cannot

be keys. This situation is handled in Algorithms 6.30 and 6.31.

Algorithm 6.30 Rejection of uniqueness - comparison with a constant
Input: node: A node of the syntax tree.

1: if is(node, FLWORExprNode) then

2: forV ars := an empty array

3: for each bindingNode ∈ node.getChild(TupleStreamNode).getChildren()

do

4: if is(bindingNode, ForClauseNode) then

5: expr := bindingNode.getChild(BindingSequenceNode).

getChild(ExprNode)

6: if getType(expr) is PathType ∧ usesOnlyChildAndDescendantAxes(

getType(expr)) then

7: add bindingNode.varName to forV ars

8: end if

9: end if

10: end for

11: whereClause := node.getChild(WhereClauseNode)

12: if whereClause 6= null then

13: processWhere(forV ars, whereClause.getChild(ExprNode))

14: end if

15: end if

In spite of the presented algorithms search for global negative uniqueness

statements (C path is omitted) only, we included the context path in the definition

for possible future extensions.
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Algorithm 6.31 Rejection of uniqueness - function processWhere
Input:

forV ars: Names of variables to look for in the where expression.

exprNode: The where expression node.

1: if is(exprNode, OperatorNode) then

2: if exprNode.operator = GEN_EQUALS then

3: for each var ∈ forV ars do

4: if exprNode is of a form var/L =

C where getType(var/L) is PathType ∧

isWithoutPredicatesExceptLastStep(getType(var/L)) ∧

usesOnlyChildAndDescendantAndAttributeAxes(getType(var/L))

∧ C is a literal constant then

5: memorize (var/L) as the negative key statement, weight 0.9

6: end if

7: end for

8: else if exprNode.operator = AND then

9: processWhere(forV ars, exprNode.leftSide)

10: processWhere(forV ars, exprNode.rightSide)

11: end if

12: end if
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6.7.7 Normalization of Key Statements

The original approach [26] employs the following normalization which we adopt.

It also incorporates a heuristic for precision enhancement. For details, we refer

to it.

Let K1, . . . , Kn be the inferred keys. Let Si be the score (the sum of weights)

of Ki and Ni be the number of the inferred statements about Ki.

Let NU1, . . . , NUm be the discovered negative uniqueness statements. Let Wj

be the weight of NUj .

The negative uniqueness statements affect the scores as follows. For each

negative uniqueness statement NUj = (CNU
j , PNU

j ), find Kj set of keys which are

rejected by the statement.

Kj =
{

Ki = (CK
i , PK

i , {LK
i })

∣

∣

∣
CNU

j = CK
i , PNU

j = PK
i /LK

i

}

.

Then, for each key Ki ∈ Kj decrement its score Si with weight of the negative

uniqueness statement Wj.

Let Smax be the maximum from |S1|, . . . , |Sn| and Nmax be the maximum

norm from N1, . . . , Nn. The normalized score Si of Ki is computed as

Snorm
i = Si

Smax ∗ (1− Nmax
−Ni∑

n

i=1
Ni

)

6.7.8 Example

Figure 6.6 shows the syntax tree of the query in Listing B.9 (subtree of Construc-

torNode is omitted because of lack of space). In this tree, the algorithm founds

one occurrence of the join pattern 3. The two for clauses and one where clause

which form the occurrence are shown in the red boxes.

• P1 = /site/people/person

• P2 = /site/closed_auctions/closed_auction

• L1 = @id

• L2 = buyer/@person

The next phase marks this occurrence as (O1) case with weight 0.5. Paths P1

and P2 does not have a common context, and thus, the following statements are

inferred:

• Key K = (/site/people/person, {@id}) is satisfied.
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for  c lause  A

for  c lause  B w h e r e  c l a u s e

ModuleNode

QueryBodyNode

FLWORExprNode

TupleStreamNode ReturnClauseNode

ForClauseNode
varName = "p"

LetClauseNode
varName = "a"

ConstructorNode
...

B i n d i n g S e q u e n c e N o d e

PathExprNode
/site/people/person

B i n d i n g S e q u e n c e N o d e

FLWORExprNode

TupleStreamNode ReturnClauseNodeWhereClauseNode

ForClauseNode
varName = "t"

VarRefNode
varName = "t"

OperatorNode
oeprator = GEN_EQUALS

B i n d i n g S e q u e n c e N o d e

PathExprNode
/site/closed_auctions/closed_auction

PathExprNode
$t/buyer/@person

PathExprNode
$p/@id

Figure 6.6: Sample syntax tree 2
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• Foreign key ((/site/closed_auctions/closed_auction, {buyer/@person}) →

K) is satisfied.

• Key (/site/closed_auctions/closed_auction, {buyer/@person}) is not

satisfied.
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Chapter 7

Combination with Existing

Methods of Inference

In this chapter, we describe how to incorporate the inferred statements to existing

methods of XML schema inference. We focus on a class of methods which are

based on a creation and subsequent simplification of the initial grammar (as

discussed in Chapter 3).

The initial grammar contains rules of form e → e1e2 . . . ek, where e is an

element and e1, . . . , ek are its subelements. After the simplification, the simplified

grammar contain rules of form e → E, where E is a regular expression composed

of subelements of element e, describing its content.

Attributes of elements are not contained in the grammar directly, but every

element carries an information on its attributes.

The combination with such methods of inference is straightforward. The

rules of the grammar describe the XML structure using the most general aspect

of elements and their subelements. Since the statements inferred by our method

do not involve the XML structure by defining a subelement structure of elements,

there are no conflicts between the grammar rules and our statements that need

to be resolved.

Our statements are of the three following forms. The first one is P → T ,

where P is a PathType representing an XQuery path selecting a set of elements

or attributes, and T is an XSD built-in atomic type.

The second and third forms are K = (C, P, {L}) and Kf = (C(P1, {L1}) →

(P2, {L2})), representing a key and a foreign key.

In all three cases, we want to determine elements from the grammar (or their

attributes), targeted by the respective paths (P from the first form and C from the

second and third form). This is done in two steps. The first one is normalization
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of a particular PathType and the second one is selection of the targeted elements.

7.1 Evaluation of Paths

A path represented by PathType can contain variable references and association

of these references with other paths. That is the reason why the normalization is

convenient. It simply finds the variable references in the path and replaces them

with steps from the associated paths, which are normalized recursively.

The selection of elements is a simplified XPath evaluation. The simplification

involves two aspects; the evaluation is not performed upon XML data, but the

simplified grammar containing rules with a regular expression on their right side,

and, partially related, predicates in path steps are not evaluated, they are ignored.

It iterates through steps of a path, maintaining a so-called context set, which

is a set of elements to evaluate the current step upon. The evaluation of one step

is shown in Algorithm 7.1. For the retaining of readability of the code, we present

an evaluation of self or descendant, child, and attribute axes, and nodes specified

by name.

At first, the algorithm determines the axis of the step. If it is self or descendant

axis, it returns the result of evaluateStep_selfOrDescendant function. This

function returns the given context set extended by all descendants of the elements

from the context set in the given grammar.

