
Univerzita Karlova v Praze
Matematicko-fyzikálńı fakulta

DIPLOMOVÁ PRÁCE

Jakub Malý

Evoluce XML schémat
XML Schema Evolution

Katedra softwarového inženýrstv́ı
Vedoućı diplomové práce: RNDr. Irena Mlýnková, Ph.D.

Studijńı program: Informatika, softwarové systémy

2010

I would like to thank to my supervisor RNDr. Irena Mlýnková, Ph.D. for her
helpful suggestions, thorough notes and provided related research material.
I would also like to thank to Mgr. Martin Nečaský, Ph.D. for his suggestions
and comments.

Prohlašuji, že jsem svou diplomovou práci napsal samostatně a výhradně
s použit́ım citovaných pramen̊u. Souhlaśım se zap̊ujčováńım práce.

I hereby declare that I have elaborated this master thesis on my own and
listed all used references. I agree with making this thesis publicly available.

In Prague on April 16, 2010 Jakub Malý

3

Contents

1 Introduction 9
1.1 Motivation . 9
1.2 XML Schema . 10
1.3 Aim of the Thesis . 11
1.4 Structure of the Thesis . 11

2 Related Work 13
2.1 X-Evolution . 14

2.1.1 Evolution Primitives 14
2.1.2 Validation . 15
2.1.3 Document Adaptation 16
2.1.4 Discussion . 17

2.2 XEM: XML Evolution Management 18
2.2.1 Evolution Primitives 18
2.2.2 Implementation . 18
2.2.3 Discussion . 20

2.3 CoDEX . 21
2.3.1 Conceptual Model 21
2.3.2 Schema Evolution . 21
2.3.3 Discussion . 22

2.4 Evolution using UML Class Diagrams 23
2.4.1 Discussion . 24

3 XSem 25
3.1 Conceptual Modeling . 25
3.2 XSEM . 26
3.3 Platform-Independent Model – UML Class Diagrams 28
3.4 Platform-Specific Model . 33

4

4 XSem Evolution 51
4.1 Overview . 51
4.2 Approaches to Change Detection 53
4.3 Version Links . 54
4.4 Approaches to Revalidation 58

5 Changes Between Versions 60
5.1 Changes Categorization . 60

5.1.1 Diagram Changes . 62
5.1.2 Subordinate Node Changes 63
5.1.3 Superordinate Node Changes 66
5.1.4 Changes of Association Target 67
5.1.5 Changes of Classes 71
5.1.6 Content Container Changes 74
5.1.7 Attribute Changes 74
5.1.8 Changes in Attribute Collections 81
5.1.9 Class Union Changes 82
5.1.10 Association Changes 83

5.2 Changes Summary . 85
5.3 Changes Not Affecting Validity 86

5.3.1 Changes Applied During Creation 88
5.3.2 Changes Giving More Choices 88
5.3.3 Changes Broadening Cardinality Interval 90
5.3.4 Changes Adding Optional Content 91
5.3.5 Utilizing Any Attribute Flag 92
5.3.6 Changes Caused by Differences between XSem Model

and XML Model . 92
5.4 Generating Content . 93

5.4.1 User-Provided Content 93
5.4.2 Default Content . 95
5.4.3 Utilization of PIM Links 98

5.5 Oracle In-Place XML Schema Evolution 99
5.6 Detection Algorithm . 100

6 Revalidation 103
6.1 XSL Specifics . 104
6.2 Nodes Categorization . 104
6.3 Revalidation Script Overview 106

5

6.4 XPath Expressions for XSem-H Nodes 107
6.5 Green Nodes Processing . 108
6.6 Blue Nodes Processing . 109
6.7 Red Nodes Processing – Simplified Diagrams 109

6.7.1 Red Node Template – Foundations 111
6.7.2 Leaf (Attribute) Nodes 112
6.7.3 Inner Nodes – Gathering XML Elements 113
6.7.4 Inner Nodes – Gathering XML Attributes 115
6.7.5 Inner Node Template Body 116
6.7.6 Example . 123

6.8 Group Nodes . 129
6.8.1 Motivational Example 129
6.8.2 Content Group Nodes Processing 131
6.8.3 Group Node Template 132
6.8.4 Referencing Group Templates 133
6.8.5 Verification . 140

6.9 Content Choices and Class Unions 140
6.9.1 Gathering XML Elements 141
6.9.2 Gathering XML Attributes 143
6.9.3 Updated Inner Red Node Template 144
6.9.4 Content Choice Reference 144
6.9.5 Class Union Reference 147

6.10 Structural Representatives 153
6.10.1 Gathering XML Elements/Attributes 153
6.10.2 Templates for Structural Representative 156

7 Implementation and Experiments 160
7.1 Implementations . 160
7.2 Experiments . 161

8 Conclusion 163
8.1 Future Work . 164

8.1.1 Generating Content 165
8.2 Version Links for Imported Schemas 166
8.3 Generalizations and Extensions 167

A CD Contents 168

6

B Sample XML Document and XML Schema Translation for
Diagram 3.14 170

C Sample XML Document for Diagram 6.13 172

7

Název práce: Evoluce XML schémat
XML Schema Evolution
Autor: Jakub Malý
Katedra (ústav): Katedra softwarového inženýrstv́ı
Vedoućı diplomové práce: RNDr. Irena Mlýnková, Ph.D.
e-mail vedoućıho: mlynkova@ksi.mff.cuni.cz

Abstrakt: V předložené práci studujeme evoluci XML dat, a předevš́ım d̊uvody
a dopady evoluce XML schémat. Práce obsahuje přehled existuj́ıćıch př́ıstup̊u.
Př́ıstup prezentovaný v této práci rozšiřuje konceptuálńı model XSem o pod-
poru v́ıce verźı systému. Dı́ky tomuto rozš́ıřeńı lze definovat sadu změn mezi
dvěma verzemi. Dále práce obsahuje popis algoritmu, který porovnáńım dvou
verźı schématu vytvoř́ı revalidačńı skript v jazyce XSL.

Kĺıčová slova: XML, modelováńı XML dat, evoluce XML dat, XSem

Title: Evoluce XML schémat
XML Schema Evolution
Author: Jakub Malý
Department: Katedra softwarového inženýrstv́ı
Supervisor: RNDr. Irena Mlýnková, Ph.D.
Supervisor’s e-mail address: mlynkova@ksi.mff.cuni.cz

Abstract: In the presented work we study the XML data evolution, reasons
and consequences of XML schema evolution in particular. The thesis con-
tains a survey of the existing approaches to this problem. The approach pre-
sented in this work extends the XSem conceptual model with the support for
multiple versions of the model. Thanks to this extension, it is possible to de-
fine a set of changes between two versions of a schema. The thesis contains
a description of an algorithm that compares two versions of a schema and
produces a revalidation script in XSL.

Keywords: XML, modeling XML data, XML data evolution, XSem

8

Chapter 1

Introduction

1.1 Motivation

With the number of computer and Internet users growing every day the
amount of data created, sent, interchanged and stored grows in an adequate
rate. Beside storing the data in relational database management systems,
the eXtensible Markup Language (XML) [30] is getting notable attention
among the developers.

Relational databases still rule in the field of efficiency, but the records
and tables are less suitable for message and data exchange. On the other
hand, the XML format is easy to understand both to human users as well as
parsers and applications regardless the platform and environment and can
be easily transmitted over any protocol.

These are some of the reasons that lead many software designers to chose
a relational database as a data storage and XML as the message format. The
format of the messages is usually specified in the form of XML schema using
one of the languages mentioned in Section 2. Documents compliant with a
certain schema are valid.

The XML applications are usually dynamic. During a system’s life cycle
and growing group of users, requests for changes in the system emerge,
usually for one of following reasons:

• changes (additions) at the conceptual level are required when system
is expanding

• existing interface needs to be extended or modified (for example to
comply with a third party interface or standard)

9

• there are flaws in the current design that need to be corrected

These changes usually enforce changes in the structure and content of
the messages used in the system and will be reflected in the changes of the
XML schemas. This process is called XML schema evolution.

Transition to a new set of schemas can be complicated.

• If the old interface is no longer supported

– other parties communicating with the evolved systems have to
either modify their components to accept messages/documents
valid against evolved schemas,

– existing documents must be modified to become valid against the
new schema (and these documents may be distributed among the
system users, not easily accessible for the evolved system).

• If the system maintains support for the old interface (which is usually
a necessity at least for some period of time),

– the system must be able to handle both versions of documents
and messages which impairs maintainability of the system and
increases its complexity.

It can be seen that system evolution can be a costly process but some of
the difficulties can be significantly reduced when using a convenient tool.

1.2 XML Schema

When two participants decide to share data and communicate via XML
messages, they have to agree on a certain contract defining the syntax and
semantics of the messages.

The types of requirements on the structure of XML documents (or so
called schema of the document) do not differ very much from application to
application and that is why designated languages were defined to describe
these requirements. DTD [33] or XML Schema [32] are the most common
ones, the latter being a preferred choice where more thorough description or
type awareness is desired. The abbreviation XSD (XML Schema Definition)
is used for concrete schema definition (instance) in XML Schema language.

Having a separate language for XML schema definition is useful for sev-
eral reasons:

10

• It allows using generic parsers and validators to be created. These
validators can validate any document against any schema.

• Knowledge of the schema of the document can be used to optimise the
strategy for storing and querying documents with query (XPath [35],
XQuery [36]) and update languages (XQuery Update Facility [37]).

• One part of the XML Schema language is the definition of built-in data
types and a set of rules to create user-defined types. This type system
is used in other XML-related standards e.g. XPath or XSLT [15].

1.3 Aim of the Thesis

When required schema evolution is performed, document revalidation may
be the harder part of the task. The näıve approach to document revalidation
would be using a generic XML schema validator and checking each document
one by one.

This approach can be considerably time-consuming, and furthermore
many manual corrections can be performed automatically thanks to knowing
the nature of the changes and the fact that the document was valid against
the old schema. Besides, many changes may not require any revalidation at
all.

The aim of this thesis is to design an algorithm that will be able to

• detect the set of changes between two versions of a schema,

• categorize the detected changes,

• decide, whether documents valid against the old schema stay valid
against the new schema or whether they have to be revalidated,

• if the documents have to be revalidated, suggest a transformation
stylesheet or script that will revalidate the documents.

1.4 Structure of the Thesis

The thesis is organized as follows. In Chapter 2, we examine existing ap-
proaches and systems for XML schema evolution. In Chapter 3 we describe
the XSem framework and its constructs for modeling platform-independent

11

and platform-specific diagrams. In Chapter 4 we show how to identify dif-
ferences between two versions of a schema. Chapter 5 contains formal defi-
nitions of all types of differences that can be detected between two versions
of a schema. Chapter 6 describes an algorithm that produces a revalidation
script. Chapter 7 briefly describes the current state of the implementation
and describes experiments with the real-world schemas. Finally, Chapter 8
concludes and provides future research directions.

12

Chapter 2

Related Work

In this chapter existing approaches to XML schema evolution will be de-
scribed and categorized.

One way to categorize is based on the level where the changes are made
by the designer and detected by the algorithm as suggested by Mlynkova and
Necasky [21]. Existing approaches can be then classified into three groups
according to whether changes are executed and detected:

• in the XML schemas (written in one of the XML schema languages),
so-called logical level. At the logical level changes are detected directly
in the evolved schema (in one of the XML schema languages, typically
DTD or XML Schema), they are analyzed and the algorithm decides,
whether it is necessary to revalidate the documents.

• in the diagrams visualizing the XML schema (diagrams directly visu-
alizing constructs of a specific XML schema language). Some kind of
visualization of the schema is used in order to simplify orientation in
the schema and to avoid errors in schema definitions written manually.
Changes are detected in the visualization.

• in a UML diagram used to model an XML format (usually annotated
using comments or stereotypes to specify the translation to an XML
schema). Changes are detected in the UML diagram and in the appli-
cations of the stereotypes and annotations on the UML constructs.

13

2.1 X-Evolution

X-Evolution proposed by G. Guerrini and M. Mesiti in [12] is an example
of a system built upon graphical editor for creating schemas in the XML
Schema language [32].

2.1.1 Evolution Primitives

At first the authors defined a set of evolution primitives divided into three
categories – insertion, modification and deletion and three contexts where
these primitives can be executed – simple type, complex type and element.

Insertion Modification Deletion

Simple Type
insert glob simple type*

change restriction

remove type*
insert new member type*

change base type

remove member type*
rename type*
change member type
global to local*
local to global*

Complex Type

insert glob complex type*
rename local elem

remove element◦
insert local elem◦

rename type*
remove operator◦

insert ref elem◦
change type local elem◦

remove substructure◦
insert operator◦

change cardinality◦
remove type*change operator◦

global to local*
local to global*

Element insert glob elem

rename glob elem*

remove glob elem*
change type glob elem
ref to local*
local to ref*

Table 2.1: Evolution Primitives within X-Evolution

The primitives are categorized as per their effect on the documents. Prim-
itives marked with * in Table 2.1 do not alter validity of documents, those
marked with ◦ operate on the structure of an element.

The set of all primitives is denoted P , the set of all primitives not altering
validity of documents is denoted P∗, the set of XML schemas is denoted SX
and the set of XML documents is denoted DOC.

Some primitives are also associated with applicability conditions - con-
ditions that guarantee consistency of the updated schema (e.g. referenced
type can not be deleted).

14

X-Evolution system provides the user with a visualization of an XML
Schema where he/she can select a construct to evolve. Based upon the se-
lected construct, he/she is given a set of available primitives from which
he/she can choose. Before the evolving operation is executed, the user may
specify some additional arguments based on the type of the primitive.

2.1.2 Validation

To achieve document re-validation, the authors introduce a recursive func-
tion validS, which checks, whether a sequence of elements adheres to a type
structure t (prescribed subelements). Relation t1 vST t2 is introduced for
type structures symbolizing that the legal values of t1 are known to be con-
tained among the legal values of t2.

Algorithm 1 Revalidate

Input: p ∈ P , d ∈ DOC, sx ∈ SX
Output: true ⇔ d is valid for the updated schema
1: if (p ∈ P∗) then
2: return true
3: else if (p ∈ {rename glob/local elem}) then
4: let l be the element tag to remove/rename
5: return (getElems(getPaths(l, sx), d) = ∅)
6: else if (p = change type glob/local elem(l, τN , sx) ∧ τN ∈ CT) then
7: let tN be the structure of τN

8: return (∀e ∈ getElems(getPaths(l, sx), d) :
validS(children(e), init(tN), tN))

9: else if (p ∈ {change restrict, change base/member type,
change type glob/local elem}) then

10: let τO be the old simple type and τN the updated one
11: if (τO v τN) then
12: return true
13: end if
14: return (∀e ∈ getElems(getPaths(τO, sx), d) : content(e) ∈ ‖τN‖)
15: end if

The Revalidate algorithm (see Algorithm 1) takes as an input an evolu-
tion primitive p ∈ P , XML schema sx ∈ SX and XML document d ∈ DOC
valid against sx and returns true when document d remains valid after ap-
plying p on sx.

15

Thanks to the categorization of primitives the algorithm is able to de-
termine whether revalidation of XML documents is needed after the schema
evolution by examining the type of the primitive p. In the case when p ∈ P∗,
the XML document d itself does not need to be examined at all. In other
cases the algorithm must continue with examining the document d, but only
the affected part of the document needs to be revalidated, not the document
as a whole.

Function getElems(E , d) evaluates a set of XPath expressions E of cer-
tain format (containing only child axis steps) on document d and returns
the corresponding elements. Function getPaths(e, t) returns an XPath ex-
pression consisting of steps along the child axis from the root of the schema,
passing through e, reaching an element of type, structure, or tag t. Function
content(e) returns value of XML attribute/element with simple content e.

2.1.3 Document Adaptation

In the next step the authors introduce the function adaptS, which is an
extension to validS. This function alters the list of subelements that is not
valid for the type structure. Parameter opt controls whether the list is altered
by adding and/or removing new subelements.

When a new subelement is added by adaptS, the minimal structure for
the subelement is created (minimal XML fragment conforming to the desired
structure with default values for data content elements - leaves in XML tree).

The algorithm Adapt utilizes the adaptS function which takes as an input
a primitive p ∈ P , d ∈ DOC and sx ∈ SX . The result is a document d′ valid
against sxN (sxN being the XML Schema obtained by application of p on
sx).

Authors conclude with two propositions:

valid(d, sxN) ≡ revalidate(p, d, sx)

valid(adapt(p, d, sx), sxN) = true

16

In another article [11] G. Guerrini and M. Mesiti describe XSchemaUp-
date language1. XSchemaUpdate statements follow the pattern:

UPDATE SCHEMA ObjectSpec
UpdateSpec
AdaptSpec?

ObjectSpec being the set of nodes in an XML Schema to be updated, Up-
dateSpec the update operation and AdaptSpec the optional document adap-
tation statement performed for each document valid against the evolved
schema.

With document adaptation statement new content can be created with
non-default values as opposed to content created by adaptS function only.

2.1.4 Discussion

X-Evolution system provides the user with a narrow set of evolution primi-
tives that can be performed upon XML schemas of a certain format. XML
documents are restricted to elements and subelements; without attributes.
The XML schemas can contain only basic constructs of XML Schema lan-
guage: simple and complex types and operators <xs:choice>, <xs:sequence>
and <xs:all>.

There are no links to the conceptual model which could be utilized when
new content needs to be added during document revalidation; thus it is up
to the user to write the adaptation clauses or update the documents after
revalidation.

Some very common real-world evolution operations are not considered
in P , e.g. moving content, adding a wrapping element for elements or trans-
forming attributes to subelements and vice versa.

On the other hand, some primitives concerning purely technical changes
are added into the set of primitives P (e.g. changing global type to local and
vice versa or referenced element to local and vice versa).

All algorithms and operations expect a single evolution primitive p ∈
P as an input. Only one change is supported in each evolution cycle and
evolution with multiple changes is not elaborated.

1not to be confused with XQuery Update Facility language [37]

17

2.2 XEM: XML Evolution Management

XML Evolution Management, XEM [13] is an approach to manage schema
evolution where DTD is used as a schema language. It deals both with
changes in DTD and XML documents (instance documents).

2.2.1 Evolution Primitives

The proposed primitives are divided into two categories:

• changes in DTD

• changes in instance documents

Both DTD and instance XML documents are represented in the system
as directed acyclic graphs and the primitives are defined as operations on
these graphs. Table 2.2 lists primitives from both groups.

Each primitive comes with a description of its semantics and a set of pre-
conditions, that must be satisfied before the primitive can be executed. The
effect of each primitive on the DTD and instance documents is described.

It is proven that the set of DTD primitives is complete meaning any
possible change in DTD can be expressed as a sequence of application of
the primitives. This is done by defining four operations on a DTD graph
and finding equivalents for these operations in the set of change primitives.
Table 2.3 shows the operations together with their equivalents.

It is apparent that any DTD can be created from an empty DTD solely
by executing create-ver and add-edge operations. Likewise, any DTD can be
reduced to an empty DTD solely by executing delete-ver and remove-edge.
Combining the previous statements, given two arbitrary DTD graphs G and
G′, there is a finite sequence of operations listed in Table 2.2 that transforms
G to G′. Thus the set of evolution primitives listed in Table 2.2 is complete.

2.2.2 Implementation

XEM-Tool, which implements XEM, uses object-oriented mapping for ma-
nipulating DTDs and instance XML documents. The input DTD is processed
by DTD Manager component which builds a DTD graph and then gener-
ates Java classes (ELEMENT definitions are translated to classes, attribute
definitions to properties, parent-child relationships are stored in a children
vector of each class).

18

DTD Operation Description
1 createDTDElement(s t) Create target element type with name s and

content type t
2 destroyDTDElement() Destroy target element type
3 insertDTDElement(e, i, q, v) Add element type e with quantifier q and de-

fault value v at DTD position i to target ele-
ment type

4 removeContentParticle(i) Remove content particle at DTD position i in
target element type

5 changeQuant(i, q) Change quantifier of content particle at DTD
position i in target element type to q

6 convertToGroup(start, end, t) Group content particles from DTD position
start to end in target element type into a
group of type t

7 flattenGroup(i) Flatten group at DTD position i in target ele-
ment type

8 addDTDAttr(s, t, d, v) Add attribute type with name s with type t,
default type d, and default value v to target
element type

9 destroyDTDAttr(s) Destroy attribute type with name s from tar-
get element type

XML Data Operation Description
10 createDataElement(e, v) Create target element node with type e and

value v
11 addDataElement(e, i) Add element node e at position i in target

element node
12 destroyDataElement() Destroy target element node
13 addDataAttr(s, v) Add an attribute with name s and value v to

target element node
14 destroyDataAttr(s) Destroy attribute with name s in target ele-

ment node

Table 2.2: Evolution Primitives within XEM

19

Operation Description Taxonomy Equivalent
(see Table 4.2)

create-ver Creates new dangling vertex 1, 6, 8
add-edge Adds an edge between two vertices 3, 6, 8
delete-ver Deletes vertex with zero out-degree and re-

moves all incoming edges
2, 7, 9

remove-edge Removes the edge between two vertices 4, 7, 9

Table 2.3: The DTD Graph Operations and Their Equivalent XEM Primi-
tives

Instance XML documents are processed by an XML Document Man-
ager component, that converts XML data to objects - instances of classes
generated by DTD Manager.

When a DTD changing evolution primitive is executed in the system
(e.g. addDTDAttr), some of the classes generated by DTD Manager need to
be regenerated (this includes creating and compiling new Java source files,
creating instances of the new classes, copying the existing contents from the
instances of the old classes in memory and removing the old classes and
source files).

2.2.3 Discussion

XEM deals with DTD which is much simpler than XML Schema or the
XSem-H model used in this thesis (3). The set of proposed primitives is
proven to be sound and complete in the terms of being able to transform
any DTD to any other DTD, but for a large portion of common evolution
changes this often leads to removing a significant part of the XML document
and recreating it again. E.g. when an element is renamed, it must be removed
and then added under new name; if the root element is removed, the whole
XML document is first deleted and its structure recreated again. The same
holds for moving content. In this process, the structure is created properly
by the algorithm, but the data is lost.

Again, as in the case of X-Evolution, the conceptual model is not consid-
ered and thus cannot be utilized when new content is added in the instance
documents. While X-Evolution provides the option of Adapt clauses for al-
tering the content after the evolution primitive is executed, XEM allows
only specifying default values for newly created content.

20

2.3 CoDEX

CoDEX, Conceptual Design and Evolution of XML schemas [17], is an ex-
ample of an approach to schema evolution built upon a conceptual model.

The approach is implemented in CoDEX-tool software. It enables a user
to design a conceptual model for an XML schema (and also the concep-
tual model can be created for already existing schemas following some de-
sign rules) and conduct the evolution changes in the conceptual model. The
changes made in the model are logged and when the evolution process is fin-
ished, the resulting changes are performed in the XML schema. Documents
associated with the evolved schema are then updated according to the XML
schema evolution steps.

2.3.1 Conceptual Model

The conceptual model is a graph with nodes of four classes - elements, types,
groups and modules together called basic components. In addition, Each
component has in addition a set of key-value pairs of properties.

Conceptual model can be translated to an XSD, where elements
are mapped to <xs:element> constructs, types to <xs:complexType>

and <xs:simpleType> and groups to <xs:all>, <xs:sequence>,
<xs:choice> respectively; using the Venetian blind design pattern [8] (which
is also required for importing existing schemas).

2.3.2 Schema Evolution

The evolution process is conducted by the user via a graphical interface in
the conceptual model. Each user’s single action (called design step by the au-
thors, in previously described system these were called evolution primitives)
is recorded by the logging component.

When the user is satisfied with the new version of the model the recorded
design steps are minimized and normalized. This is due to the design process
conducted by the user often not being straightforward. When design steps
are grouped according to the point in the schema where they were conducted,
some groups of design steps may exhibit mutually annulling (adding and
removing the same element), other groups of design steps can be reduced
(adding and renaming an element can be replaced by adding the element
with the final name).

21

There are 53 simple rules for combining and reducing design steps. The
following rule combining creating and renaming an element can serve as an
example:

create element(id, name, content) + rename element(id, name, name′)

→ create element(id, name′, content)

The minimized set of design steps is translated into XML evolution steps
through which the original schema is evolved to the evolved schema.

In such a case where the documents valid against the original schema
are no longer valid for the the evolved schema XML update operations are
generated.

2.3.3 Discussion

In contrast to previous approaches, CoDEX allows the user to make a quan-
tity of changes in each evolution cycle (both XEM and X-Evolution allowing
only a single primitive).

Process of handling existing XML schemas is also elaborated in this
approach.

In general, the proposed conceptual model is closer to a visualization
of an XML Schema language than to a platform-independent model. The
lack of conceptual model is directly responsible for a problem mentioned in
[17] (Limits of conceptual schema evolution). An example is given where the
user moves element address from element owner to element producer. The
structure of both the elements address is the same (they would probably re-
fer to the same type), but semantically the meaning is different (the address
of the producer is not the same as the address of the owner) and moving the
contents of address from element owner to element producer would create
valid, yet semantically incorrect document. This problem is declared to be
in-built and detecting these changes unsolvable without user interaction. In
the subsequent text we will show that the approach proposed in this thesis
can handle these situation satisfyingly.