If the axis is child axis, for each element in the context set, the algorithm

determines its subelement using the grammar, and, if those with the name equal

to the name specified by to step are added to the resulting context set. Function

getTokens at line 10 retrieves all elements from a regular expression. A specific

form of the regular expression is not important, because we only need to know

which elements are possible subelements of the particular element.

And, at last, if the axis is attribute axis, elements from the context set are

searched to contain an attribute with the specified name and those found at-

tributes are added to the result.

7.2 Saving the Inferred Statements

In case of keys, the algorithm iterates through the inferred key statements. A

key’s context path C is evaluated and the key is assigned to the target elements

selected by the context path, one element can be assigned with multiple keys.

Additionally, each key is assigned with a list of foreign keys that are referencing
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Algorithm 7.1 Function evaluateStep
Input:

step: An instance of StepExprNode representing a step of the path to eval-

uate. contextSet: A set of elements and attributes to evaluate step upon.

grammar: The grammar.

Output: A context set after the step evaluation.

1: if is(step, SelfOrDescendantStep) then

2: return evaluateStep_selfOrDescendant(contextSet, grammar)

3: end if

4: newContextSet := an empty set

5: axisKind := step.getChild(axisNode).axisKind

6: nodeName := step.getChild(axisNode).getChild(nameTestNode).name

7: if axisKind = CHILD then

8: for each node ∈ contextSet do

9: if node is element then

10: subelements := getTokens(grammar[node])

11: for each subelement ∈ subelements do

12: if subelement.name = nodeName then

13: add subelement to newContextSet

14: end if

15: end for

16: end if

17: end for

18: else if axisKind = ATTRIBUTE then

19: for each node ∈ contextSet do

20: if node is element then

21: attributes := node.attributes

22: for each attribute ∈ attributes do

23: if attribute.name = nodeName then

24: add attribute to newContextSet

25: end if

26: end for

27: end if

28: end for

29: end if

30: return newContextSet
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it.

In case of inferred types, the situation is slightly less simple, because there can

occur conflicting statements. The examples of such conflicts for path P without

predicates are P1 → date, P2 → string, and, P1 → byte, P2 → int, where P1,

P2 are paths that when stripped of predicates, they equal P .

Note that, in both examples, one type is castable to the other (date to string,

and byte to int). Both types are inferred correctly for nodes targeted by P , but

one of them was inferred from a more convenient expression and is more precise.

Consider these two expressions; PathType P is compared to an integral literal

constant, and, PathType P is an argument of a function where a formal type of

the argument is byte. The first expression is utilized to infer statement P →

integer, and the second one to infer statement P → byte. Both of the types

are correct, but the second one is more accurate.

A problem emerges for example if PathType P is compared to an integral

constant, and the real type of elements (or attributes) selected by P is double.

In that case, statement P → integer is inferred, but it is not correct.

7.2.1 Verification using XML data

To solve the problems, we propose a simple verification using XML data.

For each normalized PathType P from the inferred type statements St, we find

set TP of all inferred types. TP = {T |(P → T ) ∈ St}. Then, we create sequence

T ′

P by ordering the set TP from the most specific type to the most general one.

For example, if TP = {double, byte, int}, T ′

P = (byte, int, double).

Since we have the XML data and path P is an XQuery path, we can use an

XQuery processor (a program that evaluates XQuery paths or queries) to select

nodes N targeted by P . The verification algorithm iterates through T ′

P and for

each T ′ ∈ T ′

P it checks if every node in N conforms to T ′. If so, T ′ is the inferred

type for nodes N (and PathType P ), else the inferred type is string.
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Chapter 8

Implementation

The solution proposed in Chapters 6 and 7, except the verification of types, was

implemented using the jInfer framework [19]. It is a framework for implementing

methods of XML schema inference created as a software project at the Faculty

of Mathematics and Physics, Charles University in Prague. It is written in Java

as a plugin for NetBeans platform.

The framework consists of modules representing logical parts of a process of

inference. The main idea behind the modules is that they can be replaced by

other modules with the same interface but different implementation and new

modules can be connected to extend functionality.

8.1 jInfer Process of Inference

Figure 8.1 shows the process of inference in jInfer. The grey and yellow rectan-

gles represent steps of the inference, the white boxes represent input and output.

Originally, the inference was composed of Initial Grammar Generator, Sim-

plifier, and Schema Generator steps (grey). Steps (yellow) XQAnalyzer,

XQuery Processor, and Merger are implementations of main parts of our

proposed solution.

• XQAnalyzer - An implementation of the lexical and syntax analyses pro-

posed in [29] and modified to create syntax trees. It parses input XQuery

files and outputs their syntax trees.

• XQuery Processor - An implementation of algorithms proposed in Chap-

ter 6. In particular, construction of a syntax tree, static analysis of expres-

sion types, inference of built-in types, and key discovery. On input, it takes
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XML data

Initial Grammar Generator

XML schema XPath paths

Simplifier

Initial grammar
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XQAnalyzer
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Syntax trees
of the queries

Merger

Simplified grammar

User input

Statements inferred
from the queries

Schema Generator

Simplified grammar
combined with the statements

from the queries

XML schema

Figure 8.1: jInfer process of inference
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Basic XQuery Processor

XQuery Importer Schema Generator

Simplified grammar
combined with the statements

from the queries

Syntax trees
of the queries

Simplified grammar

User input

XML schema

Figure 8.2: jInfer modules

the syntax trees, and its output are statements inferred from the syntax

tress.

• Merger - A step of inference responsible for combining the simplified gram-

mar with the statements inferred by XQuery Processor as described in

Chapter 7, except the verification of types. Its result is the simplified gram-

mar extended by the statements from XQuery Processor in a way that

each statement is analysed and its information is assigned to concerned

elements and attributes from the grammar.

8.2 jInfer Modules

The previous section describes a high level schematic view of the process of infer-

ence. But, from a more technical view, jInfer modules do not utterly correspond

with the steps of the presented process of inference.
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The first difference is that none of the modules runs in parallel (in several

threads) with other, as it is schematically shown in Figure 8.1. The modules run

in a serial order as shown in Figure 8.2. The second difference is that one step is

not always represented by one module, or one module is not always representing

just one step.

Actually, the blue modules shown in Figure 8.2 are module abstractions with

specified interface. Actual modules are then implementations complying the in-

terface. Since we provide only one implementation of modules for the proposed

solution, this is not very important for this work and we do not describe the

principle in detail. We only note that Basic XQuery Processor module is an

implementation of Non-grammatical Input Processor module abstraction.

As in the previous section, newly added modules are those shown in yellow

boxes. They are Basic XQuery Processor and XQuery Importer. We al-

so modified modules Basic XSD Exporter (an implementation of Schema

Generator interface) and Base to extend their functionality.