22

2.4 Evolution using UML Class Diagrams

The Unified Modeling Language [26, 27], UML, is nowadays widely used
for platform independent modeling of system infrastructure and data. XML
Schema derivation from UML class diagrams is supported by commercial
tools [29]. The schema derivation can be fully automatic or adjusted by
applying stereotypes provided in a UML profile.

Adding support for schema evolution is proposed in [10]. The authors
utilize UML class diagrams for the conceptual model. Mapping between
building blocks of class diagrams and XML Schema constructs is described
in the Table 2.4, the translation is fully automatic.

UML block XML item(s)
class element, complex type with ID attribute and key
attribute subelement of the corresponding class complex type
association reference element, with IDREF attribute referencing the associ-

ated class and keyref for type safety (key/keyref references)
generalization complex type of the subclass is defined as an extension of the

complex type of the superclass

Table 2.4: Mapping Between UML and XML Schema Constructs

Output of the translation operation is the XSD and also a set of trans-
lation rules that store correspondence between UML and XML constructs.

The evolution operations are conducted upon the class diagram instead
upon the (visualized) XML schema. The set of evolution primitives consists
of basic operations for working with UML diagrams (i.e. addition or deletion
of classes, attributes and associations).

The propagation of changes proceeds in several steps. First, the transla-
tion rules keeping correspondence between UML and XML constructs are
updated to reflect the changes. Deduced changes in the set of translation
rules serve as an input for the next step – propagation of changes to the
XML schema and XML documents.

Each change triggers one or more XSL transformations [16], both for
XML schema and XML documents.

23

2.4.1 Discussion

UML class diagrams are very suitable for platform independent modeling.
The authors decided to provide a straightforward translation of the UML
diagram without any means to adjust and tailor the shape of the resulting
XSD.

Potential necessity in some larger systems of having more schemas de-
rived from one conceptual diagram is not considered.

24

Chapter 3

XSem

3.1 Conceptual Modeling

Conceptual modeling is a top-down approach to system and data design,
which concentrates on correct depicting the problem domain - defining the
particular concepts comprising the system and relationships between these
concepts.

Conceptual model emerges from user requirements analysis and is de-
fined using a modeling language sufficiently universal and independent of
the implementation language. It serves as an interconnecting foundation for
the individual components of the system (and these components can be im-
plemented using various technologies and languages).

In the implementation phase of the system development, concepts from
the conceptual model serve as drafts for corresponding constructs in the re-
spective implementation language (e.g. classes in object oriented program-
ming or tables in relational database design). Some design tools provide
features of automatic generation of the implementation constructs from the
conceptual model.

Conceptual modeling language should be also reasonably comprehensible
to the customer and serve to ease the clarification and specification of the
user requirements during each iteration of system specification.

The most frequent conceptual models in use are the Unified Modeling
Language (UML) [27] [26] class diagrams and the Entity Relationship model
[31].

25

3.2 XSEM

XSem is an approach to modeling XML data using Model Driven Architec-
ture (MDA) [20]. A prototype implementation of XSem in a CASE1 tool
called XCase [7] is available.

The model has two interconnected layers – platform-independent model
(PIM) which utilizes UML class diagrams and platform-specific model (PSM)
which again utilizes UML class diagrams but extended with XSem profile.

The reason for having two layers for modeling is to separate the lay-
ers of system design. Platform-independent layer is used to thoroughly and
completely describe the problem domain without redundancies. PIM can be
then used to design the data storage and provides a complete definition of
each concept.

Different parts of the problem domain are then used by individual com-
ponents of the systems, usually each component does not work with all the
concepts, but only with a subset. On the other hand, some concepts are used
by several (or all) system components.

If we move to XML data modeling, each component may have individual
requirements on the portion of the used data and their structure and layout
in the XML document – XML format. Although the XML formats may dif-
fer, they all concern the same problem domain and reference the concepts
described at the platform-independent level, but each format contains dif-
ferent subset of the concepts and different parts of the concepts. Each XML
format is a kind of an XML view over the data.

For example, the component of the system that matches accepted pay-
ments to the orders in the system will only need in its incoming message the
identifier of the order and the amount of money paid to locate the order and
verify the price, whereas the component that realizes the shipping will need
the list of items in the order and the identifier of the customer who issued
the order. See platform-independent diagram in Figure 3.1 and two derived
platform-specific diagrams in Figure 3.2.

1Computer-aided software engineering

26

Figure 3.1: Simple Platform-Independent Diagram

(a) Order Diagram (b) Payment Diagram

Figure 3.2: Platform-Specific Diagrams

As a result, a complex system will contain many XML formats where
various concepts appear repeatedly in different forms and structure. Changes
in one XML format may cause necessary changes in other formats to keep
the model consistent.

That is why XSem uses two-layer model with the two interconnected
layers. The platform-specific model is comprised of several diagrams, each

27

being a model for one specific XML format.
Changes at the specific layer are verified against the independent layer

and vice-versa. The user is offered with propagation of changes from one layer
to the other one or notified that the action can not be performed, because
it would put the model in an inconsistent state (e.g. deleting a concept at
the independent level can not be accomplished unless all references of the
concept at the specific level are removed).

With the two layer system, the user is provided with sufficient level of
freedom when designing the individual XML formats, but is prevented from
making changes that would render the model inconsistent.

3.3 Platform-Independent Model – UML Class

Diagrams

UML class diagrams are part of the Unified Modeling Language. They are
used to model classes in object-oriented programming and also for data
modeling. The following class diagram constructs are used in PIM2:

• classes3 (the set of all PIM classes will be denoted Cpim)

• class attributes (the set of all PIM attributes will be denoted Attpim)

• types (the set of all types will be denoted T)

• association ends (the set of all association ends will be denoted Epim)

• associations (the set of all PIM associations will be denoted Apim)

Definition 3.3.1 (PIM Model). A PIM Model is a union:

Mpim = Cpim ∪ Attpim ∪ T ∪ Epim ∪ Apim

Figure 3.3 contains a metamodel of PIM constructs. A construct refer-
encing another construct is shown as an association between the two.

2PIM model can be further extended with additional constructs, namely association
classes and generalizations, which are both available in XCase.

3When necessary, we will use notions PIM classes and PSM classes to distinguish
constructs on PIM and PSM level (and similarly for other constructs).

28

Figure 3.3: PIM Metamodel

In the following text we also assume a finite set of finite-length strings
L.

Class An instance of a class construct is intended to model one particular
kind of real-world objects that all share the same features and semantics.
In PIM diagrams, classes are depicted as boxes with their name in bold-
face and list of attributes below. Diagram in Figure 3.1 contains six classes:
Customer, Address, Payment, Order, Item and Product.

Definition 3.3.2 (Class). A class C ∈ Cpim is a 2-tuple:

C = (n,Att)

where:

• n ∈ L is a string called class name

• Att ⊆ Attpim is a list of attributes of C, Att can be empty.

Class attributes Class attributes model characteristics, features and prop-
erties of classes. A data type is assigned to each attribute and each instance
of the attribute is assigned with a value belonging to the type’s domain.
In PIM diagrams attributes are listed inside the class box. Diagram in Fig-
ure 3.1 contains attributes customer-no, name, account in class Customer,
number in class Order etc.

29

Definition 3.3.3 (Attribute). An attribute a ∈ Attpim is a 7-tuple:

a = (C, n,Type, d, l, u)

where:

• C ∈ Cpim is a class to which this attribute belongs to

• n ∈ L is a string called attribute name

• Type ∈ T is the type assigned to the attribute

• d ∈ Type.domType is the default value assigned to the new instances of
a; d can be omitted – in that case new instances of a are assigned the
default value defined for type Type

• l ∈ N0 denotes lower cardinality of the attribute a

• u ∈ N ∪ {∗} denotes upper cardinality of the attribute a, value ∗
denotes unlimited upper cardinality

and following conditions must be satisfied:

∀a ∈ Attpim : a.l ≤ a.u ∧
∃K ∈ Cpim : a ∈ K.Att ∧
a.C = K ↔ a ∈ K.Att

Type A type can be interpreted as a named set of possible values. Types
are usually firmly defined in the implementation languages (with a possi-
bility to derive new types from the built-in ones). It is thus problematic to
provide a set of types at the platform-independent level. Either the platform-
independent types must be some generic types that can be translated into
each implementation language (e.g. platform-independent type string can
be translated into xs:string when XML Schema is the implementation
language and into varchar when the implementation language is SQL).

The other solution is to adopt a type system of a selected implemen-
tation language at the platform-independent level. Since we are concerned
with XML data evolution, we will adopt a type system of the XML Schema
language (see [28]).

The above mentioned specification defines 19 built-in types (see Figure
3.4) and rules for deriving user-defined types.

30

Figure 3.4: XML Schema Built-in Datatype Hierarchy (taken from [28])

Definition 3.3.4 (Type). A type T is defined as:

T = (n, domT)

where:

• n ∈ L is the name of data type T

31

• domT is a set of all allowed values for type T called domain of type
T. Domains of built-in types are firmly specified and domains of user
derived types are defined by the rules of the type system.

Association Figure 3.5 contains another example of a PIM diagram that
demonstrates associations and association ends.

Figure 3.5: Example of a Simple PIM Diagram

Associations model relations between real-word concepts. An association
can connect an arbitrary amount of classes, each class then participates in
the association with certain role and cardinality. In PIM diagrams associa-
tions are depicted as lines connecting classes. One class can participate in
one association under multiple roles. Class Category in Figure 3.5 partic-
ipates under two roles – parent and child with multiplicities (0, 1) and
(0..*) respectively – in an association (each category can have an arbitrary
amount of child categories, and each child category has one parent category).
Auxiliary construct association end models the role and cardinality of each
participation of a class in an association.

Definition 3.3.5 (Association). An association A ∈ Apim is defined as:

A = (n,Ends)

where:

• n ∈ L is the name of the association; n is optional.

32

• Ends ⊆ Epim is a list of association ends.

Association end is an auxiliary construct modeling participation of the
class in the association.

Definition 3.3.6 (Association End). An association end E ∈ Epim is de-
fined as:

E = (A,C, r, l, u)

where:

• A ∈ Apim is an association of which E is part of

• C ∈ Cpim is a class to which this association end belongs to

• r ∈ L is the role of C in the association A; r can be omitted.

• l ∈ N0 denotes lower cardinality of the participation of C in A

• u ∈ N ∪ {∗} denotes upper cardinality of the participation of C in A,
value ∗ denotes unlimited upper cardinality

3.4 Platform-Specific Model

For the purposes of modeling XML data, UML class diagrams were extended
with a profile named XSem containing one stereotype for Association and
Property constructs and several stereotypes for Class construct. This exten-
sion to original UML class diagrams named XSem-H is used as the platform-
specific model.

A visual notation for PSM diagrams was created to transparently display
models of XML data with emphasis on the two significant features of XML
data model – hierarchical character and nesting.

XSem-H diagrams contain following constructs:

• PSM classes (the set of all PSM classes will be denoted Cpsm)

• PSM attributes (the set of all PSM attributes will be denoted Attpsm)

• PSM associations (the set of all PSM associations will be denoted
Apsm)

33

• attribute containers (the set of all attribute containers will be denoted
AC)

• content containers (the set of all content containers will be denoted
CC)

• class unions (the set of all class unions will be denoted CU)

• content choices (the set of all content choices will be denoted CH)

Figure 3.6: PSM Metamodel

Definition 3.4.1 (PSM Model). PSM Model is a union:

Mpsm = Cpsm ∪ Attpsm ∪ Apsm ∪ AC ∪ CC ∪ CU ∪ CH
Since XSem-H diagram is a tree (or a forest of trees), we will call PSM

classes, attribute containers, content containers, class unions and content
choices nodes.

34

For purposes of definition we further need two abstract constructs:

• superordinate node (the set of all superordinate nodes will be denoted
Csup)

Csup = Cpsm ∪ CH ∪ CC

• subordinate node (the set of all subordinate nodes will be denoted Csub)

Csub = Apsm ∪ CH ∪ CC ∪ AC

Figure 3.6 contains a metamodel of PSM constructs. The diagram also
shows three PIM constructs (PIMClass, PIMAttribute and Type) that are
referenced from PSM constructs.

Figure 3.7 contains an example of a PSM diagram using all types of
constructs mentioned above.

Figure 3.7: PSM Diagram Constructs

Significant Node

Superordinate Superordinate abstract construct is a node that can con-
tain other constructs (subordinate constructs).

35

Definition 3.4.2 (Superordinate Node). A superordinate node P ∈ Csup is
defined as:

P = (Sub)

where:

• Sub ⊆ Csub called components is an ordered sequence of subordinate
constructs; Sub can be an empty sequence

Subordinate A subordinate abstract construct is a type of construct that
can occur among components of superordinate nodes.

Definition 3.4.3 (Subordinate Construct). A Subordinate construct S ∈
Csub is defined as:

S = (Parent)

where:

• Parent ∈ Csup is a superordinate node called parent of S; when Parent
is not specified (this will be indicated by a special value null, similarly
with properties of other constructs), then S is one of the roots of the
XSem-H forest

The following invariant joins superordinate and subordinate constructs:

(∀P ∈ Csup)((∀s ∈ P.Sub) → s.Parent = P)

PSM Class A PSM class is the most important construct at the platform-
specific level, because it brings the concepts modeled at the platform-
independent level to the platform-specific level.

Each class is derived from exactly one PIM class and the link to the PIM
class is maintained during the whole existence of the PSM class to ensure
consistency between the two layers and allow mutual propagation of changes.

The diagram in Figure 3.1 contains one root PSM class Purchase and
several other PSM classes (Customer, Address etc.).

Definition 3.4.4 (PSM Class). A PSM class C ∈ Cpsm is a superordinate
node

C = (R, n, label, A, U,Att, Sub,Represented, a)

where:

36

• R ∈ Cpim is the represented class of C, i.e. the PIM class which C was
derived from

• n ∈ L is the name of C, it is initialized to R.n but can be changed

• label ∈ L is the element label of C; label is optional

• A ∈ Apsm is the the association leading to C; A can be empty

• U ∈ CU is the the class union to which this C belongs; U can be empty

• Att ⊂ Attpsm is an ordered sequence of PSM attributes of C; Att can
be empty

• Sub is an ordered sequence of components of C; Sub can be empty

• Represented ∈ {P : Cpsm|P.R = C.R} is a link to the represented PSM
class; it can be empty; when C.R is not empty, C is called a struc-
tural representative of Represented. Notion structural representative
is explained in paragraph Structural Representative in this section, p.
47.

• a ∈ (true, false) is a boolean flag denoting that XML element modeled
by C can contain any XML attribute, even when it is not defined in
the model.

The following invariants must hold (D being an XSem-H diagram):

∀C ∈ Cpsm : C.A 6= null → c.U = null ∧ C.A = null → c.U 6= null

∀C ∈ Cpsm ∩ND : C.A = null ∧ c.U = null → C ∈ D.roots

PSM class is depicted the similar way as PIM class with the element
label above the class box. Components are arranged as children of the class
node in the XSem tree (see class Purchase an its three components: content
container customer-info, class union and content container items in Figure
3.7).

A PSM class construct models two different scenarios, depending on the
value of label .

Classes with element labels model a subtree in an XML document. Let
us denote E as the root XML element of the subtree modeled by C. The

37

name of element E is equal to C.label, attributes of the class model XML
attributes of E. Class Eshop in Figure 3.7 with an element label "eshop"
and one attribute "url" thus models following XML subtree:

<eshop url="..."></eshop>

(The node is empty, because the class has no components)
If class C is a class without an element label, it models subelements

and/or attributes of an element modeled by the first ancestor of C in the
path from C to root of the diagram. For instance, class Product in Figure
3.7 has no element label. Its first ancestor that models an XML element
is class Item. Product has two attributes (code and subcode) and a sin-
gle component (attribute container with three attributes) which models the
following fragment:

<title>...</title>

<weight>...</weight>

<weight>...</weight>

Both attributes and components of Product are inlined among the com-
ponents and attributes of its parent Item. This principle is called propaga-
tion. Nodes that model XML elements (content containers and classes with
element labels) will be called significant nodes and the first significant node
in the path from a class C without element label to root will be called closest
significant node to C. The content modeled by class C without element label
is propagated to its closest significant node.

The whole subtree modeled by Item is then:

<item code="..." subcode="...">

<amount>...</amount>

<unit-price>...<unit-price>

<title>...</title>

<weight>...</weight>

<size>...</size>

<item>

PSM Attribute In a similar way as a PSM class, also a PSM attribute
is derived from a PIM construct - PIM attribute.

38

Definition 3.4.5 (PSM Attribute). A PSM Attribute a ∈ Attpsm is defined
as

a = (R,C,Container, i, n, alias,Type, d, l, u)

where:

• C ∈ Cpsm is the PSM class to which this PSM attribute belongs

• R ∈ C.Att is a PIM attribute of class C from which a is derived

• Container ∈ Cpsm ∪ AC is the construct where a is placed; it is ini-
tialized to C ∈ Cpsm but can be changed to an attribute container
AC ∈ AC. Placing attributes inside attribute containers is a way to
adjust the form of modeled document.

• i ∈ N0 is the index of a in the collection a.Container.Attpsm

• n ∈ L is a string called attribute name; it is initialized to R.n and
cannot be changed

• alias ∈ L is an alias of this attribute, the name under which this at-
tribute will appear in the modeled XML documents; alias can be omit-
ted, in that case, value of n is used instead

• Type ∈ T is the type assigned to the attribute; it is initialized to R.Type
and cannot be changed

• d ∈ domType is the default value of a

• l ∈ N0 and u ∈ N ∪ {∗} denote lower and upper cardinality

and the following conditions must be satisfied:

∀a ∈ Attpsm : a.l ≤ a.u ∧
∃K ∈ Cpsm ∪ AC : a ∈ K.Att ∧
a.Container = K ↔ a ∈ K.Att

Meanings of d, l and u are variants of the definitions for PIM property
construct and their values are initialized to the values of the appropriate
properties of R.

39

In an XML document, a PSM attribute a models an attribute of the
closest significant node when it is placed in a PSM class (a.Container ∈
Cpsm). A PSM attribute can be also placed inside an attribute container
(a.Container ∈ AC, see paragraph Attribute Container, p. 42), in that case
it models an element with a simple content. See Figure 3.9 for an example
of different usages of PSM attribute.

PSM Association PSM associations are derived from PIM associations,
but unlike PSM classes and attributes, a PSM association does not represent
a single PIM association. To give user the more freedom when creating the
PSM diagram, a PSM association can be derived from a sequence of PIM
associations. This enables the user to create a PSM association between
two PSM classes whose respective PIM classes are not connected by a PIM
association, but are connected through one or more other classes.

The PSM association is therefore linked to one or more PIM associations
and the consistency must be maintained in the model (e.g. it is not possible
to remove a PIM association which participates in a PSM association).

The exact rules for deriving a PIM association are described thoroughly
in [24]. For the purposes of this work, the following simplified definition of
a PSM association will suffice.

We will use notion Nchild = Cpsm ∪ CU . Nodes in Nchild are the nodes
that can participate in associations as target nodes.

Definition 3.4.6 (PSM Association). A PSM Association A ∈ Apsm is a
subordinate construct defined as:

A = (Parent,Child, l, u)

where:

• Parent ∈ Csup is the parent of A, i.e. the node where association A
starts

• Child ∈ Nchild is the second node participating in the association A,
i.e. the node to which association A leads to (its target node)

• l and u denote lower cardinality and upper cardinality of the associ-
ation, i.e. the interval of possible repetitions of Child

40

Unlike PIM associations, PSM associations are always binary and each
end can participate only once in the association.

PSM associations are always created associating two PSM classes
({Parent,Child} ⊂ Cpsm), but during the design process, association can
be put into a superordinate container (either content container or con-
tent choice). So Parent can be changed to a content container or content
choice construct (see Figure 3.7, where associations Purchase-Customer and
Purchase-Address were put into a content container customer-info).

Associations can also be joined into the class union, so Child can be
changed too (to a class union node) (see Figure 3.7, where associations
Purchase-SalesAssistant and Purchase-Eshop were joined to a single
association leading to a class union of classes SalesAssistant and EShop).

In XSem-H diagrams PSM associations are depicted as arrows and form
edges in the XSem-H tree - Parent being the start node and Child being the
target node.

In XML documents PSM association model nesting/propagation:

• when A.Child is a class with an element label, subtree modeled by this
class will be a subtree of an element modeled by the closest significant
node to A.Child

• when A.Child is a class without an element label, content modeled
by A.Child is inlined in the content modeled by the closest significant
node to A.Child

• when A.Child is a class union, the principle passes to its child nodes
(see paragraph Class Union in this section, p. 46)

Figure 3.8 contains two examples of PSM associations. The one between
classes Purchase and Customer leads to a class without label, so the child
node is propagated upwards. The other one leads to a class with element
label, so new element (Item) must exist for each occurrence of the child node.
The second association was also moved to the content container items which
wraps the child nodes in the XML element items.

41

(a) Example for usages of PSM associations.

<Purchase purchase-no="###"
issue-date=###"
customer-no="###">

<items>
<Item amount="#"

product-id="#" />
<Item amount="#"

product-id="#" />
<Item amount="#"

product-id="#" />
</items>

</Purchase>

(b) Corresponding XML fragment

Figure 3.8: PSM Associations and a Corresponding XML Fragment

Attribute container An Attribute container is one of the constructs cre-
ated in order to give the user a wider set of options when turning problem
domain concepts into the model of XML documents. Content container is
another example of such a construct.

Attribute container is convenient when the demand is to have attributes
of classes in the form of XML elements (with simple content) instead of
XML attributes.

Although the choice between the two possible representations of PSM
attributes – XML elements or XML attributes – can in some cases be just
a matter of the user’s preference, when a.u > 1 for an attribute a, the form
of XML element is the only correct choice (since XML data model does not
allow multiple occurrence of the same attribute in one node).

Definition 3.4.7 (Attribute Container). An attribute container AC ∈ AC
is a subordinate node

AC = (Parent,Att)

where:

• Parent ∈ Csup is the parent of AC

42

• Att ⊆ Attpsm is an ordered sequence of PSM attributes of AC; Att
can be empty

And the following condition must hold

∀AC ∈ AC, a ∈ Attpsm : a.Container = AC ↔ a ∈ AC.Att

In XSem-H diagrams, attribute containers are depicted as rectangles with
the list of attributes inside. Each attribute in AC.Att models an XML ele-
ment with simple content in the content of the closest significant node of
AC (with correct cardinality). Figure 3.9 shows different usages of PSM
attributes and an attribute container. In this example, attributes of both
classes Customer and Address model XML attributes of XML element
Customer, because class Address does not have the element label and, there-
fore, its attributes are propagated to the closest significant node. Attribute
email is placed in an attribute container, that is why it models XML el-
ements email, which can appear 1-3 times inside the content of element
Customer.

(a) Example for usages of PSM attributes.

<Customer customer-no="###"
name="###"
street="###"
postcode="###"
city="###">

<email>###</email>
<email>###</email>

</Customer>

(b) Corresponding XML fragment

Figure 3.9: PSM Attributes, an Attribute Container and a Corresponding
XML Fragment

Content Container A content container is a simple construct for model-
ing of wrapping elements; i.e. elements that are not modeled at the platform-
independent level. In other words, they are not a representation of a concept.

43

One of the convenient usages is to wrap cardinality content in a single
node to enhance clarity of the XML document.

Definition 3.4.8 (Content Container). A content container CC ∈ CC is a
subordinate and superordinate node defined as:

CC = (n,Parent, Sub)

where:

• n ∈ L is the name of CC and models the name of the XML element

• Parent ∈ Csup is the parent of C

• Sub is an ordered sequence of components of CC; Sub can be empty

In XSem-H diagrams content container is depicted as a grey box with
round corners and with the value of CC.n inside the box. The components
in Sub are arranged as children of the content container node in the XSem
tree. See Figure 3.10.

(a) Example of content container.

<Customer customer-no="###"
name="###">

<Emails>
<email>###</email>
<email>###</email>

</Emails>
</Customer>

(b) Corresponding XML fragment

Figure 3.10: Usage of Content Container and a Corresponding XML Frag-
ment

44

Content Choice A content choice is the first construct that models pos-
sibilities and options. It is used when the set of XML documents conforming
to the modeled XML format is irregular. The content choice is a construct
composed of options. The corresponding fragment of each conforming XML
document conforms to one of these options.

Definition 3.4.9 (Content Choice). A content choice CCh ∈ CH construct
is a superordinate and subordinate node

CCh = (Parent, Sub)

where:

• Parent ∈ Csup is the parent of CCh

• Sub is an ordered sequence of components of CCh; Sub can theoretically
be empty, but in that case it is redundant

In XSem-H diagrams, content choice is depicted as a grey circle with
vertical line going through the center. The components in Sub are arranged
as children of the content choice node in the XSem-H tree. See Figure 3.11.
In an XML document the node itself does not have a matching construct,
but exactly one of the subtrees under the choice node does. In the example
the XML node Book can contain either the subelement ID or the subelement
ISBN (we suppose a book can be identified either by its internal identifier in
the system or by its assigned ISBN).

(a) Example of content choice.

<Book>
<ID>###</ID>

</Book>

or

<Book>
<ISBN>###</ISBN>

</Book>

(b) Corresponding XML fragment

Figure 3.11: Usage of Content Choice and a Corresponding XML Fragment

45

Class Union A class union is a construct related to content choice, be-
cause it is also used to model irregularities in the set of XML documents
conforming to the modeled format by allowing more types of content.