• Base - This is module containing common classes used by other modules

and defining interfaces. We added five packages to this module. Package

cz.cuni.mff.ksi.jinfer.base.objects.xquery.syntaxtree.nodes im-

plements the structure of syntax trees. Package cz.cuni.mff.ksi.jinfer-

.base.interfaces.xquery contains Type interface which is an interface for

types used in the type analysis of syntax trees. Package cz.cuni.mff.ksi-

.jinfer.base.objects.xquery.types contains implementations of Type

interface and type utility classes. Package cz.cuni.mff.ksi.jinfer.base-

.objects.xquery.keys provides representations of keys and foreign keys,

and package cz.cuni.mff.ksi.jinfer.base.objects.xsd provides rep-

resentation of XSD built-in atomic types.

• XQuery Importer - This module represents XQAnalyzer step in Figure

8.1. It is responsible for creating syntax trees from input XQuery files (step

1).

• Basic XQuery Processor - The main module consisting of steps XQuery

Processor and Merger in Figure 8.1. Package cz.cuni.mff.ksi.jinfer-

.basicxqueryprocessor contains the main module class NonGrammatical-

InputProcessorImpl. Other packages are cz.cuni.mff.ksi.jinfer.-

basicxqueryprocessor.expressiontypesanalysis implementing the stat-

ic analysis of expression types (step 2), cz.cuni.mff.ksi.jinfer.basic-

xqueryprocessor.builtintypeinference implementing the inference of
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XSD built-in types (step 3), cz.cuni.mff.ksi.jinfer.basicxquery-

processor.keydiscovery and their subpackages implementing the key dis-

covery (step 4), cz.cuni.mff.ksi.jinfer.basicxqueryprocessor.merger

implementing the merging with the grammar, and cz.cuni.mff.ksi.jinfer-

.basicxqueryprocessor.utils containing various utilities.

• Basic XSD Exporter - This is the module responsible for generating the

resulting schema in XSD. It was modified to process the additional infor-

mation assigned to the grammar in Basic XQuery Processor module.

92



Chapter 9

Experiments

In this chapter we describe how we performed experiments with the implementa-

tion and what problems we faced.

We made two test scenarios; one dealing with input data that were not made

for purposes of this experiments, and the other extending the first dataset by

data created for better test coverage.

9.1 Test Scenario A

9.1.1 Test Data

To get meaningful results of the experiments, test data should be composed of

XML documents, which are instances of a certain, possibly not known, XML

schema, and a set of XQuery queries which query the XML documents. The

amount of the XML data does not have to be large. On the other hand, the set

of queries should be large (at least hundreds of queries) and the queries should

be real, not artificially made.

In a search for such test data, we have not succeeded. Large sets of XML data

are available, but large sets of XQuery queries are not or it is not a simple task

to obtain them.

If we cannot obtain an ideal set of test data, we can at least try to find the

most suitable one from available non-ideal sets.

Sets of XML data and XQuery queries can be found in W3C XML Query

Use Cases [21]. However, those are very small sets of queries and the analysis of

XQuery in Chapter 4 was worked out using those queries, and thus, the relevancy

of such test data is questionable.

Another considered possibility was to obtain some set of XML data and create
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/site/open_auctions/open_auction/bidder/increase/text() → integer

/site/closed_auctions/closed_auction/price/text() → integer

/site/open_auctions/open_auction/initial/text() → integer

/site/open_auctions/open_auction/initial/text() → integer

/site/people/person/profile/@income → integer

/site/open_auctions/open_auction/reserve → decimal

Table 9.1: Inferred type statements A

queries to it. This notion was rejected because such set would have all of the

negative characteristics; it would be small, artificially made, and it would not be

independent, as well.

At last, we concluded to use data provided by the XMark project [1]. They

are attached in Appendix B and they consists of automatically generated XML

data and a set of twenty XQuery queries related to the data. Although, this set

is also very small, it is more or less real and we did not known the set in the

process of developing the algorithm.

9.1.2 Results

Type Inference

Six type statements shown in Table 9.1 were inferred.

Only the last inferred statement is correct. Others are incorrect, because,

comparing to the data, real type of nodes selected by the paths is decimal, as

well.

To reveal the cause of the incorrect type inference, see, for example, query in

Listing B.13. In the where clause, values of /site/people/person/profile/-

@income are compared to the integer literal constant 50000. From this expression,

it is not possible to infer the type correctly. The problem is that this is the only

inferred statement. Better results can be achieved by providing a larger set of

input queries, containing also expressions that can be exploited to infer correct

statements. Then the verification with data can be incorporated to choose the

correct statements.

Key Discovery

Four key statements and their normalized weights shown in Table 9.2 were in-

ferred.
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Key Weight

(/site/closed_auctions/closed_auction, {buyer/@person}) -1.0

(/site/regions/europe/item, {@id}) -0.417

(/site/people/person, {@id}) 1.0

(/site/closed_auctions/closed_auction, {itemref/@item}) 0.417

Table 9.2: Inferred key statements A

The first one is correct, a buyer is not a key of closed auctions. The second

one is not correct, because id attribute is a key of item elements. The third

one is correct and the fourth one declares itemref element to be a key of closed

auctions, which is not true, but only with weight 0.417.

Closer analysis of input queries reveals that all of the statements were inferred

from occurrences of the join pattern 3. That knowledge leads to the two following

observations.

• The original method of key discovery would not infer anything on this input

data.

• The cause of the incorrectly inferred statements are not that they were

inferred from join patterns occurrences, where a join is not done by a key/-

foreign key pair. It is that the for clauses (definitions of paths P1 and P2)

in the join pattern 3 occurrence (in query in Listing B.10) are swapped, so

the real key is considered as a foreign key and vice-versa.

A partial solution is an extension of the test data by queries containing ex-

pression that can be exploited to infer negative uniqueness statements. Such

expression is, for example,

distinct-values(/site/closed_auctions/closed_auction/itemref/@item)

to get unique ids of items that was sold in some auction. Since, one item may be

sold several times in auctions organized in different time periods, distinct-values

function is applied.

From the original data, one negative uniqueness statement was inferred:

/site/people/person/profile/interest/@category is not unique with weight

1, and it it correct. Since, there is not such key statement inferred, the negative

uniqueness statement is not used to any correction of weight.

From data extended by the mentioned expression, another negative uniqueness

was inferred:

/site/closed_auctions/closed_auction/itemref/@item with weight 1. This
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Key Weight

(/site/closed_auctions/closed_auction, {buyer/@person}) -1.0

(/site/regions/europe/item, {@id}) -0.417

(/site/people/person, {@id}) 1.0

(/site/closed_auctions/closed_auction, {itemref/@item}) -0.417

Table 9.3: Key statements inferred from the extended test data A

Key Weight

(/site/people/person, {@id}) 1.0

(/site/closed_auctions/closed_auction, {itemref/@item}) -0.333

Table 9.4: Key statements inferred from the extended test data using the modified

JP3 statements

one decreases the weight of the falsely inferred key. Key statements inferred from

the extended data are shown in Table 9.3.

As was demonstrated, larger sets of input data may lead to better results.

However, the problem with the falsely rejected key still remains. It may be solved

by modification of the statements inferred from occurrences of the join pattern 3.