The difference is that a class union is created by merging two or more
associations with common parent. The associations leading to respective
classes are removed and replaced by a new association leading from the
common parent to the class union. Figure 3.12 shows a diagram before and
after introducing new class union node. Two associations Author-Article

and Author-Book are replaced by an association Author-union(Article,

Book), classes Article and Book became components of the new union node.

Figure 3.12: PSM Metamodel

Definition 3.4.10 (Class Union). A class union construct is a node

CU = (A,Comp)

where:

• A ∈ Apsm is a PSM association leading to CU

• Comp ⊂ Cpsm is an ordered sequence of PSM classes called components
of the node

Class union models a selection among a set of options how a particular
part of XML document can be structured. Each component (a PSM class)
models one of the options.

An association leading to a class union can have a non-default cardinality
((l, u) 6= (1, 1)) – this means that the selection can be undertaken multiple
times (when u > 1) or the whole subtree is optional (when l = 0).

46

In XSem-H diagrams, a class union is depicted as a grey circle with a
horizontal and vertical line going through the center and its components
arranged in the subtree of the node. Figure 3.13 shows an example of a class
union. In this example the modeled node LogReport can contain unbounded
amount of either Error or Warning nodes.

(a) Example of class union.

<LogReport>
<Error severity="#" text="#" />
<Warning text="#" />
<Error severity="#" text="#" />

</LogReport>

or

<LogReport>
<Error severity="#" text="#" />
<Error severity="#" text="#" />

</LogReport>

or

<LogReport />

(b) Corresponding XML fragment

Figure 3.13: Usage of Class Union and a Corresponding XML Fragment

Structural Representative In system modeling it is a common require-
ment to provide constructs for reuse of parts already designed in the model.
At the platform-specific layer of XSem this can be achieved by the structural
representative construct.

Structural representative C is a PSM class that, besides its own at-
tributes and components, references attributes defined in another PSM class
in the model. This class is called represented class and must be derived
from the same PIM class as C (this relation is expressed in the condition
C.Represented ∈ {P : Cpsm|P.R = C.R} in the definition of PSM class).
When C.Represented is empty, C is an ordinary PSM class.

Structural representatives can be useful when:

• a part of the modeled structure is used at several places in the diagram
(when the XSem-H diagram is translated to XML Schema language,

47

this situation can be expressed by defining a XML Schema complex
type and using it for several nodes).

• a part of modeled structure is recursive (since the XSem-H model is a
tree, it does not allow cycles of PSM associations).

In XSem-H diagrams, PSM classes that are structural representatives
have blue background instead of orange and the name of represented PSM
class (C.Represented.n) is shown above the name of the class.

Figure 3.14 provides an example of both of the types of usage of structural
representative. For this model, we will show not only an example of an XML
document conforming to this model, but also a possible translation of this
model to the XML Schema language. Both can be found in Appendix B.

Figure 3.14 shows a whole XSem-H diagram modeling a book catalog.
Each book has an author and a title. This structure we need in two places in
the diagram – in the listings of books inside a category and for the element
best-seller for each category (containing the best selling book in the cate-
gory). To avoid redefining the structure several times, we use a PSM class
BookType and reference it from two other PSM classes (with element labels
best-seller and book).

The book catalogue is a hierarchical structure starting with catalog

element, serving as the “root” category, which has subcategories in category

element and again each category can have subcategories. Each category also
has a textual description and a list of books in the category. To model this
hierarchical structure, we again utilize structural representative construct.

48

Figure 3.14: Usage of Structural Representative Construct

XSem Tree To conclude this chapter we will formally define the XSem
tree.

Definition 3.4.11 (XSem Tree). An XSem tree TPSM is a rooted, ordered,
directed tree

TPSM = (r,N , E)

where

• r ∈ N is the root node

• N is the set of nodes

• E is the set of edges

N ⊆ Cpsm ∪ AC ∪ CC ∪ CH ∪ CU

E =
({(p, c) : p ∈ Csup, c ∈ Nchild |

∃ A ∈ Apsm : p = A.Parent ∧ c = p.Child } ∪
{(p, c) : p ∈ Csup, c ∈ Csub | c.Parent = p ∧ c ∈ p.Sub\Apsm } ∪
{(u, c) : u ∈ CU , c ∈ Nchild | c ∈ u.Comp }) ∩ {(p, c) | p, c ∈ N }

The ordering of children of each node is defined by the ordering of collec-
tions p.Sub where p ∈ Csup and u.Comp where u ∈ CU which are both defined
as ordered sequences.

49

Nodes in the XSem tree correspond to PSM classes, attribute contain-
ers, content containers, content choices and class unions. Edges correspond
to PSM associations and also pairs of superordinate nodes and their com-
ponents and pairs of class unions and their components (these edges are
depicted as simple lines, whereas PSM associations are depicted as arrows).

An XSem-H diagram is comprised of one or more XSem trees.

Definition 3.4.12 (XSem-H Diagram). An XSem-H diagram D is defined
as

D = (roots,N , E)

where roots ⊂ Cpsm ∪ CU are root nodes of the XSem trees in the diagram.
Each node N ∈ XSemTreeNodes in D determines a subtree which will

be denoted N̂ .

Each significant node in roots (content container or PSM class with ele-
ment label) models one allowed root node of a conforming XML document.
PSM classes without element labels can not model root XML nodes, but
can be referenced from other XSem subtrees via structural representative
construct.

Structural representatives can only reference classes from the same dia-
gram, i.e. the following condition must hold:

∀C ∈ D.N ∩ Cpsm : C.Represented 6= null → C.Represented ∈ D.N

50

Chapter 4

XSem Evolution

4.1 Overview

By schema evolution we mean conducting certain operations upon the ex-
isting schema until reaching the desired final state – new version of the
schema.

Every XSem-H diagram can be translated into a regular tree grammar
GD [23]. Grammar GD can be obtained for instance by translating D to XSD
[24] and the XSD into regular tree grammar [23].

XSem-H diagram D is a model for a set of XML documents that are
generated by grammar GD.

Definition 4.1.1 (Set of Conforming Documents, Validity). For a diagram
D, the set of conforming documents S(D) equals to the language L(GD)
generated by grammar GD. We will say that XML document D is valid
against D if D ∈ S(D) = L(GD).

In the following text we will use apostrophes to mark the evolved model,
e.g. D′ for the new version of XSem diagram D.

The degree of difference between the two versions can vary greatly –
the newer version can only fix some names, change the arrangement of el-
ements or tweak the data types to be more accurate. On the other hand,
the new version of the system can bring new attributes and concepts at
the platform-independent level and these will probably emerge also in the
updated versions of platform-specific diagrams.

Two special situations can be observed (we will define both at the level
of a single PSM diagram):

51

Definition 4.1.2 (Backward Compatibility). Let D be an XSem diagram
and D′ new version of D. D′ is called backwards-compatible when all doc-
uments valid against D are also valid against D′, i.e. S(D) ⊆ S(D′).

Definition 4.1.3 (Forward Compatibility). Let D be an XSem diagram and
D′ new version of D. D is called forward-compatible when all documents
valid against D′ are also valid against D, i.e. S(D′) ⊆ S(D).

However, sets S(D) and S(D′) are in general incomparable.
Testing validity of a document D against D can be carried out directly,

but it is more convenient to translate D into one of the XML schema lan-
guages and use this translation to verify validity1.

A translation algorithm that produces schemas in XML Schema language
was proposed in [24] and implemented in XCase [7]. Modifications of this
algorithm and also algorithms for other XML schema languages are subject
of contemporary studies.

Translation of XSem diagrams to an XML schema does not serve only
to verify validity of documents but the resulting schemas can also be used
in different parts of the system (e.g. to provide descriptions for web service
interfaces [9] or to design optimal storage for XML documents in a relational
database [3]).

The fundamental problem of the system and in our case schema evolution
is integration with those components accustomed to the old version of the
system. The first part of the problem is deciding, whether the changes in
the schema may cause problems with these components.

Definition 4.1.4 (Invalidated Set of Conforming Documents). We say that
the set of conforming documents S(D) of diagram D was invalidated in the
new version (or just invalidated) if:

∃D ∈ S(D) : D /∈ S(D′)

If no such D exists, then D′ is backwards-compatible.

Definition 4.1.5 (Revalidation). For an invalidated set of conforming doc-
uments the process of adjusting the invalid documents to the new version is
called revalidation:

1Each XML schema language has its own specifics, some aspects of the XSem model
can not be utterly translated to the means of the schema language (e.g. XSem allows to
model an element having either attribute a or attribute b but not both, which can not be
expressed in XML Schema language).

52

∀D ∈ S(D), D /∈ S(D′) : revalidate(S(D)) ∈ S(D′)

4.2 Approaches to Change Detection

For the goal of determining whether S(D) was invalidated, the system must
recognize and analyze the differences between D and D′. There are two
possible ways to recognize changes

a) recording the changes as they are conducted during the design process

b) comparing the two versions of the diagram

Recording Changes An evolution system that uses the first technique
usually provides some kind of command that initiates the recording and
after issuing this command all operations carried out by a user over the
schema are recorded. The user starts with schema S and initiates recording.
All conducted operations leading to S ′ are recorded until the user is satisfied
with the new schema. When the desired schema S ′ is reached, user finishes
recording and the system has all the information about the changes made –
the sequence of performed operation.

When the recording is finished, the system can optimize the sequence for
example by eliminating operations that cancel each other or by replacing
groups of operations by other groups that lead to the same result but in a
more straight way. These optimizing rules must be defined in the system.
This approach is used in CoDEX [17].

The main problem of this approach is the insufficient versatility. The
following issues may arise:

• Once the evolution process is started, the old version can not be easily
changed.

• A user may want to interrupt his/hers work at some point and continue
in another session. The sequence of recorded changes would have to be
stored and recording resumed later.

• When the user wants to retrieve the sequence for reverse process, he
will have to either start with the new version and record the operations
needed to go back to the old version again, or the system will have to
be able to create inverse sequence for each sequence of operations.

53

• When the evolved schema comes from an outer source, the sequence
of operation changes can not be retrieved directly; the user must start
with his/hers old version of the schema and manually adjust it to
match the new schema.

Schema comparison An alternative approach, used in this work, is to
base the change detection on comparison of the two versions. The user can
work with both schemas independently until he/she is satisfied with them.
The change detection algorithm then takes the two schemas as input and
compares them. The result of the comparison is a list of differences between
the schemas.

This approach has the following advantages:

• No need to look for redundancies; the set of changes is always minimal.

• Both old version and new version can be edited without limitations.

• The process of evolution can be arbitrarily stopped and resumed.

• The reverse operation can be easily handled by the same algorithm,
only with the two schemas on the input swapped.

• A schema from an outer source can be imported into the system2 and
serve as an input to the change detection algorithm.

The approach assumes the two version of the schema to be linked. The
algorithm requires constructs from one version of the schema be linked to
constructs to the other version. These links are created and kept as user
edits the schema, but do not exist when one or both versions of the schema
are imported. In such case, the links must be created either by the user or
heuristically by another algorithm comparing the two versions.

4.3 Version Links

Detecting changes in an XML schema or a model of an XML schema is not
always straightforward; some differences in between the old and new version

2Experimental implementation of import from XSD to PSM diagram is available in
XCase.

54

can be interpreted in more than one way. Consider the following excerpt
from two versions of an XSem diagram:

Figure 4.1: Example for Ambiguity

There are at least two possible interpretations:

• attribute ID was removed and new attribute security-number was
added

• attribute ID was renamed to security-number

When deciding which interpretation is the correct one, links to PIM dia-
gram can be taken into account. If [ID].r = p1 and [security−number].r =
p2 and both p1 and p2 ∈ Attpim such that p2 is the new version of p1, we
could assume, that the second interpretation is correct and attribute was
only renamed. But still, it is only a heuristic.

If we do not want to settle for heuristics, it is the user who must make the
final decision. XCase evolution framework (XSem-Evo) allows to define ver-
sion links to interconnect constructs in the XSem model which are different
versions of the same construct.

Definition 4.3.1 (ver, version link, getInVer, version projection). Let V be
the set of versions for the model M.

Function

ver : M→ V
returns to which version each construct belongs. Instead of writing ver(e) we
will use the notion e.version.

Notion S[v], where S ⊆ M is an arbitrary set of model constructs and
v ∈ V, is called version projection and returns elements of S for whose the
condition e.version = v holds.

En equivalence relation of version links

VL ⊂M×M

55

contains pairs of constructs that are different versions of the same con-
struct.

Function getInVer returns a construct in a desired version (or null if the
element does not exist in the desired version)

getInV er : (M×V) →M ∪ null

getInV er(e, v) =

{
e′ if ∃ e′ ∈M : (e, e′) ∈ VL ∧ e′.version = v
null otherwise

If (e, e′) ∈ VL, both e and e′ must both be constructs of the same kind
(e.g. both classes, attributes, PSM associations...).

In the following text we will assume |V| = 2, unless explicitly stated
otherwise (i.e. we expect there are two versions in the system - old version
(v ∈ V) and new version (v′ ∈ V)).

Values of ver function form the input of the change detection algorithm
(and so does the relation VL). In XCase, values of ver are assigned auto-
matically by the system during the process of editing the new version. Pairs
for VL are added during the branch operation (a new version v′ is created
from version v), which adds new version to V and creates a copy of each
construct from the source version.

Branch is an operation upon model with the following results (v ∈ VL
is the source version):

• new version v′ is added to V
• ∀e ∈M[v]:

– a duplicate construct e′ is created in the model

– e′.version is set to v′

– (e, e′) is added to VL
• ∀e′ ∈M[v′] all references to other construct in the model are replaced

by references to new versions of each construct (e.g. if e′ is a content
container , each c ∈ e′.Sub is replaced by c′ = getInV er(c, v′))

When the new version of the schema is imported into the system, i.e.
the new version was not initiated by performing branch operation upon the
model, the relation VL is empty and version links must be added before

56

change detection. This can be either done manually (ie. we let the user
map new versions of the elements to their old versions) or with the help of
heuristics – the system can try to match the pairs of elements based on their
types, names and placement in the diagram.

In conclusion, an XSem model with multiple versions contains two kinds
of links – inter-layer links connecting PIM and PSM constructs (in the form
of properties of PSM constructs that reference PIM constructs) and ver-
sion links connecting different versions of the same construct. Figure 4.2
illustrates this.

Figure 4.2: Model Links

In this figure there is one PIM construct (c1) and one PSM construct
(c2, derived from c1) in two versions, PIM-PSM links are drawn as ver-
tical arrows, version links as dotted lines, VL would for this model be
{(c1, c

′
1), (c2, c

′
2)}.

The version link between c2 and c′2 may seem to be redundant, but
without it some situations could be misinterpreted. See Figure 4.3 for an
example. In this example, the PIM remained unchanged but in the PSM
model, PSM class Employee was removed and replaced by a new class (also
named Employee but with different element label and cardinality). This
is indicated by the absence of version link between the pair of Employee
classes. The old diagram modeled Department element with sub-element
head-of-department. The new version models department with a list of all
employees. If we did not rely on the version links at the platform-specific
layer but only on the version links at the platform-independent layer, it
would not be possible to distinguish this situation (i.e. a class was removed,

57

another class was added) from the situation, where the class is an adjusted
version of the class from the previous version.

Figure 4.3: Version Links

4.4 Approaches to Revalidation

When the new version D′ of the diagram D is created, in general case it will
invalidate the set S(D′). After examining the set of changes, the evolution
algorithm can

• decide, whether S(D) was invalidated

• alternatively provide a revalidation instruction

Definition 4.4.1 (revalidation script). Revalidation script is a script or
sequence of commands that, when executed upon any document D ∈ S(D),
produces a document D′ ∈ S(D′).

58

As regards the implementation language for the revalidation script, there
are several options:

• Instruction for DOM API [34]; the document is loaded into memory
and the instruction executed by a tool implementing the DOM API.

• XQuery Update Facility script [38]; An XQuery Update Facility pro-
cessor performs the update commands from revalidation script on D
leaving D′ as a result.

• XSL transformation [16], An XSLT processor performs the transfor-
mation (the revalidation script) with D as input and D′ as output.

• SQL and SQL/XML script [14] – when the documents in S(D) are
stored in a relational database and obtained by SQL/XML, the script
could take form of SQL data definition language commands and SQL
data manipulation language commands to reflect the changes in the
database and then the SQL/XML scripts that were used to retrieve
the documents in the old version will be replaced by SQL/XML scripts
ready for the new version.

XSem-Evo uses XSLT as revalidation script implementation language
due to the wide support for XSLT among the tools working with XML data
and, especially, the database systems supporting XML Schema evolution.

59

Chapter 5

Changes Between Versions

In this chapter we will specify changes that can occur between two versions of
a PSM diagram, examine their impact on validity of documents and propose
a correction in the cases where validity is violated.

A Change detection algorithm is responsible for comparing the two ver-
sions of an XSem-H diagram and finding the set of changes between them.

Changes are defined as predicates, each having certain amount of param-
eters, the first parameter always corresponds to one of the scopes enumerated
above. For an n-tuple of constructs satisfying a change predicate c we will
use a notation c̃ and call it an instance of a change predicate c. The list of
instances of predicates is the output of the change detection algorithm.

5.1 Changes Categorization

We will divide the set of changes into four groups according to the character
of a change (classification is similar to [21]):

• addition – new construct was added

• removal – a construct was removed from the model

• migratory – a construct (and its subtree in the XSem-H tree) was
moved to another part of the XSem-H tree

• sedentary – an existing construct was adjusted in place, but not moved

60

Change Scope For each change there is also defined a type of construct,
where it could be detected (e.g. PSM class construct for class name change),
called scope. Here is the list of all scopes, each scope with a list of XSem
constructs:

• diagram: XSem diagram

• subordinate: association, attribute container, content choice, content
container

• superordinate: class, content choice, content container

• construct with attributes: class, attribute container

• association target: class, class union

• class: class

• association: association

• class union: class union

• attribute: attribute

Changes defined for scope s will be denoted changess. Some constructs
act as several types of scope (e.g. class construct must be examined by change
detection algorithm as superordinate, construct with attributes, association
target and class scope).

In the following text we assume v, v′ ∈ V to be the two compared versions
and D′ the new version of the diagram D. Constructs marked with apostro-
phe belong to M[v′], constructs without the apostrophe mark belong to
M[v].

Each of the following sections is devoted to the changes in respective
scopes listed above. Description of each change predicate contains expla-
nations the parameters of the predicate parameters, the definition of the
predicate definition and a list of actions required to revalidate the document
when the change occurs.

61

5.1.1 Diagram Changes

Diagram Root Added A new root is added in the diagram using an
addition change with the following parameters:

• C ′ ∈ D′.roots : root added in version v′

• i′ ∈ N0 : index of C ′ in D′.roots collection

Definition

(
C ′ ∈ D′.roots ∧ getInV ersion(C ′, v) = null∧

i′ = D′.roots.index(C ′)
) ↔ diagramRootAdded(C ′, i′)

Revalidation Adding a new diagram root does not violate validity, see
Section 5.3.

Diagram Root Removed A root was removed from the diagram using
a removal change with the following parameters:

• C ∈ D.roots : root removed in version v′

Definition

C ∈ D.roots ∧ getInV ersion(C, v′) = null ↔ diagramRootRemoved(C ′)

Revalidation To revalidate a diagram with removed root, a new root
must be selected. It must be one of the significant nodes from D′.roots. Before
the root class was removed, the user may have moved some constructs to a
different XSem-H tree and, thus, some parts of the existing content may be
preserved (removing a diagram root does not necessary result in discarding
the whole document).

Diagram Root Index Change The index of a root node in the roots
sequence changed using a migratory change with the following parameters:

• C ′ ∈ D′.roots: root whose index changed

• i′ ∈ N0: new index of C ′ in the collection D′.roots

62

Definition

(
C ′ ∈ D′.roots ∧ getInV ersion(C ′, v) 6= null ∧ i′ = D′.roots.index(C ′) ∧

i′ 6= D.roots.index(getInV ersion(C ′, v))
)

↔ diagramRootIndexChange(C ′, i′)

Revalidation Order of the nodes in roots sequence does not violate
validity of the document since only one of the root nodes can represent the
root XML element of the XML document, see Section 5.3.

5.1.2 Subordinate Node Changes

Subordinate abstract construct has a meta-property Parent pointing to its
parent node in the XSem-H tree. This parent can be a subject of change
when the construct is moved either to another node or to another position
within the same superordinate node. In the following text, let S ′ be the
examined subordinate construct (and S its previous version, if it exists).

Subordinate Component Index Change The order of S within collec-
tion S.Parent.Sub was changed in version v′ using a migratory change with
the following parameters:

• S ′ ∈ Csub: examined subordinate node

• i′ ∈ N0: new index of S in the collection S ′.Parent.Sub

Definition

(
getInV ersion(S ′, v) 6= null ∧

getInV ersion(S ′.Parent, v) = getInV ersion(S.Parent, v′) ∧
i′ = S ′.Parent.Sub.index(S ′) ∧ i′ 6= S.Parent.Sub.index(S)

)

↔ subordinateComponentIndexChange(S ′, i′)

Revalidation The situation again differs greatly from the case where
S ′.Parent is a content choice. If so, no revalidation is needed, because the
order of components under content choice has no impact on validity of doc-
uments.

63

When S ′.Parent is a class or a content container, it is crucial, whether S ′

or its subtree models any XML elements (S ′ is a significant node or subtree
of S ′ contains at least one significant node). As long as S ′ and its subtree
only models attributes, validity is not impaired, because XML data model
specifies that the order of attributes of an XML node is unimportant and no
application should rely on attributes being defined in some particular order.

Thus only when S ′.Parent is not a content choice and S ′ is or its subtree
contains any significant nodes, revalidation is needed. In that case, all con-
tent modeled by S ′ and its subtree must be moved to its correct position i
among the content modeled by other constructs (siblings) in S ′.Parent.Sub.

Subordinate Component Moved Subordinate component S was moved
from its parent P = S.Parent (and P ′ is its new version, if it exists) to
another superordinate node Q′ = S ′.Parent using a migratory change with
the following parameters:

• S ′ ∈ Csub: examined subordinate node

• Q′ ∈ Csup: new parent of S (superordinate node) in version v′, S ′ ∈
Q′.Sub

• i′ ∈ N0: new index of S ′ in the collection of Q′.Sub

Definition
(
getInV ersion(S ′, v) 6= null ∧

getInV ersion(S ′.Parent, v) 6= getInV ersion(S.Parent, v′) ∧
Q′ = S ′.Parent ∧ i′ = Q′.Sub.index(S ′)

)

↔ subordinateComponentMoved(S ′, Q′, i′)

Revalidation All content modeled by S ′ must be removed from P ′

(regardless S ′ being a content container, content choice or class). The way
of incorporating this content into the content of Q′ depends on the type of
construct Q.

If Q′ is a class or a content container, content is copied.
If Q′ is a content choice and if there exists some content modeled by

another construct in Q′.Sub, there are two semantically correct solutions.
Since Q′ is a content choice, there can be only one such construct, let it be
O′. See Figure 5.1 for an example.

64

Figure 5.1: Moving a Construct to Content Choice

Figure 5.1 depicts a simple PSM diagram Dc of a book purchase XML
format. Subelement book is required to have a subelement id and one of the
subelements isbn or full-name. In the new version, id is no longer required
and is now one of the options under content choice (so exactly one of the
three subelements can appear).

Each XML document D ∈ S(Dc) will have the id attribute and one
of the attributes in the content choice. Since the user decided to move the
id attribute under the content choice, it is now equally correct to either
preserve the id attribute or one of the other two.

The revalidation algorithm must either choose which solution it will pre-
fer:

• Always preserve the content modeled by the construct newly moved
to choice (S ′) – in the example attribute id. But if there are more
components moved to the same choice, this rule is still not decisive
enough.

• Conversely, prefer the construct that already was in the choice (O′).

• Set the priorities in the order of the components of the content choice
– in the example this order would be isbn, full-name, id)

or leave the decision up to the user.

65

5.1.3 Superordinate Node Changes

A Superordinate node is an abstract construct defined to involve a collection
of subordinate components Sub. Changes detectable in the scope of a su-
perordinate node concern changes in the collection as well. In the following
text, let P ′ be the examined superordinate node (and P its previous version,
if it exists).

Component Added New component was added into collection P ′.Sub.
using an addition change with the following parameters:

• P ′ ∈ Csup: examined superordinate node

• C ′ ∈ P ′.Sub: component added in the new version to P ′.Sub

• i′ ∈ N0: new index of C ′ in the collection of components of P ′

Definition

(
C ′ ∈ P ′.Sub ∧ getInV ersion(C ′, v) = null ∧ i′ = P ′.Sub.index(C ′)

)

↔ subordinateComponentAdded(P ′, C ′, i′)

Revalidation In general, when a component was added, the content
modeled by this component has to be created and inserted into each docu-
ment D ∈ S(D). The following alternatives can emerge:

• P ′ is a content choice – in this case, adding a component can be com-
pletely ignored, because the new component for content choice provides
the user with more options, but does not force him/her to use them
all (see Section 5.3).

• P ′ is a PSM class or a content container – in this case, the change can
not be ignored in general (but still can be in some special cases, e.g.
when C ′ is an association with l = 0), C ′ including its subtree must
be examined and the respective content must be created in the closest
significant node to C ′.

66

Component Removed Component C was removed from the collection
P ′.Sub using a removal change with the following parameters:

• P ′ ∈ Csup: examined superordinate node

• C ∈ P.Sub: component removed from P ′.Sub

Definition

(
C ∈ P.Sub : getInV ersion(C, v′) = null

)

↔ subordinateComponentRemoved(P ′, C)

Revalidation Removal of a construct from the model must be always
solved by removal of the content modeled by the removed construct from
the documents ∈ S(D).

However, the content modeled by the whole subtree of C can not be
instantly removed from the document, because some other changes may
move parts of this content to other parts of the document.

5.1.4 Changes of Association Target

Set Nchild = Cpsm ∪ CU contains nodes that can be targets of PSM associ-
ations – classes and class unions. Similarly to subordinate constructs, these
can be moved either from/to a class union or (theoretically) from one asso-
ciation to another. Also the order of components under the class union can
change.

Change of Class Index The order of class C within C.U.Comp changed
in version v′ using a migratory change with the following parameters:

• C ′ ∈ Cpsm: examined class

• U ′ ∈ CU : class union to which C ′ belongs

• i′ ∈ N0: new index of C in the union components collection U ′.Comp

67

Definition

(
getInV er(C ′, v) 6= null ∧

U ′ = C ′.U 6= null ∧ getInV er(U ′, v) 6= null ∧
getInV er(U ′, v) = getInV er(C ′, v).U

i′ = U ′.Comp.index(C ′) ∧ i′ 6= C.U.Comp.index(C)
)

↔ classIndexChange(C ′, U ′, i′)

Revalidation Similarly to reordering components of a content choice,
reordering components of a class union requires no revalidation, see Section
5.3.

Class Moved to a Class Union Class C that is a target node of an
association A is moved to a class union node U ′ using a migratory change
with the following parameters:

• C ′ ∈ Cpsm: examined class

• U ′ ∈ CU : class union to which C ′ is moved

• i′ ∈ N0: new index of C ′ in the components collection U ′.Comp of the
union

Definition

(
C = getInV er(C ′, v) 6= null ∧ U ′ = C ′.U 6= null ∧

i′ = U ′.Comp.index(C ′) ∧
(C.A 6= null ∨ C.A = C.U = null ∨ C.U 6= getInV er(U ′, v) 6= null)

)

↔ classMovedToClassUnion(C ′, U ′, i′)

Revalidation Moving a class to a class union requires a similar action
as moving a subordinate construct to a content choice (see paragraph Sub-
ordinate Component Moved on page 64). The content of C and its subtree
must be removed from components of A.Parent (if A is not empty) and ei-
ther added to the contents of the closest significant node to U ′ or discarded
completely (the possibilities are identical to those for moving subordinate
component to a content choice).

68

Class Moved out of a Class Union In version v, class C was among
the components of a class union U . In version v′ class C ′ is changed into a
target node of an association A′ or a root class using a migratory change
with the following parameters:

• C ′ ∈ Cpsm: examined class

• A′ ∈ Apsm: association leading to C ′ in version v′ of the diagram
(empty when C ′ is a root class)

Definition
(
C = getInV er(C ′, v) 6= null ∧ C.U 6= null ∧ A′ = C ′.A ∧

(C ′.A 6= null ∨ C ′.A = C ′.U = null)
)

↔ classMovedOutOfClassUnion(C ′, A′)

Revalidation When a class C is moved out of a class union U in the
new version, there are two possible situations for each document D ∈ S(D)
(providing that | U.Comp | ≥ 2 which is presumable):

• the corresponding part of D is valid against the subtree modeled by
C (the component C of U is used by the document)

• the corresponding part of D is valid against another subtree modeled
by O ∈ U.Comp : O 6= C (the component C is not used by the
document).

In the first case, the content modeled by Ĉ is removed from the closest
significant node of U and moved to the closest significant node of A′. If
getInV er(U, v′) 6= null (U was not completely removed in the new version),

content modeled by Ĉ must be replaced by content modeled by a selected
Ô′, O′ ∈ U ′.Comp. This content can be retrieved either from some other part
of document D (when O′ was moved into the class union in the new version):

∃A2s.t. classMovedToClassUnion(O′, U ′, A2, i
′) ∈ CD,D′,v,v′ : A2 6= null

→ use O′

If no suitable O′ can be found, new content must be generated to reval-
idate the document.

In the second case, there is no content modeled by Ĉ in D, so the content
for Ĉ ′ must be generated.

69

Cardinality There are two associations participating in this change –
association A′ which leads to C ′ and the association that leads to U , let
us denote it Au. Both of these associations can have non-default (6= (1, 1))
cardinality. The cardinality values for both associations must be respected
in the revalidation process, which means that

• some data may have to be discarded (when Au.u > A′.u);

• some data may have to be generated (when Au.l < A′.l).

The situation depends on the contents of each individual D ∈ S(D) and
the revalidation script must be ready for all alternatives.

Class Moved To Another Association Class C was a target node of
an association B 6= getInV er(A′, v) in version v, but in version v′ it was
changed into a target node of an association A′ using a migratory change
with the following parameters:

• C ′ ∈ Cpsm: examined class

• A′ ∈ Apsm: association leading to C ′ in version v′ of the diagram

Definition

(
A′ = C ′.A 6= null ∧ C = getInV er(C ′, v) 6= null ∧ C.A 6= null ∧

A′ 6= C.A
) ↔ classMovedToAnotherAssociation(C ′, A′)

Revalidation Content modeled by C ′ must be removed from its old
location (closest significant node to B.Parent) and moved to the contents
modeled by A′.Parent.

Class Moved To Roots Class C ′ is a root class, but in version v it was a
target node of some association A or among components of some class union
U . using a migratory change with the following parameters:

• C ′ ∈ Cpsm: examined class

• i′ ∈ N0: new index of C ′ in the collection D′.roots

70

Definition

(
C ′ ∈ D′.roots ∧ C = getInV er(C ′, v) ∧ i′ = D′.roots.index(C ′) ∧

(C.A 6= null ∨ C.U 6= null)
) ↔ classMovedToRoots(C ′, i′)

Revalidation If C ′.label 6= null, moving an existing class C to roots
collection of a diagram triggers making the instance of class C the root
element of the XML document. If C ′.label = null, instance of class C is
removed from its old location. If C.U 6= null, it must be taken into account
that there may not be an existing instance of C in the document.

5.1.5 Changes of Classes

In the following text, let C ′ ∈ Cpsm be a PSM class (and C its previous
version, if it exists).

Class Given an Element Label C ′ was assigned with an element label,
in the previous version, C did not have an element label using a sedentary
change with the following parameters:

• C ′ ∈ Cpsm: class assigned with an element label in the new version

• label ′ ∈ L: new element label of class C ′

Definition

(
getInV er(C ′, v) 6= null ∧ getInV er(C ′, v).label = null ∧

label ′ = C ′.label 6= null
)

↔ classGivenElementLabel(C ′, label ′)

Revalidation Attributes and elements modeled by a class without an
element label are propagated to the closest significant node. Let be P ′ be
the closest significant node of C.Parent′ and Q the closest significant node
of C (not necessarily getInV er(P ′, v) = Q). When C is assigned with an
element label, new XML element N must be created as a subelement of P ′

(its name will be the value of C ′.label), attributes modeled by Ĉ ′ will model

XML attributes of element N and elements modeled by Ĉ ′ will become
subelements of N .

71

Cardinality Association A′ leading to C ′ or association leading to the
class union U ′ (when C ′ ∈ U ′.Comp) can have non-default cardinality. In this

case, each instance of Ĉ ′ in XML document D must be treated separately,
i.e. new subelement Ni is created for the instance i. See Figure 5.2 – A′ is
between Purchase and Item, C ′ is Item. Each instance of Îtem – pair of
amount and unit-price elements – is wrapped in the new element Item.

(a) Adding element label

<Purchase purchase-no="1"
issue-date="1993-03-17">
<amount>2</amount>
<unit-price>

9.27
</unit-price>
<amount>4</amount>
<unit-price>

11.34
</unit-price>

</Purchase>

(b) Document valid for v

<Purchase purchase-no="1"
issue-date="1993-03-17">

<Item>
<amount>2</amount>
<unit-price>9.27</unit-price>

</Item>
<Item>

<amount>4</amount>
<unit-price>11.34</unit-price>

</Item>
</Purchase>

(c) Document revalidated for v’

Figure 5.2: Example – Adding of an Element Label

72

Element Label of a Class Removed In version v C had an element
label, in version v′ the element label was removed from class C ′ using a
sedentary change with the following parameters:

• C ′ ∈ Cpsm, class from which element label was removed

Definition

(
getInV er(C ′, v) 6= null ∧ getInV er(C ′, v).label 6= null ∧ C ′.label = null

)

↔ classElementLabelRemoved(C ′)

Revalidation The needed revalidation is an exact opposite of reval-
idation of classGivenElementLabel change. The wrapping XML element
corresponding to C (its name being the value of C.label) is removed, its
subelements inlined and its attributes moved to the closest significant node
of C ′. The example in Figure 5.2 can be used for illustration, only with the
versions v and v′ swapped.

Element Label of Class Changed The element label of class C was
changed using a sedentary change with the following parameters:

• C ′ ∈ Cpsm, class with changed element label

• label ′ ∈ L: new element label of class C ′

Definition

(
getInV er(C ′, v) 6= null ∧

getInV er(C ′, v).label 6= null ∧ C ′.label 6= null

label ′ = C ′.label ∧ label ′ 6= getInV er(C ′, v).label
)

↔ classElementLabelChanged(C ′, label ′)

Revalidation For each instance of content modeled by C, the XML
element (name being the value of C.label) must be renamed to label′ (at-
tributes and subelements are left intact).

73

5.1.6 Content Container Changes

The content container construct has a meta-property name (n) modeling
the name of the XML element wrapping contents of the content container.
Changes in the other meta-properties – Parent and Sub – were covered ear-
lier in this chapter in subsections Subordinate Node Changes (p. 66) and
Superordinate Node Changes (p. 63).

In the following text, let CC ′ be the examined subordinate construct
(and CC its previous version, if it exists).

Content Container Name Change Content container CC was renamed
using a sedentary change with the following parameters:

• CC ′ ∈ CC: examined content container

• n′ ∈ L: new content container name

Definition

(
getInV ersion(CC ′, v) 6= null ∧

n′ = CC ′.n ∧ n′ 6= getInV ersion(CC ′, v).n
)

↔ contentContainerNameChange(CC ′, n′)

Revalidation Revalidation for this change is simple - each XML ele-
ment modeled by CC named CC.n must be renamed to CC ′.n in the XML
document.

5.1.7 Attribute Changes

In the following text, let a′ be the examined PSM attribute (and a its pre-
vious version, if it exists).

Attribute Alias or Name Change A PSM attribute has two different
meta-properties that influence the name of the modeled XML attribute – n
and alias. Name is acquired from PIM (∀(a1, a2) ∈ Attpsm×Attpsm : a1.R =
a2.R ↔ a1.n = a2.n = a1.R.n) and unchangeable; that is why the optional
alias property is provided and alias (if specified) overrides n.

We will define auxiliary function aliasOrName:

74

Definition 5.1.1 (aliasOrName).

aliasOrName : Attpsm ↔ L

aliasOrName(a) =

{
alias if alias 6= null

n otherwise

and use the notion a.aliasOrName for aliasOrName(a).

The change is a sedentary change with the following parameters:

• a′ ∈ Attpsm: examined attribute

• n′ ∈ L: new attribute name

• alias ′ ∈ L: new attribute alias

Definition

(
getInV ersion(a′, v) 6= null ∧

(alias ′ = a′.alias ∧ alias′ 6= getInV ersion(a′, v).alias ∨
n′ = a′.n ∧ n′ 6= getInV ersion(a′, v).n)

)

↔ attributeAliasOrNameChange(a′, n′, alias ′)

Revalidation Revalidation for this change is simple – each XML
attribute modeled by a (named a.aliasOrName) must be renamed to
a′.aliasOrName in the XML document. In the case of a.alias being defined
and a.alias = a′.alias 6= null, revalidation in the XML documents is not
needed (only n was changed, but the property n is overridden by alias).

Attribute Index Change In the XSem-H model, collections of PSM at-
tributes are ordered sequences and the index of the attribute a (a.i) can vary
from version to version.

The change is a migratory change with the following parameters:

• a′ ∈ Attpsm: examined attribute

• i′ ∈ N0: new index of the attribute

75

Definition

(
getInV ersion(a′, v) 6= null ∧

getInV ersion(a′, v).Container = a′.Container

i′ = a′.i ∧ i′ 6= getInV ersion(a′, v).i
)

↔ attributeIndexChange(a′, i′)

Revalidation Revalidation depends on the type of construct
a′.Container. If it is a PSM class, then a′ models XML attribute and since
the order of attributes in an XML element is insignificant and applications
must not rely on the order of attributes, no revalidation is needed.

On the other hand, if a′.Container is an attribute container, the order
of PSM attributes determines the order of XML subelements, which is sig-
nificant. Reordering PSM attributes in an attribute container thus requires
reordering of the subelements modeled by the attributes with respect to the
new order.

Attribute Default Value Change Default value a′.d is changed in ver-
sion v′ using a sedentary change with the following parameters:

• a′ ∈ Attpsm: examined attribute

• d′ ∈ doma′.T : new default value of the attribute

Definition

(
getInV ersion(a′, v) 6= null ∧

d′ = a′.d ∧ d′ 6= getInV ersion(a′, v).d
)

↔ attributeDefaultV alueChange(a′, d)

Revalidation Changing a default value requires no revalidation. The
new default value can be used when generating new content during revali-
dation.

Moving Attribute Attribute a′ was moved to an attribute container A′

or class C ′ (in the previous version it was in class Co or another attribute

76

container Ao). This change does not cover moving an attribute to another po-
sition within the same class or attribute container (see paragraph Attribute
Index Change (p. 75)).

The change is a migratory change with the following parameters:

• a′ ∈ Attpsm: examined attribute

• C ′ ∈ Cpsm ∪ AC: attribute container into which a′ was added

• i′ ∈ N0: index of a′ in A′.Attpsm

Definition

(
getInV ersion(a′, v) 6= null ∧ i′ = a′.Container.Att.index(a′) ∧

C ′ = a′.Container ∧ C ′ 6= getInV ersion(a′, v).Container
)

↔ attributeMoved(a′, C ′, i′)

Revalidation Moving a PSM attribute a requires:

• deleting the instance of a from its previous location (it can be either
an XML attribute – if a.Container ∈ Cpsm, or an XML element with
simple content – if a.Container ∈ AC).

• create a new XML node of the respected type in the new location
(either a new XML attribute – if a′.Container ∈ Cpsm or an XML
element – if a′.Container ∈ AC).

Figure 5.3 shows an example of moving attributes from a class to an
attribute container (street, postcode, city) and from an attribute con-
tainer to a class (name, email). In version v′ element label of class Address
is removed, thus the subelements are propagated to the element Customer.

77

(a) Moving attributes

<Customer customer-no="12">
<name>John Smith</name>
<email>john@smith.org</email>
<Address street="Sunset Blvd."
postcode="12345" city="LA"/>

</Customer>

(b) Document valid for v

<Customer customer-no="12"
name="John Smith"
email="john@smith.cz">
<street>Sunset Blvd.</street>
<postcode>12345</postcode>
<city>LA</city>

</Customer>

(c) Document Revalidated for v’

Figure 5.3: Example – Moving Attributes Between Classes and Attribute
Containers

Attribute Type Change The new version can specify a different type
T ′ for an attribute instead of the former type T using a sedentary change
with the following parameters:

• a′ ∈ Attpsm: examined attribute

• T ′ ∈ T : new type of the attribute

78

Definition

(
getInV ersion(a′, v) 6= null ∧

T ′ = a′.Type ∧ T ′ 6= getInV ersion(a′, v).Type
)

↔ attributeTypeChanged(a′, a′.Type)

Revalidation Revalidation of documents may be skipped in the case
where domT ⊆ domT ′ . This condition is guaranteed if T is a type derived
from T ′ using restriction. The condition means that the requirements for the
documents were relaxed and more general set of values is allowed.

Such a situation may occur, but the reverse direction in the development
is more frequent. Instead of a general set of values, the requirements are
made more strict and only a specific subset of values is allowed. E.g. instead
of an arbitrary string for email attribute in the old version, only strings
valid against a regular expression describing all the possible email addresses
are allowed in the evolved version.

In such case, either

domT ⊇ domT ′

or the two sets are incomparable. Let us denote [a][S(D)] the set of all values
of attribute a in all documents in S(D), we can extend the previous approach
if:

[a][S(D)] ⊆ domT ′

In this case no revalidation is needed again. Verifying this condition can
not be possible in every case, however in some situations, it can be done
easily. When we return to the email example, the XML schema may define
email as an arbitrary string, but the system contains another component
that verifies each email more strictly, before it can occur in a document
D ∈ S(D). The applicability of this approach can be decided by the user.

If revalidation is really necessary, a revalidating function conva:

conva : domT ↔ domT ′

or

conva : [a][S(D)] ↔ domT ′

79

must be provided for the revalidation algorithm. The function conva can
be either shared for the pairs of types (∀(a, a′) ∈ Attpsm × Attpsm ∩ VL :
a.Type = T ∧ a′.Type = T ′ ↔ conva = convT,T ′ , convT,T ′ being the shared
revalidation function for types T and T ′) or defined separately for each
attribute a.

Attribute Cardinality Change A cardinality interval (a.l, a.u) is changed
to (a′.l, a′.u). using a sedentary change with the following parameters:

• a′ ∈ Attpsm: examined attribute

• l′ ∈ N0: new lower cardinality

• u′ ∈ N0 ∪ {∗}: new upper cardinality

Definition
(
getInV ersion(a′, v) 6= null ∧ l′ = a′.l ∧ u′ = a′.u ∧

(getInV ersion(a′, v).l 6= l′ ∨ getInV ersion(a′, v).u 6= u′)
)

↔ attributeCardinalityChanged(a′, l′, u′)

Revalidation For cardinality changes, there are two revalidation ac-
tions, from which none, one or both must be undertaken to revalidate a
document (varying from document to document).

• if a′.l > a.l, new content may have to be added for some documents

• if a′.u < a.u, content may have to be removed from some documents

For each document D ∈ S(D), the number of XML nodes (elements
or attributes, depending on a.Container being a PSM class or an attribute
container) that are instances of a differs (unless a.l = a.u), therefore the
amount of XML nodes that need to be added/removed differs too.

When removing nodes, the algorithm must either choose which nodes to
keep and which to delete (one solution can be always keep those nodes that
occur earlier in the document) or leave this choice up to the user.

When adding nodes, the values for these nodes must be assigned. In real
world applications, raising the lower cardinality from a.l ≥ 1 to a′.l > a.l is
rare, but yet possible. On the other hand, making an optional subelemen-
t/attribute mandatory is a routine practice (from a.l = 0 to a′.l > a.l). That

80

is why approaches to generating values of attributes need to be discussed
(for this example, a suitable solution would be using a default value of the
attribute – a.d).

5.1.8 Changes in Attribute Collections

A collection of PSM attributes is a part of XSem-H constructs PSM class
and Attribute container. Attributes and elements can be added/removed
to/from the collection. In the following text, let N ′ ∈ Cpsm ∪ AC be a PSM
class or an attribute container (and N its previous version).

Attribute Added A new attribute was added into the collection (at-
tribute did not exist in the previous version) using an addition change with
the following parameters:

• N ′ ∈ Cpsm ∪ AC: examined construct

• a′ ∈ N ′.Att: new attribute added in version v′

• i ∈ N0: index of attribute a′ in the owner collection

Definition

(
a′ ∈ N ′.Attpsm ∧ getInV ersion(a′, v) = null ∧

i′ = a′.Container.Att.index(a′)
)

↔ attributeAdded(N ′, a′, i′)

Revalidation If attribute a′ is not added as optional (a′.l = 0), new
content must be added into the document – either an XML element with
simple content (if a.Container ∈ AC) or an XML attribute (if a.Container ∈
Cpsm). More about generating content can be found in Section 5.4.

Attribute Removed An attribute was removed from the model com-
pletely using a removal change with the following parameters:

• N ′ ∈ Cpsm ∪ AC: examined construct

• a ∈ N.Att: removed attribute

81

Definition

a ∈ N.Attpsm ∧ getInV ersion(a′, v′) = null

↔ attributeRemoved(N ′, a)

Revalidation All instances of attribute a must be removed from the
document (XML attributes or XML elements with simple content).

5.1.9 Class Union Changes

Classes can be added or removed from a class union. In the following text,
let CU ′ ∈ CU be a class union (and CU its previous version).

Class Added to a Class Union A new component was added into the
collection (the component did not exist in the previous version) using an
addition change with the following parameters:

• CU ′ ∈ CU : examined class union

• C ′ ∈ Cpsm: new class added to the union in version v′

• i′ ∈ N0: index of class C ′ in the union

Definition

(
C ′ ∈ CU ′.Comp ∧ getInV ersion(C ′, v) = null ∧

i′ = C ′.U.Comp.index(C ′)
) ↔ classAddedToUnion(CU ′, C ′, i′)

Revalidation Adding a class to a class union does not require revali-
dation of documents, but only gives more choices when creating new docu-
ments.

Class Removed from Class Union A class in a class union was removed
from the model using a removal change with the following parameters:

• CU ′ ∈ CU : examined class union

• C ∈ Cpsm: removed PSM class

82

Definition

(
C ∈ CU.Comp ∧ getInV ersion(C, v′) = null

)

↔ classRemovedFromUnion(N ′, C)

Revalidation If CU ′.A.l = 0 (where CU.A is the association leading
to class union), the content modeled by the union is optional and its simple
removing is sufficient to revalidate the document.

If CU ′.A.l > 0 and there is an instance of C in the XML document, it
must be removed and replaced by an instance of another component O′ ∈
CU ′.Comp. In some cases, the content modeled by O′ can be retrieved from
some other part of the document. It is possible when O – the old version of
O′ – was moved to the union CU ′ in this version (O /∈ CU.Comp) and there
exists an instance of CU . In other cases, content must be generated.

Class Union Moved A class union node is moved from one place in the
diagram to another using a migratory change with the following parameters:

• CU ′ ∈ CU : examined class union

• A′ ∈ Apsm: association leading to CU ′ in version v′

Definition

(
getInV ersion(CU ′, v) 6= null ∧ A′ = CU ′.A

getInV er(A′, v) 6= getInV er(CU ′, v).A
)

↔ classUnionMoved(CU ′, A′)

Revalidation Since union nodes themselves do not have corresponding
content in the XML documents (only their components have), revalidation
is discussed with the changes in the union components collection.

5.1.10 Association Changes

In the following text, let A′ be a PSM association (and A its previous ver-
sion).

83

Association Cardinality Change A cardinality interval (A.l, A.u) is
changed to (A′.l, A′.u). using a sedentary change with the following param-
eters:

• A′ ∈ Apsm: examined PSM association

• l′ ∈ N0: new lower cardinality

• u′ ∈ N0 ∪ {∗}: new upper cardinality

Definition

(getInV ersion(A′, v) 6= null ∧ l′ = A′.l ∧ u′ = A′.u

(getInV ersion(A′, v).l 6= l′ ∨ getInV ersion(A′, v).u 6= u′))

↔ associationCardinalityChanged(A′, l′, u′);

Revalidation Similarly as with attribute cardinality change, there ex-
ist two revalidation actions, from which none, one or both must be under-
taken to revalidate a document (varying from document to document).

• if A′.l > A.l, new content may have to be added for some documents

• if A′.u < A.u, content may have to be removed from some documents

In case of PSM attributes, the content added or deleted involves either
XML attributes or leaf XML elements with simple content. With PSM as-
sociation, the revalidation actions have to deal with whole XML subtrees.

For each document D ∈ S(D), the number of instances of A.Child differs
(unless A.l = A.u), therefore the amount of instances of A that need to be
added/removed differs too.

When removing, the algorithm must either choose which instances to
keep and which to delete (one solution can be always keep those that occur
earlier in the document) or leave this choice up to the user.

When adding, the content for the new instances must be generated (this
involves generating a whole XML subtree). More about generating content
can be found in Section 5.4.

84

A Node Added Under Association A new class or class union node is
added into the diagram using an addition change with the following param-
eters:

• A′ ∈ Apsm: examined PSM association

• C ′ ∈ CU ∪ Cpsm: added node

Definition

getInV er(A′, v) 6= null ∧ C ′ = A′.Child ∧ getInV er(C ′, v) = null

↔ associationChildAdded(A′, C ′)

Revalidation Adding a node under a PSM association requires creat-
ing new content (the amount of instances required is determined by A′.l).

A Node Removed Under Association A Class or class union node
is removed from the diagram using a removal change with the following
parameters:

• A′ ∈ Apsm: examined PSM association

• C = A.Child ∈ CU ∪ Cpsm: removed node

Definition

(
getInV er(A′, v) 6= null ∧

C = A.Child ∧ getInV er(C, v′) = null
)

↔ associationChildRemoved (A′, C)

Revalidation Removal of a node under a PSM association requires
complete removal of all the content modeled by the node.

5.2 Changes Summary

Definition 5.2.1 (Set of Changes). The set of all changes between the two
versions v and v′ of a diagram (D and D′) will be denoted CD,D′,v,v′.

Table 5.1 lists all changes with their respective types grouped by scope.