If we omit the negative statement of a key from the second for clause ((P2, {L2})

is not satisfied), we get better results. The modified statements inferred from an

occurrence of the join pattern 3 are the following (assigned weight remains 0.5):

• (P1, {L1}) is satisfied

• (P2, {L2}) → (P1, {L1}) is satisfied

From the extended test data, using the modified join pattern 3 statements,

key statements in Table 9.4 were inferred. Those are the best results from all test

runs, though it is not clear that the modified statements will produce the best

results also on other larger input data. Therefore, further tests with large sets of

queries are required to determine the best settings for the algorithm.

9.2 Test Scenario B

As mentioned before, the previous test scenario involves only data with JP3

occurrences, and therefore, it only tests the extension of the original method,

while the original method itself remains untested. To correct it, we add several

new test queries created by ourselves.
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9.2.1 Test Data

for $item in /site/regions/europe/item

let $closed_auctions := /site/closed_auctions/closed_auction

[itemref/@item = $item/@id]

return <item ><id >{$item/@id}</id><max -price >{max(

$closed_auctions/price)}</max -price ></item >

Listing 9.1: Test query B1 containing a for join pattern occurrence.

for $open_auction in /site/open_auctions/open_auction

let $item := /site/regions/europe/item[@id = $open_auction/

itemref/@item]

return $item/personref /@person

Listing 9.2: Test query B2 containing a let join pattern occurrence.

1 for $person in /site/people/person

2 where $person/profile/@income < 100.00 and $person/profile/

gender = "m"

3 return

4 <list >{

5 for $auction in /site/closed_auctions/closed_auction

6 let $item := /site//item[@id = $auction /itemref /

@item]

7 let $price := $auction /price

8 where $auction /buyer/@person = $person/@id

9 return

10 <record ><person >{$person/@id}</person ><item >{

$item/@id}</item ><price >{$price}</price ></

record >

11 }</list >

Listing 9.3: Test query B3 containing let join pattern and JP3 occurrences.

In this scenario, we use test data from the Test Scenario A extended by queries

in Listings 9.1, 9.2, and 9.3.

The first two ones are simple queries containing one join pattern occurrence

each. The third one contains occurrences of let join pattern (binding clauses

at lines 5 and 6) and JP3 (binding clauses at lines 1 and 5, and where clause

at line 8), two expressions exploitable by the inference of types (both at line 2)

and one negative uniqueness statement of the comparison-with-a-constant form
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/site/open_auctions/open_auction/bidder/increase/text() → integer

/site/closed_auctions/closed_auction/price/text() → integer

/site/open_auctions/open_auction/initial/text() → integer

/site/open_auctions/open_auction/initial/text() → integer

/site/people/person/profile/@income → integer

/site/open_auctions/open_auction/reserve → decimal

/site/people/person/profile/@income → decimal

/site/people/person/profile/gender → string

Table 9.5: Inferred type statements B

Key Weight

(/site//item, @id) 0.333

(/site/people/person, @id) 0.6

(/site/closed_auctions/closed_auction, buyer/@person) -0.6

(/site/closed_auctions/closed_auction, itemref/@item) -0.917

(/site/regions/europe/item, @id) 0.6

Table 9.6: Inferred key statements B

(comparison with "m" at line 2). Thus, the third query contains instances of all

types of the constructs utilized by our method.

Results

Results of this test scenario are shown in Tables 9.5, 9.6, and 9.7. All seem to be

as we expected.

Note that all inferred type statements are correct, however, the weight of the

(/site//item, @id) key is only 0.333. The reason is that there is only one join

pattern occurrence resulting to this key, and therefore in summary, its normalized

weight is low and it is correct.

We demonstrated that also the original method works and we can get better

results with little larger input dataset. Though, this set is still very small and we

Node Weight

(/site/people/person/profile/interest/@category) 1

(/site/closed_auctions/closed_auction/itemref/@item) 1

(/site/people/person/profile/gender) 0.9

Table 9.7: Inferred negative uniqueness statements B
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do not show how the methods work with large real-world data, possibly containing

FLWOR constructs not satisfying our assumption that each join is done by a

key/foreign key pair.

We attach the resulting XSD in Appendix A.1. It was made using threshold

0.3. It means that all key statements with normalized weight equal or higher

than 0.3 are considered correct and are included in the schema.
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Chapter 10

Conclusion

The aim of this thesis was to employ XML operations in the XML schema infer-

ence process. We analyzed several existing methods of the XML schema inference

and we searched for methods that utilize selected XML operations. We found only

one method, inferring keys from XQuery queries.

Since the notion of XML operations is very general and the range of XML

technologies is very large, for the purpose of this work, we decided to focus on

XQuery technology. We made the overview of possible utilization of XQuery

queries in the process of XML schema inference.

Before creation of the algorithm itself, we had to take several decisions in

questions that emerged. Since there is a lack of the methods dealing with the

utilisation of XML operation, there is also a lack of practically proven solutions

that can help in such decision making.

In the proposed solution, we decided to incorporate lexical and syntax analyses

of XQuery queries, because it is more general and more extensible than a pattern

searching. To achieve that, we adopted the algorithm from a recent master thesis

dealing with an analysis of XQuery queries.

We also implemented several ideas from the overview to infer XSD built-in

types of elements and attributes. And we extended and implemented the one

existing method dealing with the inference of keys. We experimentally demon-

strated that on some input files, results of the extended method are better than

results of the original method. However, we did not succeed in the search of an

ideal, large enough set of test data. The testing was performed on a small set of

input queries and further testing and algorithm tuning is required.

Finally, we proposed a simple way how to combine the inferred statements

with existing methods of the XML schema inference inferring initial grammar

and we implemented it using the jInfer framework. Thus, we created the first
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complete, ready-to-use, and extensible implementation of the XML schema infer-

ence exploiting XQuery queries besides XML data.

As the main advantages and disadvantages of the work we list the following.

+ Elaboration of the overview how XQuery queries can help in the process of

XML schema inference.

+ Incorporation of the lexical and syntax analyses of input queries creating

their syntax trees.

+ Development of the static type analysis including PathTypes, which can be

easily extended and used in possible future extensions.

+ Extension of the existing method of key discovery, achieving better results.

+ Our implementation using the jInfer framework is the first implementation

of XML schema inference method utilizing XML operations.

− In the proposed algorithm we dealt with only a small part of possible re-

finements discussed in the overview. The reason for this is that inclusion of

more of them would exceed scope of one thesis.

− The combination with existing methods of inference is done in the simplest

possible way - by not modifying the grammar rules. However, in the view

of recent XML schema inference research, the modification of the grammar

rules according to the statements inferred from XML operations is of con-

siderable interest. The reason for the simplest combination is related with

the previous point and it is that we did not deal with refinements affecting

the grammar rules.

− Since large real-world sets of XQuery queries are not available, we did not

perform tests using such sets. We only tested our method using a relative-

ly small number of input queries, decreasing the level of reliability of the

experimental results.

10.1 Future Work

As already mentioned, this work implements only some ideas discussed in the

overview in Chapter 4, leaving most of them for future work. Also, the imple-

mented algorithms can be further refined as was already mentioned in Chapter
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6 with the presentation of the algorithms. For example thorough processing of

user-defined function calls.

Chapter 5 discusses some possible future enhancements as well. A research on

possibilities of modifying the grammar rules based on information extracted from

XQuery queries may bring interesting results. We analyse the queries statically

only, we do not evaluate them. An analysis of queries together with their results

can be a topic of another future research direction.

The utilization of XQuery queries certainly provides a space for incorporating

interaction with user. For example, a user may influence the scoring of inferred

keys to get more precise results.

And, a very large space for a possible future research is provided by utilisation

of other XML operations. The main representant is XSLT.

Besides the mentioned, our opinion is that the most urgent future work is ob-

taining a large enough test data set, performing proper experiments, and refining

the algorithm by modification of its settings (statements inferred from join pat-

tern occurrences, weights, etc.) according to experimental results. This process

was suggested in Chapter 9.
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Appendix A

Attachments

Logical: AND, OR.

Comparison: GEN_EQUALS, GEN_NOT_EQUALS, GEN_LESS_THAN,

GEN_LESS_THAN_EQUALS, GEN_GREATER_THAN, GEN_GREATER_THAN_EQUALS,

VAL_EQUALS, VAL_NOT_EQUALS, VAL_LESS_THAN, VAL_LESS_THAN_EQUALS,

VAL_GREATER_THAN, VAL_GREATER_THAN_EQUALS, NOD_IS, NOD_PRECEDES,

NOD_FOLLOWS.

Range: TO.

Additive: PLUS, MINUS.

Multiplicative: MUL, DIV, IDIV, MOD.

Set: UNION, INTERSECTION, DIFFERENCE.

Type test: INSTANCE_OF, CASTABLE_AS.

Type conversion: TREAT_AS, CAST_AS.

Unary: UNARY_PLUS, UNARY_MINUS.

Figure A.1: All possible values representing an operator in an instance of

OperatorNode

<?xml version ="1.0" encoding ="UTF -8"?>

<xs:schema xmlns:xs="http://www.w3.org /2001/ XMLSchema ">

<!-- Inferred on Sat Mar 31 21:28:32 CEST 2012 by Basic IG

generator , TwoStep(Iname (with attributes), Automaton

Merging State(GreedyMDL (Combined (k,h-context , s,k-strings

, Null , Null),Naive Alphabet ), State Removal Ordered(

Weighted )), Chained(Empty Children , Nested Concatenation ,

Null)), Basic XSD exporter -->

<!-- global types -->
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<xs:complexType name="Temph" mixed="true">

<xs:sequence >

<xs:sequence minOccurs ="0" maxOccurs ="unbounded ">

<xs:choice >

<xs:element name="keyword" type=" Tkeyword "/>

<xs:element name="bold" type="Tbold"/>

</xs:choice >

</xs:sequence >

</xs:sequence >

</xs:complexType >

<xs:complexType name="Tbold" mixed="true">

<xs:sequence >

<xs:choice >

<xs:choice >

<xs:sequence >

<xs:element name="emph" type="Temph"/>

</xs:sequence >

</xs:choice >

<xs:sequence >

<xs:element name="keyword" type=" Tkeyword "/>

</xs:sequence >

</xs:choice >

</xs:sequence >

</xs:complexType >

<xs:complexType name=" Tkeyword " mixed="true">

<xs:sequence >

<xs:choice >

<xs:sequence minOccurs ="0">

<xs:element name="bold" type="Tbold"/>

</xs:sequence >

<xs:sequence >

<xs:element name="emph" type="Temph"/>

</xs:sequence >

</xs:choice >

</xs:sequence >

</xs:complexType >

<xs:complexType name="Ttext" mixed="true">
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<xs:choice minOccurs ="0" maxOccurs =" unbounded ">

<xs:element name="bold" type="Tbold"/>

<xs:element name=" keyword" type="Tkeyword "/>

<xs:element name="emph" type="Temph"/>

</xs:choice >

</xs:complexType >

<xs:complexType name=" Tparlist ">

<xs:sequence >

<xs:element name=" listitem " type=" Tlistitem " minOccurs

="0" maxOccurs =" unbounded "/>

</xs:sequence >

</xs:complexType >

<xs:complexType name=" Tlistitem ">

<xs:choice >

<xs:element name="text" type="Ttext"/>

<xs:element name=" parlist" type="Tparlist "/>

</xs:choice >

</xs:complexType >

<xs:complexType name=" Tdescription">

<xs:choice >

<xs:element name=" parlist" type="Tparlist "/>

<xs:element name="text" type="Ttext"/>

</xs:choice >

</xs:complexType >

<xs:complexType name=" Tincategory">

<xs:attribute name=" category " type="xs:string" use="

required "/>

</xs:complexType >

<xs:complexType name="Tmail">

<xs:sequence >

<xs:element name="from" type="xs:string"/>

<xs:element name="to" type="xs:string"/>

<xs:element name="date" type="xs:string"/>

<xs:element name="text" type="Ttext"/>

</xs:sequence >
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</xs:complexType >

<xs:complexType name=" Tmailbox ">

<xs:sequence minOccurs ="0">

<xs:element name="mail" type="Tmail"/>

<xs:element name="mail" type="Tmail" minOccurs ="0"/>

</xs:sequence >

</xs:complexType >

<xs:complexType name="Titem">

<xs:sequence >

<xs:element name=" location " type="xs:string"/>

<xs:element name=" quantity " type="xs:string"/>

<xs:element name="name" type="xs:string"/>

<xs:element name=" payment" type="xs:string"/>

<xs:element name=" description" type=" Tdescription"/>

<xs:element name=" shipping " type="xs:string"/>

<xs:element name=" incategory" type=" Tincategory"

minOccurs ="0" maxOccurs =" unbounded "/>

<xs:element name=" mailbox" type="Tmailbox "/>

</xs:sequence >

<xs:attribute name="id" type="xs:string" use=" required "/>

</xs:complexType >

<xs:complexType name=" Tafrica">

<xs:sequence >

<xs:element name="item" type="Titem"/>

</xs:sequence >

</xs:complexType >

<xs:complexType name="Tasia">

<xs:sequence >

<xs:element name="item" type="Titem"/>

<xs:element name="item" type="Titem"/>

</xs:sequence >

</xs:complexType >

<xs:complexType name=" Taustralia">

<xs:sequence >

<xs:element name="item" type="Titem"/>
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<xs:element name="item" type="Titem"/>