85

Scope Name Type
Diagram diagramRootAdded Addition

diagramRootRemoved Removal
diagramRootIndexChange Migratory

Subordinate subordinateComponentIndexChange Migratory
subordinateComponentMoved Migratory

Superordinate subordinateComponentAdded Addition
subordinateComponentRemoved Removal

Association target classIndexChange Migratory
classMovedToClassUnion Migratory
classMovedOutOfClassUnion Migratory
classMovedToRoots Migratory

Class classGivenElementLabel Sedentary
classElementLabelRemoved Sedentary
classElementLabelChanged Sedentary
classAnyAttributeAllowed Sedentary
classAnyAttributeForbidden Sedentary

Content container contentContainerNameChange Sedentary
Attribute attributeAliasOrNameChange Sedentary

attributeIndexChange Migratory
attributeDefaultValueChange Sedentary
attributeMoved Migratory
attributeTypeChange Sedentary
attributeCardinalityChange Sedentary

Construct with attributes attributeAdded Addition
attributeRemoved Removal

Class Union classAddedToUnion Addition
classRemovedFromUnion Removal

Association associationCardinalityChange Sedentary
associationChildAdded Addition
associationChildRemoved Removal

Table 5.1: Changes Summary

5.3 Changes Not Affecting Validity

One set of changes consists of changes that do not affect validity of the
existing documents. It may seem futile to be concerned with these changes
and we can simply ignore them, but being able to detect any changes in
the XSem tree can be useful for purposes other than translating to XML
schema.

86

Even though a change c̃ ∈ CD,D′,v,v′ does not violate validity of S(D),
it will affect the translation algorithm, which implies that the XML schema
translated from the diagram D will differ from the schema translated from
D′.

E.g. reordering components of content choice has no effect on validity,
because in a valid XML document only one of the possible choices will be
selected. Still, the translated schemes will differ in the order of declarations
in the content of appropriate <xs:choice> (assuming the XML Schema lan-
guage is utilized for translation). Addition of a new component into content
choice also has no effect on validity, but the change is in this case very signif-
icant. Assuming that the XML documents are shredded into a set of tables
of a relational database, this set must be altered to handle storing those
documents that will use the newly added component in content choice in
the future.

Familiarity with changes not affecting validity can significantly simplify
the process of revalidation. Of course, if we are sure that all changes made
in the evolved schema belong to the set of changes not affecting validity, it
is correct to skip the revalidation of S(D), because validity against the new
schema is guaranteed.

Changes not affecting validity can be divided into these groups:

• changes applied only during creation of new elements/attributes in the
XML document

• changes giving more options and possibilities than the old schema

• changes broadening cardinality interval

• changes adding optional content

• changes caused by differences between XSem model and XML model.

For the set of changes not affecting validity of the documents in S(D) we
will use the notion CNI

D,D′,v,v′ . Each type of changes not affecting validity will
be defined as a set or subset of instances of one or more change predicate.
For example, the following statement:

∀ attributeDefaultV alueChange c̃ : c̃ ∈ CNI
D,D′,v,v′

87

says that each instance c̃ of attributeDefaultValueChange is a change not
affecting validity. The following statement:

∀ subordinateComponentAdded c̃, c̃.P ′ ∈ CH : c̃ ∈ CNI
D,D′,v,v′

says that only those instances of subordinateComponentAdded change
modifying a content choice are changes not affecting validity.

5.3.1 Changes Applied During Creation

If a change creates structures that are taken into account only for newly
created elements/attributes, validity of the set of existing documents is not
violated.

Assigning/Modifying Default Value

∀ attributeDefaultV alueChange c̃ : c̃ ∈ CNI
D,D′,v,v′ (5.1)

XSem data model allows to assign default values to attributes. Attributes
in XSem model either attributes of elements (when declared in PSM classes)
or elements with simple content (when defined inside an attribute container).

When a default value is assigned to an attribute that did not have a
default value in the original schema, all affected elements/attributes from
the set of existing documents must already have their values specified. The
change does not violate validity of the set of existing documents.

If an attribute had a default value in the original schema and it was
modified in the evolved schema, the value of the affected elements/attributes
in the set of existing documents that do not have their values specified
changes. This change is not expressed in the XML documents themselves,
but in the XML schema so no revalidation is needed.

5.3.2 Changes Giving More Choices

Adding a new member to a set from which members are selected in the
XML document gives users creating and modifying documents more choices
in the future, but does not violate validity of the documents already created.
Several changes can be put into this category

88

Adding more classes to class union/adding more components to
content choice

∀ classAddedToUnion c̃ : c̃ ∈ CNI
D,D′,v,v′

∀ subordinateComponentAdded c̃, c̃.P ′ ∈ CH : c̃ ∈ CNI
D,D′,v,v′ (5.2)

A new class in Class Union allows for more possible types of content in
an XML element. All previous possibilities are preserved and thus validity
of the set of existing documents is not violated. Analogously for adding
components to Content Choice.

Allowing more top level elements

∀ diagramRootAdded c̃, c̃.C ′ ∈ CC ∪ {C ∈ Cpsm : C.label = null} :

c̃ ∈ CNI
D,D′,v,v′ (5.3)

XSem subtrees with roots being content containers or PSM classes having
an element label are added in the PSM diagram.

Adding an XSem-H subtree with content container or PSM Class having
an element label as a root allows another root element in the valid docu-
ments. Newly created documents can be created following the new XSem
subtree, but the set of existing documents remains valid.

Until some component of the new subtree is referenced from one of the
subtrees existing in the previous versions (e.g. via means of structural repre-
sentative construct), the presence of a new subtree has no effect on existing
documents (new documents can of course be created as instances of the new
subtree).

Adding XSem subtrees with a root class without an element label

∀ diagramRootAdded c̃, c̃.C ′ ∈ CC ∪ {C ∈ Cpsm : C.label 6= null} :

c̃ ∈ CNI
D,D′,v,v′ (5.4)

89

Adding an XSem-H subtree with a root being a PSM class without label
defines new type of content that can not appear in any document in the set
of existing documents.

Until some component of the new subtree is referenced from one of the
subtrees existing in the previous versions (e.g. via means of structural repre-
sentative construct), the presence of a new subtree has no effect on existing
documents.

Changing the type of an attribute to a more general type

∀ attributeTypeChange c̃, domgetInV er(c̃.a′,v).Type ⊆ domc̃.T ′ :

c̃ ∈ CNI
D,D′,v,v′ (5.5)

If type T of attribute a is changed to T ′ in D′ and domT ⊆ domT ′ , then
all values used in S(D) valid against D remain valid against D′ and D′ is
backwards compatible.

Depending on tghe particular storage of XML documents, some addi-
tional changes can be also declared non-invalidating. If documents in the set
of existing documents are stored as text (e.g as XML files or in a CLOB
column in a relational database), values of all attributes are stored as text.
In that case any type can be changed to string (or normalizedString and
possibly user-defined types derived from string) without invalidating S(D).

In other scenarios (e.g. when values of an attribute typed integer are
stored in a NUMBER column in a relational database), changing a type of
an attribute to string may invalidate the set of existing documents.

5.3.3 Changes Broadening Cardinality Interval

∀ associationCardinalityChange c̃,

getInV er(c̃.A′, v).l ≥ c̃.l′ ∧ getInV er(c̃.A′, v).u ≤ c̃.u′ : c̃ ∈ CNI
D,D′,v,v′

∀ attributeCardinalityChange c̃,

getInV er(c̃.a′, v).l ≥ c̃.l′ ∧ getInV er(c̃.a′, v).u ≤ c̃.u′ : c̃ ∈ CNI
D,D′,v,v′

(5.6)

90

XSem defines the cardinality of PSM associations as a pair (l, u), where
l ∈ N0 and u ∈ N ∪ {∗} and inequality l ≤ u always holds (∗ being greater
than any l). Cardinality of attributes is defined in a similar manner.

The cardinality interval (l, u) can be changed in the evolved schema to
(l′, u′). If conditions:

l′ ≤ l

u′ ≥ u (5.7)

hold, it is guaranteed that the XML fragments valid against the original
schema remain valid for the evolved schema.

If one of the conditions in 5.7 is violated, it is impossible to decide
whether some of the documents from S(D) will become invalid. Even nar-
rowing the cardinality interval can still leave all the documents in S(D′) valid
(e.g. when l = 5 and l′ = 4 for an attribute a in an attribute container c, but
the element <a> does not occur for five times in any document D ∈ S(D)).

5.3.4 Changes Adding Optional Content

It is possible to view the changes that add optional content as a special
case of changes broadening the cardinality interval (using the same terms as
above, it means that l = 0, u = 0, l′ = 0 and u′ > 0) but this perspective
can be rather unnatural to the user, so we will discuss them separately.

When XML schema evolution takes a form of adding new content and
backward compatibility is desired, adding new content as optional is a rec-
ommended approach (for more recommendation on writing backward and
forward compatible schemas and queries see [22]).

The whole set of existing documents will lack the newly added content,
but will remain valid due to the content being declared as optional.

Adding optional attribute, association

∀ attributeAdded c̃, c̃.a′.l = 0 : c̃ ∈ CNI
D,D′,v,v′

∀ subordinateComponentAdded c̃, c̃.C ′ ∈ Apsm ∧ c̃.C ′.l = 0 : c̃ ∈ CNI
D,D′,v,v′

(5.8)

91

Each attribute a′ and association A′ in XSem model has its cardinality
(l′, u′). If a new attribute/association is added having l′ = 0, it will model
an optional content. In case of attributes, the form being either attribute
of an element or an element with simple content depending on whether the
attribute is inside a PSM class or an attribute container respectively. In case
of associations the modeled content is either a PSM subtree when A.Child
is a significant node or a part of the content of the closest significant node
of A.Child.

5.3.5 Utilizing Any Attribute Flag

∀ classAnyAttributeAdded c̃ : c̃ ∈ CNI
D,D′,v,v′

∀ attributeAdded c̃, c̃.Container′ ∈ Cpsm ∧
getInV er(c̃.Container′, v).a = true : c̃ ∈ CNI

D,D′,v,v′ (5.9)

Adding Any Attribute flag to a PSM Class or adding an attribute where
Any Attribute is declared belong to this category.

Allowing Any Attribute allows the user to add an arbitrary attribute to
the significant ancestor of the class. Validity of the set of existing documents
is not impaired.

Allowing Any Attribute for a PSM Class can be an efficient way to give
the users a certain level of extensibility when working with the schema and
achieving the forward-compatibility. When Any Attribute was defined in the
original schema, attributes can be added arbitrarily in the evolved schema
and the set of existing documents will remain valid.

5.3.6 Changes Caused by Differences between XSem
Model and XML Model

Some properties of the constructs in the XSem model do not directly influ-
ence the content of the set S(D).

Reordering Attributes in PSM Classes

∀ attributeIndexChange c̃, c̃.a′.Container′ ∈ Cpsm : c̃ ∈ CNI
D,D′,v,v′ (5.10)

92

Since attributes in PSM classes model XML attributes and the order of
XML attributes in an XML element is insignificant, this change does not
violate validity.

Reordering Classes in Class Unions/Components in Content Choic-
es/Diagram roots

∀ diagramRootIndexChange c̃ : c̃ ∈ CNI
D,D′,v,v′

∀ classIndexChange c̃ : c̃ ∈ CNI
D,D′,v,v′

∀ subordinateComponentIndexChange c̃, c̃.S ′ ∈ CH : c̃ ∈ CNI
D,D′,v,v′ (5.11)

Reordering collections of content choice/class union nodes has no effect
on the validity of XML data.

5.4 Generating Content

Certain modifications in the diagram may require new content to be added
into some (or all) documents in S(D) to revalidate the documents:

• new non-optional construct is added in the diagram (subordinateCom-
ponentAdded, attributeAdded)

• cardinality interval was extended from (l, u) to (l′, u′) where l < l′

(attributeCardinalityChange, associationCardinalityChange)

• a construct was moved or deleted from content choice or non-optional
class union and its instance in the XML document must be replaced by
instance of one of the other components in the content choice/classes in
the class union (subordinateComponentMoved, classMovedOutOfClas-
sUnion).

This section will propose solutions to this issue.

5.4.1 User-Provided Content

Leaving the issue up to the user to solve it can be very convenient and in
some cases the only correct solution. The revalidation script for evolution

93

from version v to v′ can be generated by the system with some “blanks” left
for the user to fill or take a form of a parameterized script with the values
of parameters to be filled when executing the script.

Figure 5.4 contains a simple example and Figure 5.5 shows a revalidation
script that references additional document (in Figure 5.6) to provide the
necessary data. New attribute email was added to element customer and a
document CustomerData.xml contains list of emails of all customers.

Figure 5.4

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="2.0"

xmlns:xsl="..">
<xsl:output method="xml" indent="yes" />

<xsl:variable name="cl"
select="document(’CustomerList.xml’)/Customers" />

<xsl:template match="/Customer">
<Customer>

<xsl:copy-of select="@name" />
<xsl:copy-of select="@customer-no" />
<xsl:variable name="cn" select="@customer-no" />
<xsl:copy-of select="$cl/Customer[@customer-no = $cn]/email" />

</Customer>
</xsl:template>

</xsl:stylesheet>

Figure 5.5: Revalidation stylesheet

94

<?xml version="1.0"?>
<Customers>

<Customer customer-no=’34’>
<email>john.doe@example.org</email>
<email>john.doe@company.com</email>

</Customer>
...
<Customer customer-no=’77’>

<email>martin.smith@domain.org</email>
</Customer>

</Customers>

Figure 5.6: Document Referenced from Revalidation Stylesheet

5.4.2 Default Content

The revalidation script can also create the missing content itself – the struc-
ture of the internal nodes is given, the values for leaf nodes and attributes
can be supplied with the default values of PSM attributes (if defined) or the
default values for the given type of each PSM attribute (an empty string for
xs:string type etc.). Where choices/unions are present, the first compo-
nent/class is always selected. Such a content will be called default instance.

Here we will describe an algorithm that returns a default instance of an
XSem-H subtree with root N . Each time a content is needed to be generated,
the default instance can be created for the particular subtree.

First, we will show how to obtain a default instance grammar Gdef
D from an

arbitrary XSem-H diagram D. Then, with this grammar, a default instance
of any subtree in diagram D can be generated from a particular nonterminal
node.

For grammar Gdef
D let N be the set of nonterminals and T the set of

terminals.

95

T ={l|∃ PSM class C ∈ D.N : C.label = l} ∪
{n|∃ content container CC ∈ D.N : CC.n = n} ∪
{an|∃ PSM attribute a ∈

⋃
H:Cpsm∪ AC

H.Attpsm : a.n = an} ∪

{ad|∃ PSM attribute a ∈
⋃

H:Cpsm∪ AC
H.Attpsm : a.d = ad} ∪

{Td|∃ type T ∈ T : Td is a default value for T} ∪
{<,/ >, , attribute=}

The terminals are labels of all classes, names of all content containers and
attributes, default values for all attributes and types and the set of strings
in the last line.

The set of nonterminals N will consists of:

• N̂ , N̂ elm, N̂att where
N ∈ Cpsm ∪ AC ∪ CC ∪ CH ∪ CU

• Âelm, Âatt where A ∈ Apsm

• â for each PSM attribute a

• Âelm
exp for each association A ∈ Apsm and âelm

exp for each PSM attribute a

Productions then follow the structure of XSem-H tree:
For each class Cl with element label, attributes a1, ..., ak and components
S1, ..., Sm add rules:

Ĉl → < Cl.label â1...âk Ŝ1

att
...Ŝm

att
> Ŝ1

elm
...Ŝm

elm
< /Cl.label >

Ĉl

elm → Ĉl

For each class Cnl without element label, attributes a1, ..., ak and components
S1, ..., Sm add rules:

Ĉnl

att → â1...âk Ŝ1

att
...Ŝm

att

Ĉnl

elm → Ŝ1

elm
...Ŝm

elm

Ĉnl → Cnl
elm Cnl

att (∗)

96

For each content container CC with components S1, ..., Sm add rules:

ĈC → < CC.n Ŝ1

att
...Ŝm

att
> Ŝ1

elm
...Ŝm

elm
< /CC.n >

ĈC
elm → ĈC

For each content choice CCh with components S1, ..., Sm add rules:

ĈCh
att → Ŝ1

att

ĈCh
elm → Ŝ1

elm

ĈCh → CChelm CChatt (∗)

For each class union CU with class C1, ..., Cm add rules:

ĈU
att → Ĉ1

att

ĈU
elm → Ĉ1

elm

ĈU → CU elm CUatt (∗)

For each attribute container AC with class a1, ..., ak add rules:

ÂC
att → λ

ÂC → â1...âk

ÂC
elm → ÂC

For each association A with target N add rules:

Â
elm → Âelm

exp ...Âelm
exp (where Âelm

exp is repeated A.l times)

Â
att → N̂att

Âelm
exp → N̂ elm

For each attribute a inside an attribute container add rules:

97

â → âelm
exp ...âelm

exp (where âelm
exp is repeated a.l times)

if a.d 6= null :

âelm
exp →< a.aliasOrName > a.d < /a.aliasOrName >

otherwise :

âelm
exp →< a.aliasOrName > Td < /a.aliasOrName >

For each attribute a of a PSM class add rules:

if a.d 6= null :

â → attribute=‘a.d’ otherwise :

â → attribute=‘Td’

The last two rules add an generate an XML attribute with value. Note that
there are only nonterminals on the right-hand side of the rules.

To generate an instance of an XSem-H subtree with root N , which is a
significant node, just start with the nonterminal N̂ . For each nonterminal,
there is only one rule with the given nonterminal on the left-hand side, thus
the grammar Gdef

D is deterministic.
When N is not a significant node, the result of generation will be a set

of attribute definitions (as a result of propagation to significant nodes) and
an XML fragment (rules marked with (∗) are the beginning rules when the
starting nonterminal corresponds to nonsignificant node).

5.4.3 Utilization of PIM Links

When a new XSem-H construct is added, it also has links to the new version
of the platform-independent model. These links can be used to obtain the
correct data when content is generated for the new construct.

One example could be the situation where data is stored in a relational
database. The content for XSem-H construct can be then retrieved from
the data in the database. This would be possible if there is a model of a
relational database linked to the PIM. This approach will be a subject of
future work.

98

5.5 Oracle In-Place XML Schema Evolution

This section shows the relation of XSem changes non-invalidating to In-Place
evolution operations in Oracle Database 11g.

Oracle Database 11g uses two different approaches to XML Schema evo-
lution [4]:

• Copy-based approach – all stored documents valid against the old
schema are reinserted into the evolved storage; this approach is slower,
but there are no restrictions on the type of changes

• In-place evolution – changes in the schema are applied to update the
storage, but the stored documents are not reinserted; this approach is
faster, but the new schema must be backwards-compatible and the set
of allowed evolution operations is limited

The previous section summarized the backwards-compatible changes be-
tween the two versions of an XSem-H diagram. When the evolved diagram
is translated into an XSD, this new XSD can be used for in-place evolution.
However, not all types of changes are supported by Oracle in-place evolution.
Table 5.2 shows a list of all operations on the XSD and their counterpart
changes in XSem-H diagrams as described in the previous section, in some
cases, with other applicability conditions. If all changes in CD,D′,v,v′ are in-
stances of changes in Table 5.2 and all applicability conditions are met,
in-place evolution approach can be used

99

XSD operation XSem-H change
Add an optional element/attribute to a
complex type or group/attribute group

attributeAdded (5.8)
subordinateComponentAdded (5.8)

Convert an element from a simple type
to a complex type with simple content

no counterpart in XSem-Evo

Increase the value attribute of an exist-
ing maxLength element

attributeTypeChange (5.5)1

Add an enumeration value (only to the
end of an enumeration list)

attributeTypeChange (5.5)2

Add a global element diagramRootAdded (5.3)
Add a global attribute no counterpart in XSem-Evo
Add or delete a global complex type diagramRootAdded (5.3)

diagramRootAdded (5.4)
diagramRootRemoved (5.4)3

Add or delete a global simple type no counterpart in XSem-Evo
Decrease minOccurs/increase maxOc-
curs attribute value (increase maxOc-
curs only for data stored as binary
XML)

attrbiuteCardinalityChange (5.6)
associationCardinalityChange (5.6)

Add or delete a global group or an at-
tributeGroup

diagramRootAdded (5.4)
diagramRootRemoved (5.4)4

Add, modify, or delete a comment or
processing instruction

no counterpart in XSem-Evo

Change the xdb:defaultTable attribute
value

no counterpart in XSem-Evo

1. Both the old and the new type must be the same types except for the increased
maxLength.

2. Both the old (T) and the new type (T ′) must be enumeration types and the list of
values of T must be a prefix of the list of values of T ′.

3. Only if the removed root or any part of its subtree is not referenced from any
structural representative in the diagram.

4. Only if the removed root or any part of its subtree is not referenced from any
structural representative in the diagram.

Table 5.2: In-place Evolution Operations and their Counterparts in XSem-
Evo

5.6 Detection Algorithm

Possible changes that can occur between two versions of a PSM diagram were
all defined in the previous section. The detection algorithm – see Algorithm
2 – looks for combinations of parameters satisfying the change predicates.

100

The output of Algorithm 2 is CD,D′,v,v′ – set of combinations of parame-
ters satisfying a change predicate.

Algorithm 2 Change Detection

Input: old and new version v, v′ ∈ V , XSem diagram D, new version of the
XSem diagram D′

Output: CD,D′,v,v′ – set of changes between the two versions of the diagram
D.

1: CD,D′,v,v′ ← ∅
2: for all N in D′.N ∪Apsm ∪ Attpsm do
3: for all scope type s of all scopes of N do
4: for all change type c of changess do
5: for all combinations of parameters c̃ satisfying detected change

of type c on N do
6: CD,D′,v,v′ ← CD,D′,v,v′ ∪ {c̃}
7: end for
8: end for
9: end for

10: end for

Invariants for the Set of Changes

Definition 5.6.1 (Subsets of CD,D′,v,v′). We will denote Caddition
D,D′,v,v′, Cremoval

D,D′,v,v′,

Cmigratory
D,D′,v,v′ ⊆ CD,D′,v,v′ the sets of detected addition, removal and migratory

changes. Each of these sets can be factorized by the construct the change
addds/removes/moves:

Adde′ = {c̃ ∈ Caddition
D,D′,v,v′ : c̃ adds construct e’}

Reme = {c̃ ∈ Cremoval
D,D′,v,v′ : c̃ removes construct e}

Move′ = {c̃ ∈ Cmigratory
D,D′,v,v′ : c̃ moves construct e’}

Sede′ = {c̃ ∈ Csedentary
D,D′,v,v′ : c̃ is a sedentary change of construct e’}

The following conditions hold for the detected set of changes CD,D′,v,v′ :

101

∀e ∈Mpsm :

|Adde′| ≤ 1 ∧ |Reme| ≤ 1 ∧ |Move′| ≤ 1 ∧
|Adde′|+ |Reme|+ |Move′| ≤ 1 ∧
|Sede′|+ |Move′| = 0 ∨ |Adde′|+ |Reme| = 0 ∧
|Sede′|+ |Move′|+ |Reme| > 0 → getInV er(e′, v) 6= null∧
|Sede′|+ |Move′| > 0 → getInV er(e′, v′) 6= null ∧
|Reme| > 0 → getInV er(e, v′) = null ∧
|Adde′| > 0 → getInV er(e′, v) = null ∧

102

Chapter 6

Revalidation

This chapter describes an algorithm producing a revalidation script that pro-
duces a revalidated document D′ ∈ S(D′) when applied on XML document
D ∈ S(D).

In the previous chapter we defined how to obtain the set of changes
CD,D′,v,v′ . Because changes are defined as changes in the XSem model, sim-
ilarly as XSem model can be translated to an XML schema in any XML
schema language, the set of changes can be used to generate a revalidation
script in any kind of implementation language.

Assuming that the XQuery Update Facility is the implementation lan-
guage, each change c̃ ∈ CD,D′,v,v′ would be translated to an XQuery Update
command(s):

• addition changes to insert commands

• removal changes to delete commands

• migratory changes would generate first insert command referencing
some part of the document and thus copying the content and delete

command to remove the content from its old location

• sedentary changes would generate rename command or again insert

or delete commands

Each command would then be executed upon the revalidated document.
The procedure when using DOM API would be analogous.

XSem-Evo uses XSL stylesheets as implementation language due to the
wide support for XSLT among the tools working with XML data and espe-
cially the database systems supporting XML Schema evolution.

103

6.1 XSL Specifics

The procedure described in the previous part is not directly applicable when
generating revalidation XSL stylesheet for the following reasons:

No Removal XSL does not have any means of explicit removing a
content from a document. Removal is achieved by not putting the particular
part of content to the output. This is achieved either by the composing
the instructions so that the processor never reaches the particular part of
content, or by letting the processor go through the content without sending
anything to the output.

Processing of Unchanged Content When DOM or XQuery Update
Facility is used, an unchanged content does not need to be processed – it
will just remain in the document. On the other hand, XSLT must process
all content that should be sent to the output.

Output Definitiveness When XSLT processor sends a content to the
output, it can not be changed during the same transformation. With XQuery
or DOM, several separate changes can be conducted on the same nodes. With
XSLT the changes have to be grouped and conducted together.

6.2 Nodes Categorization

Definition 6.2.1 (Imprint changes). Migratory changes that move a con-
struct from one node to another node, attribute cardinality change and changes
that model renaming an XML node will be called imprint changes. For im-
print change c̃ we define the affected node in the following table and denote
it c̃.affected. We will say c̃ is an imprint change for N if c̃.affected = N .
Table 6.1 lists all types of the imprint with their respective affected nodes.

From now on we will consider PSM attributes in attribute containers as
nodes because they represent XML elements. In the following text, let v and
v′ be an old version and new version in the model, and D′ new version of
diagram D. Considering the features of XSL, we will divide the nodes and
attributes in the diagram D′ into these subsets of D′.N ∪Attpsm:

D′
base,D′

red,D′
blue,D′

green,D′
group ⊆ D′.N ∪Attpsm.

104

Change type Affected node
classMovedToClassUnion former parent association/class union
classMovedOutOfClassUnion former parent association/class union
attributeMoved (to attribute container) former parent class/attribute container
attributeCardinalityChange parent class/attribute container
attributeIndexChange parent class/attribute container
classElementLabelRemoved parent association/class union
classElementLabelAdded parent association/class union
classElementLabelChanged parent association/class union
contentContainerNameChange parent superordinate node
subordinateComponentIndexChange parent superordinate node
subordinateComponentMovedChange parent superordinate node

Table 6.1: Imprint Changes

Definition 6.2.2 (Group Nodes). The set D′
group is defined as:

D′
group = {C ′ ∈ Cpsm|getInV er(C ′, v) = null ∧ C ′.label = null ∨

getInV er(C ′, v).label = null}
Elements of D′

group will be called group nodes.

Definition 6.2.3 (Significant Nodes, Base Nodes). Let D′
sign be the set of

all significant nodes in the diagram. D′
base is defined as:

D′
base = D′

sign ∪ D′
group

Elements of D′
base will be called base nodes.

Definition 6.2.4 (CD,D′,v,v′ [N]). CD,D′,v,v′ [N] ⊆ CD,D′,v,v′ is the set of changes
detected for node N ∈Mpsm and is defined as:

CD,D′,v,v′ [N] ={c̃ ∈ CD,D′,v,v′|c̃ is detected for N} ∪
{c̃ ∈ CD,D′,v,v′|c̃ is imprint change for N}

Notion Cbase
D,D′,v,v′ [N] will be used for the set of all changes belonging to a

base node N.

Cbase
D,D′,v,v′ [N] =

⋃

N ′:CSN(N ′)=N

CD,D′,v,v′ [N]

105

Definition 6.2.5 (Green Nodes). The set D′
green ⊆ D′

base is the set of those
base which were not changed in versions and v′ and neither was any node in
their subtree.

D′
green = {M ′ ∈ D′

base | ∀N ′ ∈ M̂ ′ : Cbase
D,D′,v,v′ [N] = ∅}

Elements of D′
green will be called green nodes.

Definition 6.2.6 (Red Nodes). The set D′
red ⊆ D′

base is the set of those
base nodes that were changed between versions v and v′.

D′
red = {N ′ ∈ D′

base | Cbase
D,D′,v,v′ [N] 6= ∅}

Elements of D′
red will be called red nodes.

Definition 6.2.7 (Blue Nodes). The set D′
blue ⊆ D′

base is the set of those
base nodes that were not changed between versions v and v′ but some of their
descendant nodes were.

D′
blue = {M ′ ∈ D′

base | Cbase
D,D′,v,v′ [M

′] = ∅ ∧
∃N ′ ∈ M̂ ′ : Cbase

D,D′,v,v′ [N] 6= ∅}

Elements of D′
blue will be called blue nodes.

The following conditions join the previous definitions:

D′
base = D′

green ∪ D′
blue ∪ D′

red

D′
green ∩ D′

blue = D′
red ∩ D′

blue = D′
green ∩ D′

red = ∅

6.3 Revalidation Script Overview

In XSL, as in other languages, stylesheets producing the same output can be
written in several forms. To keep it transparent, comprehensible and easily
modifiable, the revalidation stylesheet generated by XSem-Evo takes the
following form:

106

• It is a one-pass stylesheet.

• It follows the navigational stylesheet pattern described in [15]. It is
output oriented and relies on a detailed knowledge of the input doc-
ument. XPath expressions used for name and match attributes of all
top-level templates are always absolute.

• A top-level template is created for each red node.

• Each top-level template describes attributes and direct subelements of
the processed red node.

• One common top-level template is added to process all green nodes
and another to process all blue nodes.

• Implicit XSLT stylesheets are never used, because they do not serve
the desired purpose.

• The stylesheet grows (counting the number of top-level templates) with
the amount of changes made in the diagram, not with the complexity
of the diagram.

6.4 XPath Expressions for XSem-H Nodes

In this section we define an XPath expression for each XSem-H construct in
a diagram D.

Definition 6.4.1 (T.XPath). For every XSem-H construct T in diagram D
we define an XPath expression T.XPath as :

N.XPath =

T.Parent.XPath

if T ∈ Apsm ∪ AC ∪ CU ∪ CH
T.Container.XPath + "/" + T.aliasOrName

if T ∈ Attpsm ∧ T.Container ∈ AC
T.Container.XPath + "/@" + T.aliasOrName

if T ∈ Attpsm ∧ T.Container ∈ Cpsm

T.Parent.XPath + "/" + T.n

if T ∈ CC ∧ T.Parent 6= null

107

N.XPath =

"/" + T.n

if T ∈ CC ∧ T.Parent = null

"/" + T.label

if T ∈ Cpsm ∧ T.label 6= null ∧ T ∈ D.roots

T.Parent.XPath + "/" + T.label

if T ∈ Cpsm ∧ T.label 6= null ∧ T /∈ D.roots

T.Parent.XPath

if T ∈ Cpsm ∧ T.label = null ∧ T /∈ D.roots

"<virt-root>"

if T ∈ Cpsm ∧ T.label = null ∧ T ∈ D.roots

The text "<virt-root>" is used as a substitute for a root expression "/"

for root classes without element labels.

6.5 Green Nodes Processing

Nodes in the set D′
green are to be left unchanged and the same applies

for their subtrees. XSLT construct <xsl:copy-of> can be used for these
subtrees. The whole subtree is copied as is to the output without the need
to process the nodes in the subtree by the XSLT processor.

Template 6.1 is used to process all significant green nodes and will be
denoted greenNodesTemplateD′ . The value of match attribute {green-nodes-
paths} is an expression that returns the set of all the instances of the
green nodes in the diagram. It takes the form of absolute paths (N.XPath
of green node N) joined by the | operator, e.g. ‘/Customer/Purchase |

/Customer/Address’.

<xsl : template match=‘{green-nodes-paths}’>
<xsl : copy−of select = ‘. ’ />

</xsl : template>

Template 6.1: Green Nodes Template

108

6.6 Blue Nodes Processing

Nodes in set D′
blue are unchanged, but for each node M ′ ∈ D′

blue there is a
least one red node N ′ in M̂ ′. This implies that <xsl:copy-of> can not be
used for blue nodes, because the XSLT parser would not process the instance
of node N ′.

Instead of <xsl:copy-of>, <xsl:copy> is used to create the
XML element and two diagram-independent templates copyAttributes

and processContent are called. Attributes can be copied, because the
script never contains top-level templates processing attributes. Template
processContent calls apply-templates for all subelements. The complete
definition of these two named templates can be found on the attached CD
together with other definitions of diagram-independent templates (see Chap-
ter A).

Template 6.2 will be denoted blueNodesTemplateD′ and is used to process
all significant blue nodes. XPath expression {blue-nodes-paths} is obtained
analogously as the expression for green nodes.

<xsl : template match=”{blue-nodes-paths}”>
<xsl : copy>

<xsl : cal l−template name=‘ copyAttr ibutes ’ />
<xsl : cal l−template name=‘processContent ’ />

</xsl : copy>
</xsl : template>

Template 6.2: Blue Nodes Template

6.7 Red Nodes Processing – Simplified Dia-

grams

To start off, we will assume a restricted set of constructs for diagrams D and
D′:

∀N ∈ D.N ∪D′.N : N is PSMClass →
N.label 6= null ∧N.Represented = null

{D.N ∪D′.N} ∩ {CH ∪ CU} = ∅ (6.1)

109

I.e. no classes without element labels, no structural representatives, content
choices and class unions.

By definition 6.2.3 and due to diagram restriction, all red nodes are
significant nodes (PSM classes with element labels, content containers and
attributes in attribute containers). For each red node N ′, a top level template
nodeTemplateN ′ is created in the stylesheet.

The type of the template is determined by the state of node N ′ – whether
it was added in version v′ or existed in the version v. If it existed in the
previous version, we can expect an instance of N ′ in the documents ∈ S(D).
To distinguish these two cases, we will use the following definition:

Definition 6.7.1 (Node State). Node state of node N ′ ∈ D′.N has one of
the following values:

N ′.state =

{
existing if AddN ′ = ∅ ⇔ getInV er(N ′, v) 6= null

added if AddN ′ 6= ∅ ⇔ getInV er(N ′, v) = null

Depending on N ′.state, nodeTemplateN ′ will be either:

• appliedNodeTemplateN ′ (existing nodes) or

• namedNodeTemplateN ′ (added nodes).

Context of Generator

XSLT generator keeps a limited state information called context. Here is the
first part of context attributes:

• context.BodyNode ∈ D′
base – base node currently being processed

• context.ProcessedPath – XPath expression belonging to the currently
processed node (in the old version of the diagram)

• context.ForceCallable ∈ {true, false} – flag indicating, that the state
of nodes (see Definition 6.7.1) is ignored and even existing nodes should
be treated as added

110

Relative XPath Context attribute context.ProcessedPath is used to ob-
tain relative path from context.BodyNode to another node.

Value of context.ProcessedPath is a simple XPath expression – it
contains only names of elements/attribute delimited by child axis e.g.
‘/Customer/Purchase/Item/@amount’. Obtaining a relative XPath for con-
text.ProcessedPath and another node is rather straightforward. Common
prefix is stripped and necessary upward steps are added if need be. This
operation will be denoted relativeXPath(a, context.ProcessedPath) where
a ∈ D′

sign.
Some examples of relativeXPath:

context.ProcessedPath path to node a relative path
/Purchase /Purchase/Item/@amount Item/@amount
/customer-info/Customer /customer-info/Address/city ../Address/city

GenValue function In situations where new instance of a PSM attribute
a′ must be generated, we will expect the existence of a function genValue(a′),
which returns a correct new value for the generated instance.

6.7.1 Red Node Template – Foundations

For each existing node N ′
e, template appliedNodeTemplateN ′

e
with match at-

tribute will be created:

<xsl : template match=‘{Ne.XPath}’>
{

generate red node template body with
context.ProcessedPath = Ne.XPath ,
context.BodyNode = N ′

e

}
</xsl : template>

Note that the value of match attribute, which returns an XPath expres-
sion (see Definition 6.4.1) for the old version of the node N ′

e. It matches the
instances of N ′

e in the documents valid against the old version.
For added node N ′

a, a named template namedNodeTemplateN ′
a

is created.
Name of the template must be unique, name function is used to return a
unique name. To make the script transparent, the returned name indicates
the location of the node N ′

a in the XSem-H tree e.g. ‘Customer-Purchase’:

111

<xsl : template name=‘{name(N ′
a)}’>

{
generate red node template body with

context.ProcessedPath = existingAncestor(N ′
a).XPath ,

context.BodyNode = N ′
a

}
</xsl : template>

The function existingAncestor(N ′
a) returns the first node A′ on the

path from N ′
a that existed in the previous version (getInV ersion(A′, v) 6=

null). For significant root nodes "/" expression is used instead of
existingAncestor(N ′

a). For root classes without element labels the algorithm
uses an auxiliary expression "<virt-root>".

The template body is generated as follows:

• if the red node N ′ is a significant node (which we now assume for
restricted diagrams), an XML element E modeled by N ′ is added

• if N ′ is a PSM attribute inside an attribute container, its value is
added, otherwise:

– attributes of element E are added (if there are any)

– subelements of element E are added (if there are any)

6.7.2 Leaf (Attribute) Nodes

For a red node a′, that is a PSM attribute inside an attribute container, the
whole template leafNodeTemplatea′ for existing node is specified as:

<xsl : template match=‘{a.XPath}’>
<{a′.aliasOrName}>

<xsl : value−of
select=‘{convxa′(relativeXPath(a, context.ProcessedPath))} ’ />

</{a′.aliasOrName}>
</xsl : template>

and for added node (or when in force callable context) as:

112

<xsl : template name=‘{name(a′)}’>
<{a′.aliasOrName}>

{genValue(a′)}
</{a′.aliasOrName}>

</xsl : template>

In the first template, notice the usage of function relativeXPath that
returns an XPath expression – relative path from the path currently being
in context.ProcessedPath to the instance of attribute a in the old document.

In the second template, the function genValue is used to generate value
of attribute a′.

Verification The following changes were defined for attributes (not-
invalidating changes are omitted): attributeAliasOrNameChange, attribute-
TypeChange, attributeMoved , attributeIndexChange, attributeCardinality-
Change, attributeAdded and attributeRemoved . The migratory changes
attributeMoved and attributeIndexChange and also attributeCardinality-
Change, attributeAdded and attributeRemoved are targeted in part of the
stylesheet where template leafNodeTemplatea′ is called. Thus template
leafNodeTemplatea′ only deals with attributeAliasOrNameChange and at-
tributeTypeChange.

• attributeAliasOrNameChange is solved by using the a′.aliasOrName
for the name of the XML element

• attributeTypeChange is solved by applying the revalidation function
convxa′ that expects an XPath expression returning the value of an
attribute and converts it to the new type (when type of a was not
changed, i.e. if

{c̃ ∈ CD,D′,v,v′ [N]a′ | c̃ is attributeTypeChange} = ∅

convxa′(xpath) can be replaced by xpath

6.7.3 Inner Nodes – Gathering XML Elements

To define complete body of a template for a red node N ′ (nodeTemplateN ′),
the subtree of N ′ must be examined and all subelements in the subtree

113

that model XML elements will have their counterparts in the template
nodeTemplateN ′ .

To gather all the subelements, an auxiliary abstract construct node ele-
ment wrapper and an inherited construct simple node element will be used.

Definition 6.7.2 (Node Element Wrapper). Node element wrapper is an
auxiliary construct used by the algorithm to wrap XSem-H diagram nodes
modeling XML elements.

Definition 6.7.3 (Simple Node Element). Simple node element is a subtype
of node element wrapper used to wrap a single significant node.

simple node element = (Element) (6.2)

where Element ∈ D′
sign is the wrapped significant node.

Algorithm 3 shows how a list of node element wrappers is obtained for a
node. Since we now assume a restricted XSem-H diagrams, the algorithm is
simple, but will be extended later.

Algorithm 3 Gather Subelements (1)

1 function GetSubtreeElements (N ′ ∈ D′.N)
2 returns subelementsN ′– ordered sequence of node element wrapper s.
3 {
4 subelementsN ′ ← ∅
5 foreach node C ′ ∈ child nodes of N ′

6 getSubtreeElementsInc lRoot (N ′ , var subelementsN ′)
7 return subelementsN ′

8 }
9

10 procedure getSubtreeElementsInc lRoot (N ′ ∈ D′.N , var subelementsN ′)
11 {
12 i f N ′ ∈ {C ′ ∈ Cpsm|C ′.label 6= null} ∪ CC
13 subelementsN ′ ´ new node element wrapper(N ′)
14 i f N ′ ∈ AC
15 foreach attribute a′ ∈ N ′.Attpsm

16 subelementsN ′ ´ new node element wrapper(a′)
17 }

114

6.7.4 Inner Nodes – Gathering XML Attributes

The approach for gathering attributes is similar to gathering subelements.
An auxiliary abstract construct node attribute wrapper and an inherited
construct simple node attribute will be used.

Definition 6.7.4 (Node Attribute Wrapper). A Node Attribute Wrapper is
an auxiliary construct used by the algorithm to wrap XSem-H diagram nodes
modeling XML attributes.

Definition 6.7.5 (Simple Node Attribute). A Simple Node Attribute is
a subtype of is a subtype of node attribute wrapper used to wrap a single
attribute of a PSM class.

simple node attribute = (Attribute) (6.3)

where Attribute ∈ Attpsm is the wrapped attribute.

Algorithm 4 shows how a list of node attribute wrappers is obtained for
a node.

Algorithm 4 Gather Attributes (1)

1 function GetAttr ibutes (N ′ ∈ D′.N)
2 returns attributesN ′– ordered sequence of node attribute wrappers.
3 {
4 attributesN ′ ← ∅
5 getAttr ibutesUnderNode (N ′ , false , var attributesN ′)
6 return attributesN ′

7 }
8
9 procedure getAttr ibutesUnderNode (N ′ ∈ D′.N ,bool f i r s t C a l l ,

10 var attributesN ′)
11 {
12 i f (N ′ ∈ Cpsm)
13 i f (firstCall or N ′.label = null))
14 foreach (attribute a′ ∈ N ′.Attpsm)
15 attributesN ′ ´ new node attribute wrapper(a′)
16 else return
17 i f (N ′ ∈ Cpsm ∪ CC)
18 foreach (node C ′ ∈ N ′.Sub)
19 getAttr ibutesUnderNode (C ′ , false , var attributesN ′)
20 }

115

6.7.5 Inner Node Template Body

For a red inner node N ′, the template adds one XML element when N ′ is
a significant node. The function name returns the appropriate name of the
XML element modeled by N ′. Then template body has two parts: attributes
section and elements section.

// red node temp la te
{ i f (N ′ ∈ D′sign) }

<{name(N ′)}> // f o r s i g n i f i c a n t nodes , i n c l ude an opening tag
{ end i f }
// a t t r i b u t e s e c t i on (subrou t ine i s in t roduced . .)

{ process attributes(GetAttributes(N ′)) }
// element s e c t i on

{ process elements(GetSubtreeElements(N ′)) }
{ i f (N ′ ∈ D′sign) }

</{name(N ′)}> // f o r s i g n i f i c a n t nodes , c l o s e the tag
{ end i f }

// proces s a t t r i b u t e s subrou t ine
process attributes(att : list of node attribute wrappers)
{

foreach node attribute wrapper aw ∈ att
{

i f aw i s simple node attribute
generate attribute reference with

context.CurrentAttribute = aw

}
}

// proces s e lements subrou t ine
process elements(elm : list of node element wrapper)
{

foreach node element wrapper nw ∈ elm
{

i f nw i s simple node element
generate element reference with

context.CurrentElement = nw

}
}

Template 6.3: Inner Red Node Template

116

{ i f (a′.state = added ∧ a′.l 6= 0) ∨ (context.ForceCallable) } // added a t t r i b u t e
<xsl : attribute name=‘{a′.aliasOrName}’>

{genValue(a′)}
</xsl : attribute>

{ else i f CD,D′,v,v′ [N]a′ = ∅} // a t t r i b u t e was not changed
<xsl : copy−of select=‘{relativeXPath(a, context.ProcessedPath)} ’ />

{ else } // a t t r i b u t e was changed
{ var relXPatha = relativeXPath(a, context.ProcessedPath) }
{ i f a.l = 0 ∧ a′.l = 1 }

// a t t r i b u t e must be pre sen t
<xsl : choose>

<xsl :when test=‘{relXPatha}’>
<xsl : attribute name=‘{a′.aliasOrName}’>

<xsl : value−of select=‘{convxa′(relXPatha)} ’ />
</xsl : attribute>

</xsl :when>
<xsl : otherwise>

<xsl : attribute name=‘{a′.aliasOrName}’>
{genValue(a′)}

</xsl : attribute>
</xsl : otherwise>

</xsl : choose>
{ else i f a.l = 0 ∧ a′.l = 1 }

// a t t r i b u t e added only when i t was pre sen t
<xsl : i f test=‘{relXPatha}’>

<xsl : attribute name=‘{a′.aliasOrName}’>
<xsl : value−of select=‘convxa′(relXPatha) ’ />

</xsl : attribute>
</xsl : i f>

{ else }
// a t t r i b u t e was presen t
<xsl : attribute name=‘{a′.aliasOrName}’>

<xsl : value−of select=‘{convxa′(relXPatha)} ’ />
</xsl : attribute>

{ end i f }
{ end i f }

Template Fragment 6.4: Generating Attribute Reference

117

Definition 6.7.6 (Function name). Function name is defined as follows:

name : D′
sign → L

name(N) =

N.label if N ∈ Cpsm

N.n if N ∈ CC
N.aliasOrName if N ∈ Attpsm

Template Fragment 6.4 contains the definition of generate attribute
reference subroutine and Template Fragment 6.5 the definition of gener-
ate element reference subroutine.

Generating Attribute References

Template Fragment 6.4 shows how attribute references are generated.
Subroutine generate attribute reference (where a′ is used as a short-

cut for context.CurrentAttribute.Attribute and a as a shortcut for its previous
version in the last block) has three main blocks. The first block is used by
attributes added in the version v′ – new attribute is added with generated
value. The second block is used for attributes that were not changed between
versions v and v′ and can be copied. The last block is used by attributes
whose definition changed between versions v and v′.

Verification The following changes were defined for attributes (not-
invalidating changes are omitted): attributeAliasOrNameChange, attribute-
Moved , attributeTypeChange, attributeCardinalityChange, attributeAdded
and attributeRemoved . The attributeMoved change is solved by using the
Gather Attributes algorithm – all attributes relevant for the node are in-
cluded. The attributeAdded change is solved in the first block of the subrou-
tine, attributeRemoved can be ignored (Gather Attributes will omit removed
attributes). Thus, only attributeAliasOrNameChange, attributeTypeChange
and attributeCardinalityChange need to be aimed at:

• attributeAliasOrNameChange is solved by using the a′.aliasOrName
inside the <xsl:attribute> construct.

• attributeTypeChange is solved by applying the revalidation function
convxa′ that expects an XPath expression returning the value of an

118

attribute and converts it to the new type. When the type of a was not
changed, i.e. if

{c̃ ∈ CD,D′,v,v′ [N]a′ | c̃ is attributeTypeChange} = ∅

convxa′(xpath) can be replaced by xpath.

• attributeCardinalityChange is solved by checking the cardinality. The
only expected cardinality intervals are (0, 1), (1, 1) – an XML attribute
can be either optional or mandatory.

Inner Node Elements

Template Fragment 6.5 shows how attribute references are generated.

Element Reference Subroutine generate element reference (where
N ′ is used as a shortcut for context.CurrentElement.Element) distinguishes
two cases. The first one proceeds to generating code that handles cardi-
nality changes and iterated additions (when new construct is added with
cardinality > 1). The second one solves cases where cardinality of element
N ′ need not to be dealt with. This happens when either the cardinality did
not change from the previous version or the element was added with upper
cardinality 1.

{ i f lowerElementCardinality(N ′) = 0 ∧
(N ′.state = added ∨ context.ForceCallable) }
exit ; // an op t i ona l e lement need not to be added

{ end i f }
{ i f (N ′.state = existing ∧ cardinalityChanged(N ′)) ∨

(N ′.state = added ∧ lowerElementCardinality(N ′) > 1) ∨
(context.ForceCallable ∧ lowerElementCardinality(N ′) > 1) }
generate element cardinality reference

{ else }
generate element single reference

{ end i f }
Template Fragment 6.5: Generating Element Reference

119

Element Single Reference Subroutine generate element single ref-
erence in Template Fragment 6.6 calls forceCallableNodeTemplateN ′ if
in force callable mode (context.ForceCallable). If the called template
forceCallableNodeTemplateN ′ was not generated yet, it is generated now.
If not in force callable mode, the template follows the state of node N ′.

For newly added nodes namedNodeTemplateN ′ is called. Thanks to nodes
categorization, we can be sure that namedNodeTemplateN ′ will be a part of
the resulting stylesheet because (added nodes are always red nodes and
named templates are always generated for added nodes).

For existing nodes, <xsl:apply-templates> is called and the ex-
pression that is the value of select attribute will either match against
appliedNodeTemplateN ′ (if N ′ is a red node) or greenNodesTemplateD′ (if N ′

is a green node) or blueNodesTemplateD′ (if N ′ is a blue node). The optional
condition parameter of the routine can restrict the set of the processed ex-
isting nodes. This parameter is not used by generate element reference,
but will be used later.

{ parameter : c ond i t i on (XPath expression, optional)
{ i f context.ForceCallable }

{ i f forceCallableNodeTemplateN ′ not generated yet
generate forceCallableNodeTemplateN ′ }

<xsl : cal l−template name=‘{forceCallableNodeTemplateN ′ } ’ />
{ else }

{ i f N ′.state = added }
<xsl : cal l−template name=‘{namedNodeTemplateN ′ } ’ />

{ else }
{ var xpath ← relativeXPath(N ′, context.ProcessedPath) }
{ i f condition i s set }

<xsl : apply−templates select=‘xpath [cond i t i on] ’ />
{ else }

<xsl : apply−templates select=‘xpath ’ />
{ end i f }

{ end i f }
{ end i f }

Template Fragment 6.6: Generating Element Single Reference

Force Callable Templates Force callable templates are created in those
cases, where a node N ′ is an existing node (thus appliedNodeTemplateN ′ will
be created for it), but also a named template creating new content without
referencing the existing one is needed.

120

The generating routine is identical (starts at Template 6.3), but the
control flow is overridden in appropriate branches by context.ForceCallable
flag.

Force callable templates generate default instance of an XSem-H subtree.
If this is not the desired behavior, the user can replace the content of force
callable templates in the script with custom code.

In the examples, force callable templates will have ”-FC” suffix.

Element Cardinality Reference Subroutine generate element car-
dinality reference in Template Fragment 6.7 deals with cardinality of node
N ′.