</xs:sequence >

</xs:complexType >

<xs:complexType name=" Teurope">

<xs:sequence >

<xs:element name="item" type="Titem" minOccurs ="0"

maxOccurs =" unbounded "/>

</xs:sequence >

</xs:complexType >

<xs:complexType name=" Tnamerica ">

<xs:sequence >

<xs:element name="item" type="Titem" minOccurs ="0"

maxOccurs =" unbounded "/>

</xs:sequence >

</xs:complexType >

<xs:complexType name=" Tsamerica ">

<xs:sequence >

<xs:element name="item" type="Titem"/>

</xs:sequence >

</xs:complexType >

<xs:complexType name=" Tregions ">

<xs:sequence >

<xs:element name=" africa" type=" Tafrica "/>

<xs:element name="asia" type="Tasia"/>

<xs:element name=" australia " type=" Taustralia"/>

<xs:element name=" europe" type=" Teurope "/>

<xs:element name=" namerica " type=" Tnamerica "/>

<xs:element name=" samerica " type=" Tsamerica "/>

</xs:sequence >

</xs:complexType >

<xs:complexType name=" Tcategory ">

<xs:sequence >

<xs:element name="name" type="xs:string"/>

<xs:element name=" description" type=" Tdescription"/>

</xs:sequence >
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<xs:attribute name="id" type="xs:string" use=" required "/>

</xs:complexType >

<xs:complexType name=" Tcategories">

<xs:sequence >

<xs:element name=" category " type=" Tcategory "/>

</xs:sequence >

</xs:complexType >

<xs:complexType name="Tedge">

<xs:attribute name="from" type="xs:string" use=" required

"/>

<xs:attribute name="to" type="xs:string" use=" required "/>

</xs:complexType >

<xs:complexType name=" Tcatgraph ">

<xs:sequence >

<xs:element name="edge" type="Tedge"/>

</xs:sequence >

</xs:complexType >

<xs:complexType name=" Taddress ">

<xs:sequence >

<xs:element name=" street" type="xs:string"/>

<xs:element name="city" type="xs:string"/>

<xs:element name=" country" type="xs:string"/>

<xs:choice >

<xs:element name="zipcode " type="xs:string"/>

<xs:sequence >

<xs:element name="province " type="xs:string"/>

<xs:element name="zipcode" type="xs:string"/>

</xs:sequence >

</xs:choice >

</xs:sequence >

</xs:complexType >

<xs:complexType name=" Tinterest ">

<xs:attribute name=" category " type="xs:string" use="

required "/>

</xs:complexType >
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<xs:complexType name=" Tprofile ">

<xs:sequence >

<xs:choice minOccurs ="0" maxOccurs =" unbounded ">

<xs:element name=" education " type="xs:string"/>

<xs:element name=" interest " type=" Tinterest "/>

</xs:choice >

<xs:choice >

<xs:element name=" business " type="xs:string"/>

<xs:sequence >

<xs:element name="gender" type="xs:string"/>

<xs:element name="business " type="xs:string"/>

</xs:sequence >

</xs:choice >

<xs:element name="age" type="xs:string" minOccurs ="0"/>

</xs:sequence >

<xs:attribute name=" income" type="xs:integer" use="

required "/>

</xs:complexType >

<xs:complexType name=" Twatch">

<xs:attribute name=" open_auction" type="xs:string" use="

required "/>

</xs:complexType >

<xs:complexType name=" Twatches ">

<xs:sequence >

<xs:element name="watch" type="Twatch" minOccurs ="0"

maxOccurs =" unbounded "/>

</xs:sequence >

</xs:complexType >

<xs:complexType name=" Tperson">

<xs:sequence >

<xs:element name="name" type="xs:string"/>

<xs:element name=" emailaddress" type="xs:string"/>

<xs:choice minOccurs ="0" maxOccurs =" unbounded ">

<xs:element name="address " type=" Taddress "/>

<xs:element name="phone" type="xs:string"/>

<xs:element name=" homepage " type="xs:string"/>
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<xs:element name=" creditcard" type="xs:string"/>

</xs:choice >

<xs:choice >

<xs:sequence minOccurs ="0">

<xs:element name="profile" type=" Tprofile "/>

<xs:element name="watches" type=" Twatches " minOccurs

="0"/>

</xs:sequence >

<xs:element name="watches " type=" Twatches "/>

</xs:choice >

</xs:sequence >

<xs:attribute name="id" type="xs:string" use=" required "/>

</xs:complexType >

<xs:complexType name=" Tpeople">

<xs:sequence >

<xs:element name=" person" type=" Tperson" minOccurs ="0"

maxOccurs =" unbounded "/>

</xs:sequence >

</xs:complexType >

<xs:complexType name=" Tpersonref">

<xs:attribute name=" person" type="xs:string" use=" required

"/>

</xs:complexType >

<xs:complexType name=" Tbidder">

<xs:sequence >

<xs:element name="date" type="xs:string"/>

<xs:element name="time" type="xs:string"/>

<xs:element name=" personref " type=" Tpersonref"/>

<xs:element name=" increase " type="xs:integer "/>

</xs:sequence >

</xs:complexType >

<xs:complexType name=" Titemref ">

<xs:attribute name="item" type="xs:string" use=" required

"/>

</xs:complexType >
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<xs:complexType name=" Tseller">

<xs:attribute name=" person" type="xs:string" use=" required

"/>

</xs:complexType >

<xs:complexType name=" Tauthor">

<xs:attribute name=" person" type="xs:string" use=" required

"/>

</xs:complexType >

<xs:complexType name=" Tannotation">

<xs:sequence >

<xs:element name=" author" type=" Tauthor "/>

<xs:element name=" description" type=" Tdescription"/>

<xs:element name=" happiness " type="xs:string"/>

</xs:sequence >

</xs:complexType >

<xs:complexType name=" Tinterval ">

<xs:sequence >

<xs:element name="start" type="xs:string"/>

<xs:element name="end" type="xs:string"/>

</xs:sequence >

</xs:complexType >

<xs:complexType name=" Topen_auction">

<xs:sequence >

<xs:element name=" initial" type="xs:integer "/>

<xs:choice minOccurs ="0" maxOccurs =" unbounded ">

<xs:element name="reserve " type="xs:decimal "/>

<xs:element name="bidder" type=" Tbidder "/>

</xs:choice >

<xs:element name=" current" type="xs:string"/>

<xs:element name=" privacy" type="xs:string" minOccurs

="0" maxOccurs =" unbounded "/>

<xs:element name=" itemref" type="Titemref "/>

<xs:element name=" seller" type=" Tseller "/>

<xs:element name=" annotation" type=" Tannotation"/>

<xs:element name=" quantity " type="xs:string"/>

<xs:element name="type" type="xs:string"/>
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<xs:element name=" interval " type=" Tinterval "/>

</xs:sequence >

<xs:attribute name="id" type="xs:string" use=" required "/>

</xs:complexType >

<xs:complexType name=" Topen_auctions">

<xs:sequence >

<xs:element name=" open_auction" type=" Topen_auction"

minOccurs ="0" maxOccurs =" unbounded "/>

</xs:sequence >

</xs:complexType >

<xs:complexType name=" Tbuyer">

<xs:attribute name=" person" type="xs:string" use=" required

"/>

</xs:complexType >

<xs:complexType name=" Tclosed_auction">

<xs:sequence >

<xs:element name=" seller" type=" Tseller "/>

<xs:element name="buyer" type="Tbuyer"/>

<xs:element name=" itemref" type="Titemref "/>

<xs:element name="price" type="xs:integer "/>

<xs:element name="date" type="xs:string"/>

<xs:element name=" quantity " type="xs:string"/>

<xs:element name="type" type="xs:string"/>

<xs:element name=" annotation" type=" Tannotation"/>

</xs:sequence >

</xs:complexType >

<xs:complexType name=" Tclosed_auctions">

<xs:sequence >

<xs:element name=" closed_auction" type=" Tclosed_auction"

minOccurs ="0" maxOccurs =" unbounded "/>

</xs:sequence >

</xs:complexType >

<xs:complexType name="Tsite">

<xs:sequence >

<xs:element name=" regions" type="Tregions "/>
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<xs:element name=" categories" type=" Tcategories"/>

<xs:element name=" catgraph " type=" Tcatgraph "/>

<xs:element name=" people" type=" Tpeople "/>

<xs:element name=" open_auctions" type=" Topen_auctions"/>

<xs:element name=" closed_auctions" type="

Tclosed_auctions"/>

</xs:sequence >

</xs:complexType >

<!-- top level element -->

<xs:element name="site" type="Tsite">

<xs:key name="key1">

<xs:selector xpath="people/person"/>

<xs:field xpath="@id"/>

</xs:key >

<xs:key name="key2">

<xs:selector xpath =".// item"/>

<xs:field xpath="@id"/>

</xs:key >

<xs:key name="key3">

<xs:selector xpath="regions /europe/item"/>

<xs:field xpath="@id"/>

</xs:key >

<xs:keyref name=" keyRef1_key1" refer="key1">

<xs:selector xpath=" closed_auctions/closed_auction"/>

<xs:field xpath="buyer/@person "/>

</xs:keyref >

<xs:keyref name=" keyRef2_key2" refer="key2">

<xs:selector xpath=" closed_auctions/closed_auction"/>

<xs:field xpath="itemref/@item"/>

</xs:keyref >

<xs:keyref name=" keyRef3_key3" refer="key3">

<xs:selector xpath=" closed_auctions/closed_auction"/>

<xs:field xpath="itemref/@item"/>

</xs:keyref >

<xs:keyref name=" keyRef4_key3" refer="key3">

<xs:selector xpath=" open_auctions/open_auction"/>

<xs:field xpath="itemref/@item"/>

</xs:keyref >

</xs:element >
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</xs:schema >

Listing A.1: Resulting XSD of Test Scenario B
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Appendix B

Test Data

Test data from the XMark project [1]. Using the provided XML generator, XML

document of size approximately 1.5 MB was generated. Figure B.1 is its DTD and

other figures in this appendix are XQuery queries that query the XML document.

The queries was slightly modified by replacing calls of doc function in paths

by / (document node).

<!-- DTD for auction database -->

<!-- $Id: auction.dtd ,v 1.15 2001/01/29 21:42:35 albrecht

Exp $ -->

<!ELEMENT site (regions , categories , catgraph ,

people , open_auctions , closed_auctions)>

<!ELEMENT categories (category +)>

<!ELEMENT category (name , description)>

<!ATTLIST category id ID #REQUIRED >

<!ELEMENT name (# PCDATA)>

<!ELEMENT description (text | parlist)>

<!ELEMENT text (# PCDATA | bold | keyword | emph)

*>

<!ELEMENT bold (# PCDATA | bold | keyword | emph)

*>

<!ELEMENT keyword (# PCDATA | bold | keyword | emph)

*>

<!ELEMENT emph (# PCDATA | bold | keyword | emph)

*>

<!ELEMENT parlist (listitem )*>

<!ELEMENT listitem (text | parlist)*>
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<!ELEMENT catgraph (edge*)>

<!ELEMENT edge EMPTY >

<!ATTLIST edge from IDREF #REQUIRED to IDREF #

REQUIRED >

<!ELEMENT regions (africa , asia , australia , europe ,

namerica , samerica )>

<!ELEMENT africa (item*)>

<!ELEMENT asia (item*)>

<!ELEMENT australia (item*)>

<!ELEMENT namerica (item*)>

<!ELEMENT samerica (item*)>

<!ELEMENT europe (item*)>

<!ELEMENT item (location , quantity , name , payment

, description , shipping , incategory+, mailbox)>

<!ATTLIST item id ID #REQUIRED

featured CDATA #IMPLIED >

<!ELEMENT location (# PCDATA)>

<!ELEMENT quantity (# PCDATA)>

<!ELEMENT payment (# PCDATA)>

<!ELEMENT shipping (# PCDATA)>

<!ELEMENT reserve (# PCDATA)>

<!ELEMENT incategory EMPTY >

<!ATTLIST incategory category IDREF #REQUIRED >

<!ELEMENT mailbox (mail*)>

<!ELEMENT mail (from , to, date , text)>

<!ELEMENT from (# PCDATA)>

<!ELEMENT to (# PCDATA)>

<!ELEMENT date (# PCDATA)>

<!ELEMENT itemref EMPTY >

<!ATTLIST itemref item IDREF #REQUIRED >

<!ELEMENT personref EMPTY >

<!ATTLIST personref person IDREF #REQUIRED >

<!ELEMENT people (person *)>

<!ELEMENT person (name , emailaddress , phone?,

address?, homepage ?, creditcard?, profile?, watches ?)>

<!ATTLIST person id ID #REQUIRED >

<!ELEMENT emailaddress (# PCDATA)>
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<!ELEMENT phone (# PCDATA)>

<!ELEMENT address (street , city , country , province ?,

zipcode)>

<!ELEMENT street (# PCDATA)>

<!ELEMENT city (# PCDATA)>

<!ELEMENT province (# PCDATA)>

<!ELEMENT zipcode (# PCDATA)>

<!ELEMENT country (# PCDATA)>

<!ELEMENT homepage (# PCDATA)>

<!ELEMENT creditcard (# PCDATA)>

<!ELEMENT profile (interest *, education ?, gender?,

business , age?)>

<!ATTLIST profile income CDATA #IMPLIED >

<!ELEMENT interest EMPTY >

<!ATTLIST interest category IDREF #REQUIRED >

<!ELEMENT education (# PCDATA)>

<!ELEMENT income (# PCDATA)>

<!ELEMENT gender (# PCDATA)>

<!ELEMENT business (# PCDATA)>

<!ELEMENT age (# PCDATA)>

<!ELEMENT watches (watch*)>

<!ELEMENT watch EMPTY >

<!ATTLIST watch open_auction IDREF #REQUIRED >

<!ELEMENT open_auctions (open_auction*)>

<!ELEMENT open_auction (initial , reserve?, bidder*,

current , privacy?, itemref , seller , annotation , quantity ,

type , interval )>

<!ATTLIST open_auction id ID #REQUIRED >

<!ELEMENT privacy (# PCDATA)>

<!ELEMENT initial (# PCDATA)>

<!ELEMENT bidder (date , time , personref , increase )>

<!ELEMENT seller EMPTY >

<!ATTLIST seller person IDREF #REQUIRED >

<!ELEMENT current (# PCDATA)>

<!ELEMENT increase (# PCDATA)>

<!ELEMENT type (# PCDATA)>

<!ELEMENT interval (start , end)>

<!ELEMENT start (# PCDATA)>

<!ELEMENT end (# PCDATA)>
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<!ELEMENT time (# PCDATA)>