The first part concentrates on instances already present in the document
(and is therefore skipped for added elements or when in force callable mode).
Existing instances are processed again by the single reference subroutine –
either all existing instances (when the upper cardinality of node N was not
decreased i.e. all existing instances can remain in the document) or the first k
instances, where k is the new upper cardinality. The condition parameter of
single reference subroutine with built-in XPath function position is utilized
to restrict the number of instances processed.

The purpose of the second part is to add new instances of N ′ to the
document. Adding several instances may be needed for two reasons:

• N ′ is a new node and its lower cardinality is > 1

• the lower cardinality of N ′ changed from l to l′ > l.

New instances are again created via calling the template
forceCallableNodeTemplateN ′ (which is now generated if it was not
generated already). Using the XSLT built-in function count, the existing
instances are counted (for existing nodes). For added nodes, the generating
template must be called k times, k being the lower cardinality of the added
node. For nodes where cardinality has changed, the difference between the
count of the existing instances and the lower cardinality of N ′ is used.

121

/∗ rou t ine c a l l e d e i t h e r when c a r d i n a l i t y o f e lement N changed
or N’ was added wi th lower c a r d i n a l i t y > 1 ∗/

{ i f ¬context.ForceCallable ∧N ′.state = existing
// c a r d i n a l i t y o f N’ changed , dea l wi th e x i s t i n g nodes
var c̃ ← getCardinalityChange(N ′, CD,D′,v,v′ [N])
i f ¬(c̃ may require deleting)

generate element single reference
else

generate element single reference with
condition = ’position() ≤ c̃.u′’

end i f
end i f
i f context.ForceCallable ∨ (N ′.state = added ∧

getCardinalityChange(N ′, CD,D′,v,v′ [N]) may require generating)
// new nodes need to be crea t ed

i f forceCallableNodeTemplateN ′ not generated yet
generate forceCallableNodeTemplateN ′

var countExpr
var lower ← lowerElementCardinality(N ′)
i f (N ′.state = added ∧ context.ForceCallable)

countExpr ← lower
else

var e x i s t i n g ← relativeXPath(N ′, context.ProcessedPath)
countExpr ← ‘{ lower } − count ({ e x i s t i n g }) ’ }
<xsl : for−each select=‘1 to {countExpr}’>

<xsl : cal l−template
name=‘{forceCallableNodeTemplateN ′ } ’ />

</xsl : for−each>
{ end i f }

{ end i f }
Template Fragment 6.7: Generating Element Cardinality Reference

Verification Now we will show how the templates defined in this sec-
tion revalidate changes defined in Chapter 5 (we still assume a restricted
XSem-H diagram defined in Section 6.7). The following changes relate to
this part of the algorithm (non-invalidating changes are omitted): dia-
gramRootRemoved , subordinateComponentIndexChange, subordinateCompo-
nentMoved , subordinateComponentAdded , subordinateComponentRemoved ,
classElementLabelChanged , contentContainerNameChange, associationCar-

122

dinalityChange, associationChildAdded , associationChildRemoved , class-
MovedToAnotherAssociation, attributeMoved , attributeCardinalityChange,
attributeAdded , attributeRemoved , attributeIndexChange (in this part we are
concerned only with attribute changes for attributes in attribute containers).

Gather Subelements algorithm (Algorithm 3) ignores removed compo-
nents of superordinate nodes (thus subordinateComponentRemoved , associ-
ationChildRemoved , diagramRootRemoved and attributeRemoved is solved).
It also includes newly added nodes, which solves subordinateComponen-
tAdded , associationChildAdded and attributeAdded . New components/at-
tributes have state = added and new content is generated for them if neces-
sary. All subelements are returned in the correct order and their references
in the inner node template (Template 6.3) are created in the same order, so
subordinateComponentIndexChange and attributeIndexChange are solved.

• classElementLabelChanged/contentContainerNameChange is solved by
using the name to name the XML elements.

• attributeMoved , subordinateComponentMoved and classMovedToAn-
otherAssociation changes are solved by Gather Subelements algorithm
(which will include them among the sequence of subelements) and us-
ing the relativeXPath function that will locate them in the old docu-
ment.

• associationCardinalityChange/attributeCardinalityChange are solved in
the generate cardinality element reference subroutine.

6.7.6 Example

To conclude the first part of the revalidation algorithm, we will show an
example of an evolved diagram and a revalidation stylesheet. Figures 6.1
and 6.2 show the old and new version of the diagram.

123

Figure 6.1: Evolution Example 1 - Old Version

Figure 6.2: Evolution Example 2 - Evolved Version

124

These are the changes performed between version v and v′

• subordinateComponentAdded (Purchase, items)

• subordinateComponentRemoved (customer-info, customer-info → Address), subor-
dinateComponentAdded (customer, association Customer → Address)

• classMovedToAnotherAssociation (Address, Customer → Address) – subelement
address of element customer is now replaced by subelement delivery-address
of element customer.

• classElementLabelChanged (Address, ’delivery-address’)

• attributeIndexChange (city, 0), attributeIndexChange (street, 1), attributeIndex-
Change (postcode, 2) – attributes were reordered in the attribute container

• subordinateComponentIndexChange (attribute container in Customer, 1) – as a
result of adding new component preceding the attribute container

• attributeCardinalityChange (email, 1, 5) – email was made mandatory (it was
optional in previous version), but the total count of emails is now limited to 5

• subordinateComponentAdded (attribute container in SalesAssistant

• attributeAdded (attribute container in SalesAssistant, name, 0) – new attribute,
not present in the previous version

• attributeMoved (attribute container in SalesAssistant, emp-no, 1) – attribute was
moved from class to an attribute container – in the new version, the instance will
be an XML element instead of XML attribute

• associationCardinalityChange (Purchase-Item, 1, 5)

• subordinateComponentMoved (Item, Purchase to items) – list of purchased items
is now wrapped in items element

• subordinateComponentRemoved (Product, attribute container in Product) – at-
tribute container removed together with attributes weight and size; attribute
title was moved to the class Product and will represent XML attribute in the
new version

• attributeMoved (title, Product, 2)

Stylesheets 6.8, 6.9, 6.10 and 6.11 contain the revalidation stylesheet.

125

The first part of the revalidation stylesheet deals with changes in the
left subtree of class Purchase. It relocates content modeled by Address and
adds element email when needed. Force callable template is generated for
email attribute, which generates an empty element email.

Template appliedNodeTemplateCustomer (match=‘/purchase-request
/customer-info/customer’) also restricts the list of email to the maxi-
mal length of 5 (using position function).

<xsl : template match=‘/purchase−request ’>
<purchase−request>

<xsl : cal l−template name=‘ copyAttr ibutes ’ />
<xsl : apply−templates select=‘customer−i n fo ’ />
<xsl : apply−templates select=‘ a s s i s t an t ’ />
<xsl : cal l−template name=‘purchase−request−items ’ />

</purchase−request>
</xsl : template>
<xsl : template match=‘/purchase−r eque s t /customer−i n fo ’>

<customer−i n fo>
<xsl : apply−templates select=‘customer ’ />

</customer−i n fo>
</xsl : template>
<xsl : template

match=‘/purchase−r eques t /customer−i n f o /customer ’>
<customer>

<xsl : cal l−template name=‘ copyAttr ibutes ’ />
<xsl : cal l−template name=‘customer−de l i v e ry−address ’ />
<xsl : copy−of select=‘ emai l [p o s i t i o n () &l t ;= 5] ’ />
<xsl : for−each select=‘1 to 1 − count (emai l) ’>

<xsl : cal l−template name=‘customer−email−FC’ />
</xsl : for−each>

</customer>
</xsl : template>
<xsl : template name=‘customer−email−FC’>

<email></email>
</xsl : template>
<xsl : template name=‘customer−de l i v e ry−address ’>

<de l i v e ry−address>
<xsl : apply−templates select = ‘ . . / address / c i ty ’ />
<xsl : apply−templates select = ‘ . . / address / s t r e e t ’ />
<xsl : apply−templates select = ‘ . . / address / postcode ’ />

</de l i v e ry−address>
</xsl : template>

Stylesheet 6.8: Revalidation Stylesheet for Example 1 – Part 1

126

The second part of the revalidation stylesheet deals with the changes in
the middle subtree of class Purchase. It converts instances of PSM attribute
emp-no to XML elements and also adds element name (empty).

<xsl : template match=‘/purchase−r eque s t / a s s i s t an t ’>
<a s s i s t an t >

<xsl : apply−templates select=‘@emp−no ’ />
<xsl : cal l−template name=‘purchase−rq−a s s i s t an t−name ’ />

</a s s i s t an t >
</xsl : template>
<xsl : template match=‘/purchase−r eque s t / a s s i s t a n t /@emp−no’>

<emp−no>
<xsl : value−of select = ‘. ’ />

</emp−no>
</xsl : template>
<xsl : template name=‘purchase−rq−a s s i s t an t−name’>

<name></name>
</xsl : template>

Stylesheet 6.9: Revalidation Stylesheet for Example 1 – Part 2

The third part (Stylesheet 6.10) shows templates for the blue and green
nodes.

<!−− b l u e nodes temp la te blueNodesTemplateD′ −−>
<xsl : template match=‘/purchase−r eque s t / item ’>

<xsl : copy>
<xsl : cal l−template name=‘ copyAttr ibutes ’ />
<xsl : cal l−template name=‘processContent ’ />

</xsl : copy>
</xsl : template>

<!−− green nodes temp la te greenNodesTemplateD′ −−>
<xsl : template

match=‘/purchase−r eques t /customer−i n f o / customer/ emai l
| /purchase−r eques t / item/amount
| /purchase−r eques t / item/unit−p r i c e
| /purchase−r eques t /customer−i n f o / address / c i t y
| /purchase−r eques t /customer−i n f o / address / s t r e e t
| /purchase−r eques t /customer−i n f o / address / s t r e e t ’>

<xsl : copy−of select = ‘. ’ />
</xsl : template>

Stylesheet 6.10: Revalidation Stylesheet for Example 1 – Part 3

127

The last part of the revalidation stylesheet (see Stylesheet 6.11) deals
with changes in the right subtree of class Purchase.

<xsl : template name=‘purchase−request−items ’>
<items>

<xsl : apply−templates select=‘ item [po s i t i o n () &l t ;= 5] ’ />
<xsl : for−each select=‘1 to 1 − count (item) ’>

<xsl : cal l−template name=‘item−FC’ />
</xsl : for−each>

</items>
</xsl : template>
<xsl : template name=‘item−FC’>

<item>
<xsl : cal l−template name=‘item−product−FC’ />
<xsl : cal l−template name=‘item−amount−FC’ />
<xsl : cal l−template name=‘item−unit−pr i ce−FC’ />

</item>
</xsl : template>
<xsl : template name=‘item−product−FC’>

<product>
<xsl : attribute name=‘code ’>0</xsl : attribute>
<xsl : attribute name=‘subcode ’>0</xsl : attribute>
<xsl : attribute name=‘ t i t l e ’></xsl : attribute>

</product>
</xsl : template>
<xsl : template name=‘item−amount−FC’>

<amount>0</amount>
</xsl : template>
<xsl : template name=‘item−unit−pr i ce−FC’>

<unit−pr i ce >0</unit−pr i ce>
</xsl : template>

<xsl : template match=‘/purchase−r eque s t / item/product ’>
<product>

<xsl : copy−of select=‘@code ’ />
<xsl : copy−of select=‘@subcode ’ />
<xsl : attribute name=‘ t i t l e ’>

<xsl : value−of select=‘ t i t l e ’ />
</xsl : attribute>

</product>
</xsl : template>

Stylesheet 6.11: Revalidation Stylesheet for Example 1 – Part 4

The first template namedNodeTemplateitems adds the wrapping item ele-

128

ment and restricts the list of items to the maximum length of five and also
adds one mandatory item in documents where the list is empty (using force
callable templates).

The last template namedNodeTemplateproduct converts title from ele-
ment to attribute.

6.8 Group Nodes

Up to now we only considered classes with element labels. Allowing classes
without element labels requires introduction of group nodes processing. We
will start with an example.

6.8.1 Motivational Example

Figure 6.3 shows an example of a diagram where an element Catalogue

contains a list of books. Each books has three attributes ISBN, name and
author. For all the books in the catalogue, these attributes are all sequen-
tially placed directly in the Catalogue element. Figure 6.4 shows a reval-
idation script that would be generated by the algorithm described in the
previous sections.

Figure 6.3: Groups Motivational Example

129

<xsl:template match="/Catalogue"> <!-- green nodes -->
<Catalogue> <xsl:template match="

<xsl:apply-templates select="name" /> /Catalogue/name
<xsl:apply-templates select="author" /> | /Catalogue/author
<xsl:apply-templates select="ISBN" /> | /Catalogue/ISBN |" >

</Catalogue> <xsl:copy-of select="." />
</xsl:template> </xsl:template>

Figure 6.4: Groups Motivational Example – Incorrect Script

It is evident that applying this template on any document with more
than one instance of Book would not have the desired effect, as can be seen
in Figure 6.5. It shows document valid against the old version and the same
document after applying the template in Figure 6.4.

<Catalogue> <Catalogue>
<ISBN>123456789<ISBN> <name>Idiot</name>
<name>Idiot</name> <name>1984</name>
<author>F. Dostoyevsky</author> <author>F. Dostoyevsky</author>
<ISBN>987654321<ISBN> <author>G. Orwell</author>
<name>1984</name> <ISBN>123456789<ISBN>
<author>G. Orwell</author> <ISBN>987654321<ISBN>

</Catalogue> </Catalogue>

Figure 6.5: Groups Motivational Example – Effect of revalidation

What happened is that the script violated the separation of the instances
of Book. To maintain the overall structure of the revalidation script, wee need
a mechanism to process only one instance each time inside a template.

For each red group node G′ (see Definition 6.2.2), a respective template
groupTemplateG′ will be created. It will always be a named template and
will have one parameter cg (current group).

This template will be called for each instance (using the XSLT construct
xsl:for-each-group) of the node G′ and this instance will be passed to
the template as the value of cg . Figure 6.6 shows the correct revalidation
template (greenNodesTemplateD′ was omitted, it stays the same).

130

<xsl:template match="/Catalogue">
<Catalogue>

<xsl:for-each-group select="name | author | ISBN"
group-starting-with="ISBN">
<xsl:call-template name="Catalogue-GROUP-Book">
<xsl:with-param name="cg" select="current-group()" />

</xsl:call-template>
</xsl:for-each-group>

</Catalogue>
</xsl:template>

<xsl:template name="Catalogue-GROUP-Book">
<xsl:param name="cg" />
<xsl:apply-templates select="$cg[name() = ‘name’]" />
<xsl:apply-templates select="$cg[name() = ‘author’]" />
<xsl:apply-templates select="$cg[name() = ‘ISBN’]" />

</xsl:template>

Figure 6.6: Groups Motivational Example – Correct Script

6.8.2 Content Group Nodes Processing

To process group nodes, we will add another type of node element wrapper
- a content group.

Definition 6.8.1 (Content Group). Construct content group is a subtype of
node element wrapper used to wrap nodes modeling elements that are children
of a content group node.

content group = (C,Components)

where C ∈ D′
group is the group node – PSM Class without an element label

– and Components is a sequence of node element wrapper constructs – the
grouped elements.

We can now include this construct into Gather Subelements algorithm
(for the previous version see Algorithm 3):

131

Algorithm 5 Gather Subelements (2)

1 function GetSubtreeElements (N ′ ∈ D′.N)
2 returns subelementsN ′– ordered sequence of node element wrapper s.
3 // s t a y s the same
4
5 procedure getSubtreeElementsInc lRoot (N ′ ∈ D′.N , var subelementsN ′)
6 {
7 i f N ′ ∈ {C ′ ∈ Cpsm|C ′.label 6= null} ∪ CC
8 subelementsN ′ ´ new node element wrapper(N ′)
9 i f N ′ ∈ AC

10 foreach attribute a′ ∈ N ′.Attpsm

11 subelementsN ′ ´ new node element wrapper(a′)
12 i f N ∈ D′group

13 {
14 var components
15 foreach node C ′ ∈ child nodes of N ′

16 getSubtreeElementsInc lRoot (C ′ ,var components)
17 subelementsN ′ ´ new content group(N ′, components)
18 }
19 }

6.8.3 Group Node Template

For each node G′ ∈ D′
group ∩ D′

red, new top-level named template is added
to the stylesheet – groupTemplateG′ , see Template 6.12.

Group templates always have the parameter $cg in which the currently
processed group is passed. This parameter is later used in all references to
nodes laying in the subtree of G.

Notice the assignment of context.ProcessedPath in Template 6.12. For
node templates, context.ProcessedPath was assigned with value N ′.XPath. In
the case of group templates, it is assumed, that the ‘currently processed’ node
is inside the parameter cg. For this reason, the value of context.ProcessedPath
will now end with $cg. Parameter cg contains a sequence of XML element
nodes. Function relativeXPath must slightly modified to correctly reference
nodes in this sequence.

132

<xsl : template name=‘{groupName(G′)}’>
{ i f ¬context.ForceCallable }

<xsl :param name=‘cg ’ />
{ end i f }
{ i f G′.label 6= null }

<{G′.label}> // inc l ude an opening tag
{ end i f }
{ process elements(G′.Components) with

context.ProcessedPath = G′.groupPath
context.CurrentContentGroup = content group (G′) }

{ i f G′.label 6= null }
</{G′.label}> // c l o s e the wrapping tag

{ end i f }
</xsl : template>

Template 6.12: Group Node Template

Some examples of relativeXPath with content groups (the first example
is taken from the motivational example – see Figure 6.3), assuming that
element author is among the components of the group:

context.ProcessedPath path to node relative path
/Catalogue/$cg /Catalogue/Author $cg[name() = ‘Author’]
/Book/$cg /Book/Author/@ID $cg[name() = ‘Author’]/@ID

6.8.4 Referencing Group Templates

Now we can add processing of content groups to the process elements
subroutine via call to generate group reference (processing of simple node
elements remains the same). Template 6.13 contains process elements
subroutine.

Group Reference Subroutine generate group reference (Template
Fragment 6.14) is similar to generate element reference. The first block
handles cardinality changes and iterated additions, the second block is desig-
nated for those situations, where cardinality does not need to be dealt with.
G′ is used as a shortcut for context.CurrentContentGroup.C.

133

// proces s e lements subrou t ine
process elements(elm : list of node element wrappers)
{

foreach node element wrapper nw ∈ elm
{

i f nw i s simple node element
generate element reference with

context.CurrentElement = nw

i f nw i s content group
generate group reference with

context.CurrentContentGroup = nw

}
}

Template 6.13: Updated Process Elements Subroutine – Group Nodes

{ i f lowerElementCardinality(G′) = 0 ∧
(G′.state = added ∨ context.ForceCallable) }
exit ; // op t iona l , group need not to be added

{ end i f }
{ i f (G′.state = existing ∧ cardinalityChanged(G′)) ∨

(G′.state = added ∧ lowerElementCardinality(G′) > 1) ∨
(context.ForceCallable ∧ lowerElementCardinality(G′) > 1 }
generate group cardinality reference

{ else }
generate group single reference

{ end i f }
Template Fragment 6.14: Generating Group Reference

Group Single Reference Subroutine generate group single refer-
ence in Template Fragment 6.15 again calls forceCallableGroupTemplateG′

if in force callable mode.
For newly added groups groupTemplateG′ is called (group templates are

always named templates). Nothing is passed as ‘current group’ to $cg leaving
its value to the default empty sequence, but this is parameter will never be
used inside a template for a newly added group.

Group is not invalidated even when some of the nodes below the group
have been invalidated, but it is not necessary to process the group as a
whole. If the group was not invalidated, xsl:apply-templates is used for
all the components in group. Function getGroupPopulation returns an XPath

134

expression that returns the set of all nodes in the group. In the motivational
example this expression is "name | author | ISBN".

{ parameter : c ond i t i on (XPath expression , optional)
{ i f context.ForceCallable }

// c a l l the f o r c e c a l l a b l e temp la te
{ i f forceCallableGroupTemplateG′ not generated yet

generate forceCallableGroupTemplateG′ }
<xsl : cal l−template name=‘{forceCallableGroupTemplateG′ } ’ />

{ else i f G′.state = added }
// group i s new −− j u s t c a l l the group temp la te
<xsl : cal l−template name=‘{groupTemplateG′ } ’ />

{ else i f G′ /∈ D′red ∧ cond i t i on is not set
// group i s e x i s t i n g , but not i n v a l i d a t e d
var populat ion = getGroupPopulation(context.CurrentContentGroup) }
<xsl : apply−templates match=‘{ populat ion } ’ />

{ else
var populat ion = getGroupPopulation(context.CurrentContentGroup)
<xsl : for−each−group select=‘populat ion ’

{groupDistributingAttribute(context.CurrentContentGroup)} >
{ i f cond i t i on i s set}

<xsl : i f test=‘{ cond i t i on } ’ >
<xsl : cal l−template name=‘{groupTemplateG′ } ’

<with−param name=‘cg ’
select=‘current−group () ’ />

</xsl : cal l−template>
</xsl : i f>

{ else }
<xsl : cal l−template name=‘{groupTemplateG′ } ’

<with−param name=‘cg ’
select=‘current−group () ’ />

</xsl : cal l−template>
{ end i f }

</xsl : for−each−group>
{ end i f }

Template Fragment 6.15: Generating Group Single Reference

The last block is used when the group itself is invalidated and each group
must be processed separately, but as a whole (e.g. when components of the
group are reordered).

XSL for-each-group construct is utilized to distribute the subele-
ments in population (nodes returned by the XPath expression in the
value of select attribute) into distinct groups. XSLT provides several

135

ways of determining in which group each element belongs, each applicable
in different situation. Each way is expressed in the form of an attribute
of element for-each-group. Function groupDistributingAttribute returns
a string containing the appropriate attribute and its value, (for example
group-starting-with="ISBN" in the motivational example – see Figure
6.6). The different ways of distributing content to groups will be explained
in the next paragraph.

Inside for-each-group, function current-group() is used to assign the
value of parameter $cg of the called group template groupTemplateG′ .

The subroutine again has parameter condition which, if specified, is
used to restrict the amount of existing instances processed (using XSL if

construct).

Separating Group Instances In XSL, for-each-group can use one of
following attributes for separating population into groups [15]:

name value meaning
group-by XPath expr. Grouping key. Items with common val-

ues for the grouping key are to be allo-
cated to the same group.

group-adjacent XPath expr. Grouping key. Items with common val-
ues for the grouping key are to be al-
located to the same group if they are
adjacent in the population.

group-starting-with Pattern A new group will be started for each
item in the population that matches
this pattern.

group-ending-with Pattern A new group will be started following
an item in the population that matches
this pattern.

Function groupDistributingAttribute selects the appropriate way to allo-
cate population to groups. Several situations can be identified.

Starts of Groups Construct group-starting-with with value that
matches the first member F ′ of Components can be used safely when F ′ is
not optional and either (a) upper cardinality of F ′ is 1 or (b) there is another
non-optional member H ′ ∈ Components : H ′ 6= F ′. In the (b) case, value of
group-starting-with must be adjusted to start new groups only with the
first instance of F ′. Figure 6.7 contains examples for different situations.

136

Figure 6.7: Model Examples of Groups

• In the first example, attribute a1 has cardinality (1,1) and thus can
be used to identify starts of groups without complications – groupDis-
tributingAttribute would return group-starting-with="a1".

• In the second example, attribute a3 has cardinality (1,4), but there
is another attribute a4 among components of the group,. Thus the
group always starts with an instance of a3 (and the following in-
stances belong to the same group) – groupDistributingAttribute would
return group-starting-with="a3[not(preceding-sibling::a3[1]

is preceding-sibling::*[1])]".

• For the third example, both the previous approaches fail because
the first component – attribute a5 – is optional. However, this
situation can be solved by using an analogous approach with
"group-ending-with=a6".

• The last example is solved neither by group-starting-with nor with
group-ending-with, because from the XSem-H model, it is not clear
what separates groups from one another.

Ends of Groups Attribute group-ending-with can be used in a com-
pletely analogous manner to group-ending-with with previously stated
conditions now applied on the last component in the group.

Size of Groups If the amount of elements in each group is known to
be equal for all groups, this information can be exploited when allocating

137

elements to groups. Instances of group G1 in Figure 6.8 will always contain
two elements – one for a1 or a2 and a3.

In this case, group-adjacent="(position()-1) idiv 2" can be a
correct result of groupDistributingAttribute. In general: group-adjacent=
"(position()-1) idiv size" where size is the fixed size of each group
and idiv is an XPath integer division operator.

Figure 6.8: Group with Fixed Size

Other Criteria In some cases, the algorithm can not decide how to
allocate elements to groups by itself and an input from the user is needed
(group G4 in Figure 6.7 is one example). The user can utilize some internal
knowledge of the problem domain (for example some integrity constraints)
that is not represented in the XSem-H model.

Group Cardinality Reference Subroutine generate group cardinal-
ity reference in Template Fragment 6.16 fulfills the same task as gener-
ate element cardinality reference in the previous section, only for group
nodes.

The first part concentrates on instances already present in the document
(and is therefore skipped for added groups or when in force callable mode).
Existing instances are processed again by the single reference subroutine –
either all existing instances (when the upper cardinality of group G′ was not
decreased i.e. all existing instances can stay in the document) or the first k
instances, where k is the new upper cardinality. The condition parameter of

138

single reference subroutine with built-in XPath function position is utilized
to restrict the number of instances processed.