<!ELEMENT status (# PCDATA)>

<!ELEMENT amount (# PCDATA)>

<!ELEMENT closed_auctions (closed_auction*)>

<!ELEMENT closed_auction (seller , buyer , itemref , price ,

date , quantity , type , annotation?)>

<!ELEMENT buyer EMPTY >

<!ATTLIST buyer person IDREF #REQUIRED >

<!ELEMENT price (# PCDATA)>

<!ELEMENT annotation (author , description?, happiness )>

<!ELEMENT author EMPTY >

<!ATTLIST author person IDREF #REQUIRED >

<!ELEMENT happiness (# PCDATA)>

Listing B.1: DTD of the test XML data

for $b in /site/people/person[@id = "person0 "] return $b/

name/text()

Listing B.2: Test query 1.

for $b in /site/open_auctions/open_auction

return <increase >{$b/bidder [1]/increase /text()}</increase >

Listing B.3: Test query 2.

for $b in /site/open_auctions/open_auction

where zero -or-one($b/bidder [1]/increase /text()) * 2 <= $b/

bidder[last()]/ increase /text()

return

<increase

first="{$b/bidder [1]/increase /text()}"

last="{$b/bidder[last()]/ increase /text()}"/>

Listing B.4: Test query 3.
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for $b in /site/open_auctions/open_auction

where

some $pr1 in $b/bidder/personref [@person = "person20 "],

$pr2 in $b/bidder/personref [@person = "person51 "]

satisfies $pr1 << $pr2

return <history >{$b/reserve/text()}</history >

Listing B.5: Test query 4.

count(

for $i in /site/closed_auctions/closed_auction

where $i/price/text() >= 40

return $i/price

)

Listing B.6: Test query 5.

for $b in //site/regions return count($b//item)

Listing B.7: Test query 6.

for $p in /site

return

count($p// description) + count($p// annotation) + count($p

// emailaddress)

Listing B.8: Test query 7.

for $p in /site/people/person

let $a :=

for $t in /site/closed_auctions/closed_auction

where $t/buyer/@person = $p/@id

return $t

return <item person ="{$p/name/text()}">{count($a)}</item >

Listing B.9: Test query 8.
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let $ca := /site/closed_auctions/closed_auction return

let

$ei := /site/regions/europe/item

for $p in /site/people/person

let $a :=

for $t in $ca

where $p/@id = $t/buyer/@person

return

let $n := for $t2 in $ei where $t/itemref/@item = $t2/

@id return $t2

return <item >{$n/name/text()}</item >

return <person name="{$p/name/text()}">{$a}</person >

Listing B.10: Test query 9.
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for $i in

distinct -values (/site/people/person/profile/interest /

@category )

let $p :=

for $t in /site/people/person

where $t/profile/interest /@category = $i

return

<personne >

<statistiques >

<sexe >{$t/profile/gender/text()}</sexe >

<age >{$t/profile/age/text()}</age >

<education >{$t/profile/education /text()}</education >

<revenu >{fn:data($t/profile/@income)}</revenu >

</statistiques >

<coordonnees >

<nom >{$t/name/text()}</nom >

<rue >{$t/address/street/text()}</rue >

<ville >{$t/address/city/text()}</ville >

<pays >{$t/address/country/text()}</pays >

<reseau >

<courrier >{$t/emailaddress/text()}</courrier >

<pagePerso >{$t/homepage /text()}</pagePerso >

</reseau >

</coordonnees >

<cartePaiement >{$t/creditcard/text()}</cartePaiement >

</personne >

return <categorie >{<id >{$i}</id>, $p}</categorie >

Listing B.11: Test query 10.

for $p in /site/people/person

let $l :=

for $i in /site/open_auctions/open_auction/initial

where $p/profile/@income > 5000 * exactly -one($i/text())

return $i

return <items name="{$p/name/text()}">{count($l)}</items >

Listing B.12: Test query 11.
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for $p in /site/people/person

let $l :=

for $i in /site/open_auctions/open_auction/initial

where $p/profile/@income > 5000 * exactly -one($i/text())

return $i

where $p/profile/@income > 50000

return <items person ="{$p/profile/@income }">{count($l)}</

items >

Listing B.13: Test query 12.

for $i in /site/regions/australia /item

return <item name="{$i/name/text()}">{$i/description}</item >

Listing B.14: Test query 13.

for $i in /site//item

where contains (string(exactly -one($i/description)), "gold")

return $i/name/text()

Listing B.15: Testing query 14.

for $a in

/site/closed_auctions/closed_auction/annotation/

description/parlist/

listitem /

parlist/

listitem /

text/

emph/

keyword/

text()

return <text >{$a}</text >

Listing B.16: Test query 15.
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for $a in /site/closed_auctions/closed_auction

where

not(

empty(

$a/annotation/description/parlist /listitem /parlist/

listitem /text/emph/

keyword/

text()

)

)

return <person id="{$a/seller/@person }"/>

Listing B.17: Test query 16.

for $p in /site/people/person

where empty($p/homepage /text())

return <person name="{$p/name/text()}"/>

Listing B.18: Test query 17.

declare namespace local = "http://www.foobar.org";

declare function local:convert($v as xs:decimal ?) as xs:

decimal?

{

2.20371 * $v (: convert Dfl to Euro :)

};

for $i in /site/open_auctions/open_auction

return local:convert(zero -or-one($i/reserve))

Listing B.19: Test query 18.

for $b in /site/regions //item

let $k := $b/name/text()

order by zero -or-one($b/location ) ascending empty greatest

return <item name="{$k}">{$b/location /text()}</item >

Listing B.20: Test query 19.
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<result >

<preferred >

{count(/site/people/person/profile[@income >= 100000]) }

</preferred >

<standard >

{

count(

/site/people/person/

profile[@income < 100000 and @income >= 30000]

)

}

</standard >

<challenge >

{count(/site/people/person/profile[@income < 30000])}

</challenge >

<na>

{

count(

for $p in /site/people/person

where empty($p/profile/@income)

return $p

)

}

</na>

</result >

Listing B.21: Test query 20.
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Appendix C

Content of CD

The CD attached to this thesis has the following structure.

• content.txt - A file with this text.

• text/ - A PDF version of the thesis.

• src/ - Source codes of the jInfer framework including implementation of

our method. The same source codes can be also obtained from public Sub-

version repository by issuing command:

svn co -r 2155

https://jinfer.svn.sourceforge.net/svnroot/jinfer/jinfer/trunk/

• bin/ - jInfer plugins for NetBeans 7.0.1. See jInfer Tutorial [18] for step-

by-step instructions, but use NetBeans 7.0.1. Since the tutorial is for the

last official jInfer release 1.0, it says the required version of NetBeans is at

least 6.9. But this is not true in our case, because we use the development

version of jInfer and it requires NetBeans 7.0.1.

• testing/ - A directory containing sets of test data and test results. Again,

see the Jinfer Tutorial [18] for instructions how to run the inference.
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