/∗ rou t ine c a l l e d e i t h e r when c a r d i n a l i t y o f content group
changed or group was added wi th lower c a r d i n a l i t y > 1 ∗/

{ i f ¬context.ForceCallable ∧G′.state = existing
// c a r d i n a l i t y o f G’ changed , dea l wi th e x i s t i n g nodes
var c̃ ← getCardinalityChange(G′, CD,D′,v,v′ [G])
i f ¬(c̃ may require deleting)

generate group single reference
else

generate group single reference with
condition = ’position() ≤ c̃.u′’

end i f
end i f
i f context.ForceCallable ∨ (G′.state = added ∧

getCardinalityChange(G′, CD,D′,v,v′ [N]) may require generating)
// new nodes need to be crea t ed

i f forceCallableGroupTemplateG′ not generated yet
generate forceCallableGroupTemplateG′

var countExpr
var lower ← lowerElementCardinality(N ′)
i f (N ′.state = added ∧ context.ForceCallable)

countExpr ← lower
else

var e x i s t i n g ← countGroupsExpr(G)
countExpr ← ‘{ lower } − count ({ e x i s t i n g }) ’ }
<xsl : for−each select=‘1 to {countExpr}’>

<xsl : cal l−template
name=‘{forceCallableGroupTemplateN ′ } ’ />

</xsl : for−each>
{ end i f }

{ end i f }
Template Fragment 6.16: Generating Group Cardinality Reference

The purpose of the second part is again to add new instances of G′ to
the document.

New instances are again created via calling the force callable template
(forceCallableGroupTemplateG′). For added groups, the generating template
must be called k times, k being the lower cardinality of the added group; for

139

nodes where cardinality has changed, the difference between the number of
the existing instances and the lower cardinality of G′ is used. The number of
existing instances is obtained via call to countGroupsExpr function, which
returns an XPath expression.

Counting groups is a problem very similar to separating groups (it
is evident that when the algorithm knows how to allocate elements
into groups, it can also count them) which as discussed above. When
group-starting-with (or group-ending-with) is used to allocate elements
to groups, the same expression as is the value of this attribute (as returned by
groupDistributingAttribute) function can be used to count existing groups.

6.8.5 Verification

Most of the changes related to group nodes are solved again by the revised
Gather Subelements algorithm (Algorithm 5). Group cardinality reference
again solves associationCardinalityChange, addition and removal changes
are solved in the same manner as for simple node elements.

What remains are element label changes:

• classGivenElementLabel classes that do not have element label’s in
version v are group nodes by Definition 6.2.2. As such, group node
reference identifies existing instances using for-each-group and each
instance is wrapped in the new element when executing the template
groupTemplateG′ .

• classElementLabelChanged does not involve group nodes and was al-
ready discussed for simple node elements.

• classElementLabelRemoved does not involve group nodes (class did
have an element label in version v therefore it does not belong among
group nodes, see Definition 6.2.2). Node template will be generated for
such class and the template will remove the wrapping element.

6.9 Content Choices and Class Unions

In this section, we will allow content choices and class unions in the diagram.
First, we have to modify algorithms Gather Subelements/Attributes to

cope with these two constructs.

140

6.9.1 Gathering XML Elements

Up to now, we used simple node element and content group constructs for
all nodes. For content choice/class union nodes, we add abstract choice base
elements wrapper and specialized choice elements and union elements aux-
iliary constructs.

Definition 6.9.1 (Choice Base Elements Wrapper). Abstract construct choice
base elements wrapper is a subtype of node element wrapper

choice base elements wrapper = (Options)

where Options is a sequence of choice element option constructs.

Definition 6.9.2 (Choice Element Option). Construct choice element op-
tion is a subtype of node element wrapper

choice element option = (Items)

where Items is a sequence of node element wrapper constructs.

Definition 6.9.3 (Choice Elements). Construct choice elements is a subtype
of choice base elements wrapper

choice elements = (CCh, Items)

where Items is a sequence of node element wrapper constructs and CCh is a
content choice node.

Definition 6.9.4 (Union Elements). Construct union elements is a subtype
of choice base elements wrapper .

union elements = (CU, Items)

where Items is a sequence of node element wrapper constructs and CU is a
class union node.

Now we can add new block to Gather Subelements algorithm that collects
choice/union nodes:

141

Algorithm 6 Gather Subelements (3)

1 function GetSubtreeElements (N ′ ∈ D′.N)
2 // s t a y s the same
3
4 procedure getSubtreeElementsInc lRoot (N ′ ∈ D′.N , var subelementsN ′)
5 {
6 i f N ′ ∈ {C ′ ∈ Cpsm|C ′.label 6= null} ∪ CC // s imple e lement
7 subelementsN ′ ´ new node element wrapper(N ′)
8 i f N ′ ∈ AC // s imple e lements
9 foreach attribute a′ ∈ N ′.Attpsm

10 subelementsN ′ ´ new node element wrapper(a′)
11 i f N ∈ D′group // groups
12 {
13 var components
14 foreach node C ′ ∈ child nodes of N ′

15 getSubtreeElementsInc lRoot (C ′ ,var components)
16 subelementsN ′ ´ new content group(N ′, components)
17 }
18 i f N ′ ∈ CH ∨N ′ ∈ CU // choices , unions
19 {
20 var options // each c h i l d w i l l become one opt ion
21 foreach node O′ ∈ child nodes of N ′

22 {
23 var items // each opt ion has i t s own conten t s
24 getSubtreeElementsInc lRoot (O′ ,var items)
25 i f | items | > 0 // empty l i s t s are d i scarded
26 options ´ new choice element option (Items = items)
27 }
28 i f | options | > 0 // empty l i s t s are d i s carded
29 i f N ′ ∈ CH // content cho ice
30 subelementsN ′ ´ new choice elements
31 (CCh = N ′,Options = options)
32 else // c l a s s union
33 subelementsN ′ ´ new union elements
34 (CU = N ′,Options = options)
35 }
36 }

142

6.9.2 Gathering XML Attributes

In a similar manner as Gather Subelements, algorithm Gather Attributes
also needs to be extended (see Template 6.17).

// proces s a t t r i b u t e s subrou t ine
process attributes(att : list of node attribute wrappers)
{

foreach node attribute wrapper aw ∈ att
{

i f aw i s simple node attribute
generate attribute reference with

context.CurrentAttribute = aw

else i f aw i s choice attributes
generate choice attributes reference with

context.CurrentChoiceAttributes = aw

else i f aw i s union attributes
generate union attributes reference with

context.CurrentUnionAttributes = aw

}
}

// proces s e lements subrou t ine
process elements(elm : list of node element wrappers)
{

foreach node element wrapper nw ∈ elm
{

i f nw i s simple node element
generate element reference with

context.CurrentElement = nw

else i f nw i s content group
generate group reference with

context.CurrentContentGroup = nw

else i f nw i s union elements
generate choice elements reference with

context.CurrentChoiceElements = nw

else i f nw i s choice elements
generate union elements reference with

context.CurrentUnionElements = nw

}
}

Template 6.17: Updated Process Elements / Process Attributes Subroutines

Analogously to choice base elements wrapper , choice element option,

143

choice elements and union elements we will use choice base attributes wrap-
per , choice attribute option, choice attributes and union attributes .

6.9.3 Updated Inner Red Node Template

Now we can modify subroutines process attributes and process elements
first introduced in Template 6.3 (process elements was already extended
once in Template 6.13) – we add processing for the new constructs. The
result is Template 6.17

6.9.4 Content Choice Reference

Elements

Template Fragment 6.18 shows how algorithm handles elements under con-
tent choice.

{ i f context.ForceCallable
i f mustHaveInstance(CCh′n)

var choiceToGenerate ← getChoiceToGenerate(CCh′n)
process elements(choiceToGenerate.Items)

else i f choiceInvalidated(CCh′n) }
<xsl : choose>

{ foreach choice element option o ∈ CCh′n.Options
var test ← relativeXPath(o.Items, context.ProcessedPath) }
<xsl :when test=‘{test}’>

{ process elements(o.Items) }
</xsl :when>

{ end foreach}
{ i f mustHaveInstance(CCh′n) ∧ canRequireGenerating(CCh′n) }

<xsl : otherwise>
{ var choiceToGenerate ← getChoiceToGenerate(CCh′n)

process elements(choiceToGenerate.Items) with
context.ForceCallable }

</xsl : otherwise>
{ end i f }

</xsl : choose>
{ else }

process not invalidated elements(CCh′n.Options)
{ end i f }
Template Fragment 6.18: Generating Content Choice Elements Reference

144

The first bock is used when in force callable context. Function mustHave-
Instance returns true if the content choice must have an instance in the
document i.e. it is not true that all options of the choice are optional1 . If
mustHaveInstance returns true, one of the choices is selected and the content
for the choice is generated using process elements subroutine.

The function choiceInvalidated returns true if the choice was modified in
such a way that the changes can not be solved at the level of its components
(in templates for the respective components). This is necessary when some
of the components were removed, the whole choice was added in version v
or multiplicity of some of the components have changed.

The middle block generates the full choice template which uses the con-
struct xsl:choose. A separate xsl:when block is created for each option.
The value for test attribute is a relative path (obtained by combining the
relative paths of respective CCh′n.Items).

The xsl:otherwise block is added when a) the content choice must have
an instance in the document (mustHaveInstance returns true) and b) the
changes between versions v and v′ may require the instance to be generated.
This case occurs when for example some of the components of CCh′nwas
removed – the instance of this component can not be used in the new version,
but CCh′n’ must have an instance, thus it must be generated. Another case
is when some options were optional in the old version and they are not in
the new version. See example in Figure 6.9.

The last block is designated for the situations where no revalidation for
the actual choice node is needed (all nodes under the choice node are green
or blue nodes).

Attributes

Subroutine for generating content choice attributes reference is anal-
ogous to content choice elements reference (Template Fragment 6.18).
The subroutine uses appropriate attribute constructs mentioned in Gather-
ing Attributes (choice attributes etc., see p. 143) instead of the constructs
defined for elements.

Example

Figure 6.9 contains an example of usage of a content choice.

1An example of an optional option is a simple node element e where e.Element is a
PSM attribute (inside an attribute container) with lower cardinality = 0.

145

Figure 6.9: Adding a Content Choice

<xsl:template match="/purchase-request"> <xsl:template name="eshop-FC">

<purchase-request> <eshop>

<xsl:call-template name="copyAttributes" /> <xsl:attribute name="url"/>

<xsl:choose> </eshop>

<xsl:when test="eshop"> </xsl:template>

<xsl:apply-templates select="eshop" />

</xsl:when> <!--green nodes template-->

<xsl:when test="assistant">

<xsl:apply-templates select="assistant" /> <xsl:template match=

</xsl:when> "/purchase-request/eshop

<xsl:otherwise> | /purchase-request/assistant">

<xsl:call-template name="eshop-FC" /> <xsl:copy-of select="." />

</xsl:otherwise> </xsl:template>

</xsl:choose>

</purchase-request>

</xsl:template>

Figure 6.10: Revalidation Script for Diagram in Figure 6.9

The diagram in Figure 6.9 introduces content choice in version v′ instead
of two optional subtrees in version v. For both options a when block is added
and the otherwise block is added too, because the document must now
contain one of the subtrees, but in the old version it could have contained
none of them. Thus, if D ∈ S(D) contains neither eshop nor assistant,
default instance of the first (eshop) subtree is generated.

Verification

This section focused on the changes of the content choice:

146

• subordinateComponentAdded , subordinateComponentRemoved , subor-
dinateComponentIndexChange, subordinateComponentMoved where the
content choice is in the role of the subordinate component and the su-
perordinate node is another node

• changes in the collection of components of a content choice (i.e. the
same changes, but content choice is now in the role of the superordinate
node)

The first set of changes is solved completely by the revised Gather Subele-
ments/Attributes algorithm (see Algorithm 6). This algorithm considers con-
tent choices when creating the template for its parent.

Changes in the collection of the components of the content choice will all
be handled when the Options collection is initialized. Because the order of
components of a content choice is not significant, subordinateComponentIn-
dexChange can be ignored completely.

6.9.5 Class Union Reference

Elements

Unlike content choice construct, class unions have an association. This asso-
ciation can have arbitrary cardinality interval and thus cardinality changes
need to be addressed also with possible iterated generation (similar to simple
node elements and content groups).

Procedure generate union elements reference can be found in Tem-
plate Fragments 6.19, 6.20 and 6.21.

Treatment of union nodes differs for nodes with leading association with
upper cardinality > 1 and for class unions containing classes without an
element label (content group nodes).

Definition 6.9.5 (Union Complexity). Auxiliary attribute complexity of a
class union node CU is defined as:

CU.complexity =

single if CU.A.u ≯ 1

withoutGroups if ∀ C ∈ CU.Comp : C.label 6= null

withGroups if ∃ C ∈ CU.Comp : C.label = null

Template Fragment 6.19 processes content already existing in the docu-
ment.

147

{ i f (context.ForceCallable ∨ CU′n.state = added) ∧
lowerElementCardinality(CU′n) = 0
return

else i f ¬context.ForceCallable
i f choiceInvalidated(CU′n)

i f CU′n.complexity = single
generate union choices(fa l se)

else
var populat ion = getUnionPopulation(CU′n)
var d i s t r i b u t i o n = getUnionDistribution(CU′n)
var r e s t r i c t = cardinalityChanged(CU′n) ∧

getCardinalityChange(CU′n, CD,D′,v,v′ [CU′n]) may require deleting
var l′ = lowerElementCardinality(CU′n) }

{ i f CU′n.complexity = withoutGroups }
<xsl : for−each select=‘{ populat ion }’>

{ else }
<xsl : for−each−group select=‘{ populat ion } ’

{ d i s t r i b u t i o n } >
{ end i f }

{ i f r e s t r i c t }
<xsl : i f test=‘ po s i t i o n () <= {l′}>

{ end i f
generate union choices(CU′n.complexity = withGroups)

i f r e s t r i c t }
</xsl : i f>

{ end i f }
{ i f CU′n.complexity = withoutGroups }

</xsl : for−each>
{ else }

</xsl : for−each−group>
{ end i f

end i f
else

process not invalidated elements(
context.CurrentUnionElements.Options)

end i f
{ end i f }

Template Fragment 6.19: Class Union – Elements (Part 1.)

In the following text, we will use CU′
n as a shortcut for

context.CurrentUnionElements. If there are no changes in the collection
CU′

n.Comp itself or in the cardinality of any of the components, there is
no need for any explicit processing of the class union node and the poten-

148

tial changes will be solved in the templates of the respective components
(process not invalidated elements is used again). Otherwise, the union
node must be processed.

For unions with complexity = single, the algorithm can directly proceed
to processing of the individual components (generate union choices call).
Otherwise, instances of respective components are separated first (in order
to be counted) using for-each or for-each-group construct (depending on
the complexity of the union node) and then the algorithm again proceeds to
processing individual components.

If the number of instances is restricted (due to cardinality change in the
association leading to the union node), if construct and position function
are used.

Function getUnionPopulation returns an XPath expression that covers
all the existing instances of all the components in CCh′n.Comp. Function
distribution returns an attribute that allocates each component instance into
a group (in the same way as group instances are separated, see paragraph
Separating Group Instances, p. 136).

{ i f choiceInvalidated(CU′n)
var countExpr
var d i s t r i b u t i o n ← getUnionDistribution(CU′n)
i f (d i s t r i b u t i o n not empty)

countExpr ← ‘{ lower } − count ({ d i s t r i b u t i o n }) ’
else

countExpr ← ‘{ lower }
end i f
i f forceCallableUnionTemplateCU′n

not generated yet
generate forceCallableUnionTemplateCU′n

<xsl : for−each select=‘1 to {countExpr}’>
<xsl : cal l−template name={forceCallableUnionTemplateCU′n

}>
{ i f processing group ∧¬context.ForceCallable }

<xsl : with−param name=‘cg ’ value=‘$cg ’ />
{ end i f }

<xsl : cal l−template/>
</xsl : for−each>

{ end i f }
Template Fragment 6.20: Class Union – Elements (Part 2.)

The second part of the template in Template Fragment 6.20 generates
content when needed. This may be necessary either when lower cardinality

149

of association CCh′n.A is increased or when a component of the union is
removed. Removal of a component results in removing of all its instances
and thus decreasing the total number of instances in the document.

Force callable template is again used for generating content. Expression
returned by getUnionDistribution is used to count the existing instances.

// genera te union cho i c e s subrou t ine
generate union choices(group : bool)
{
{ i f group }

{ i f CU′n.complexity = withoutGroups }
<xsl : variable name=‘cg ’ select=‘current () ’ />

{ else }
<xsl : variable name=‘cg ’ select=‘current−group () ’ />

{ end i f }
{ end i f }
<xsl : choose>

{ foreach choice element option o ∈
context.CurrentUnionElements.Options

// always |o.Items | = 1
var nw ← o.Items[1]
i f nw i s simple node element

i f getInV er(nw.Element, v) = null
continue

var test = ← relativeXPath(nw.Element, context.ProcessedPath) }
<xsl :when test=‘{ t e s t }’>

{ generate element single reference(o.Items) }
</xsl :when>

else i f nw i s content group
i f getInV er(nw.C, v) = null

continue
var test = ← getGroupPopulation(nw) }
<xsl :when test=‘{ t e s t }’>

{ generate group single reference(o.Items) }
</xsl :when>

{ end i f }
{ end foreach }

</xsl : choose>
}

Template Fragment 6.21: Class Union – Elements (Part 3.)

The last part of this template on Template Fragment 6.21 contains defini-
tion of generate union choices, a subroutine referenced earlier in Tempate

150

Fragment 6.19.
This subroutine creates choose and when blocks for the class union

and its respective components. In case of class unions (unlike with content
choices), options in Options collection always have only one item which is
either a simple node element (wrapping class with element label) or content
group (wrapping class without label).

The added content is skipped and depending on the particular option,
either generate element single reference or generate group single
reference is called.

Attributes

Subroutine generate union attributes reference is again analogous to
generate union elements reference (Template Fragment 6.19 – 6.21).
The subroutine again uses appropriate attribute constructs mentioned in
Gathering Attributes (choice attributes etc., see p. 143) instead of the con-
structs defined for elements.

Example

Figure 6.11 contains an example of usage of a class union, the revalidation
script is depicted in Figure 6.12. As we can see, a new class union node was
introduced in version v′ which encompasses classes article and book. This
effectively allows for interleaving of article and book elements, whereas
version v required all book elements after all article elements.

After examining the diagram in Figure 6.11, we can see that S(D) ⊆
S(D′), but adding a check to the algorithm that would recognize these par-
ticular situations would excessively complicate the algorithm. That is why
this is ignored and a union reference is created as if revalidation is needed
(but the processing is correct, the revalidation will not change the docu-
ment).

Revalidation can use for-each construct, because the union is without
content groups. For both components article and book a when block is
created. Since both components are green nodes, their contents can be copied
using copy-of.

151

Figure 6.11: Class Union Example

<xsl:template match="/author">

<author>

<!--Copy attributes-->

<xsl:call-template name="copyAttributes" />

<!--Content of Author - ’author’-->

<xsl:for-each select="article | book">

<xsl:variable name="cg" select="current()" />

<xsl:choose>

<xsl:when test="$cg[name() = ’article’]">

<xsl:copy-of select="$cg[name() = ’article’]" />

</xsl:when>

<xsl:when test="$cg[name() = ’book’]">

<xsl:copy-of select="$cg[name() = ’book’]" />

</xsl:when>

</xsl:choose>

</xsl:for-each>

</author>

</xsl:template>

<!--green nodes template-->

<xsl:template match="/author/article | /author/book">

<xsl:copy-of select="." />

</xsl:template>

Figure 6.12: Class Union Example – Revalidation Script

Verification

This section focused on the changes of a class union:

• associationChildAdded , associationChildRemoved and classUnion-
Moved where the node is a class union

152

• changes in the collection of components of a class union (classAdded-
ToUnion, classRemovedFromUnion, classMovedToClassUnion, class-
MovedOutOfClassUnion, classIndexChange)

The first set is of changes is solved completely by the revised Gather
Subelements/Attributes algorithm (see Algorithm 6). This algorithm con-
siders class unions when creating the template for its parent.

Changes in the collection of the components of the content choice will
all be handled when the Options collection is initialized. Because the order
of components of a class union is not significant, classIndexChange can be
ignored completely.

6.10 Structural Representatives

Finally, we add support for structural representatives in the evolved diagram.
We again have to extend algorithms Gather Subelements/Attributes to cope
with these two constructs.

6.10.1 Gathering XML Elements/Attributes

We add two new auxiliary construct derived from node element wrapper
resp. node attribute wrapper .

Definition 6.10.1 (Structural Representative Elements). Abstract construct
structural representative elements is a subtype of node element wrapper

structural representative elements = (C,Represented)

where C is a PSM class and Represented is another PSM class linked to the
same PIM class as C and C.Represented = Represented.

Definition 6.10.2 (Structural Representative Attributes). Abstract con-
struct structural representative attributes is a subtype of node attribute
wrapper

structural representative attributes = (C,Represented)

where C is a PSM class and Represented is another PSM class linked to the
same PIM class as C and C.Represented = Represented.

153

Content inherited from a represented class can occur in two situations:
either (a) directly in the content of PSM class when it is a structural repre-
sentative and it has an element label or (b) when the structural representa-
tive does not have an element label, the content is propagated upwards to
the closest significant node.

Figure 6.13: Structural Representatives – Propagation

Figure 6.13 contains a simple diagram with several structural represen-
tatives. The base type is LogMessageType with a single attribute id. This is
referenced from structural representative classes LogMessageTypeDesc and
LogMessage (in container Unassgined). LogMessageTypeDesc is referenced
from classes with labels Error and Warning.

Classes with labels Error and Warning respectively fall the category (a)
– the content inherited from LogMessageTypeDesc will be a part of the
content of Error and Warning XML nodes. Class LogMessage on the left-
hand side does not have an element label and thus the inherited content is
propagated upward to the content of node Unassigned.

Appendix C.1 contains a sample document for the diagram in Figure
6.13.

Algorithm Gather Subelements (Algorithm 7) creates structural repre-
sentative elements constructs for (a) (line 6) and (b) (line 25). Algorithm
Gather Attributes is modified in a similar manner.

154

Algorithm 7 Gather Subelements (4)

1 function GetSubtreeElements (N ′ ∈ D′.N)
2 returns subelementsN ′– ordered sequence of node element wrapper s.
3 {
4 subelementsN ′ ← ∅
5 i f N ′ ∈ Cpsm ∧ N ′.label 6= null ∧ N ′.Represented 6= null
6 subtreeElements ´ new structural representative elements(N ′,
7 N ′.Represented)
8
9 foreach node C ′ ∈ child nodes of N ′

10 getSubtreeElementsInc lRoot (N ′ , var subelementsN ′)
11 return subelementsN ′

12 }
13
14 procedure getSubtreeElementsInc lRoot (N ′ ∈ D′.N , var subelementsN ′)
15 {
16 i f N ′ ∈ {C ′ ∈ Cpsm|C ′.label 6= null} ∪ CC // s imple e lement
17 subelementsN ′ ´ new node element wrapper(N ′)
18 i f N ′ ∈ AC // s imple e lements
19 foreach attribute a′ ∈ N ′.Attpsm

20 subelementsN ′ ´ new node element wrapper(a′)
21 i f N ∈ D′group // groups
22 {
23 var components
24 i f N is structural representative
25 components ´ new structural representative elements(N ′,
26 N ′.Represented)
27 foreach node C ′ ∈ child nodes of N ′

28 getSubtreeElementsInc lRoot (C ′ ,var components)
29 subelementsN ′ ´ new content group(N ′, components)
30 }
31 i f N ′ ∈ CH ∨N ′ ∈ CU // choices , unions
32 {
33 // same as in Algorithm 6
34 . . .
35 }
36 }

155

6.10.2 Templates for Structural Representative

The main purpose of structural representatives is to reuse parts of the model.
This reusability should also be reflected in the revalidation script. If there
are changes in the reused part of the model, it would be unsuitable to create
the same revalidation instructions in each location where the particular part
of the model is referenced.

To achieve reusability, templates for a red node N ′ that is referenced
from structural representative(s) is slightly modified – its attributes and
subelements are created in two separate templates srAttTemplateN ′ and
srElmTemplateN ′ respectively. These templates are then called from the node
itself and from all the structural representatives. Template 6.22 shows a tem-
plates for a red node referenced from structural representatives and Template
6.23 the definition of srElmTemplateN ′ (srAttTemplateN ′ is analogous).

<xsl : template . . . >
{ i f (N ′ ∈ D′sign) }

<{name(N ′)}> // wrapping tag f o r s i g n i f i c a n t nodes
{ end i f }
{ i f N ′ ∈ D′group }

<xsl : cal l−template name=‘{srAttTemplateN ′}’>
<xsl : with−param name=‘cg ’ select=‘$cg ’ />

</xsl : cal l−template>
<xsl : cal l−template name=‘{srElmTemplateN ′ } ’ />

<xsl : with−param name=‘cg ’ select=‘$cg ’ />
</xsl : cal l−template>

{ else }
<xsl : cal l−template name=‘{srAttTemplateN ′ } ’ />
<xsl : cal l−template name=‘{srElmTemplateN ′ } ’ />

{ end i f }
{ i f (N ′ ∈ D′sign) }

</{name(N ′)}> // f o r s i g n i f i c a n t nodes , c l o s e the tag
{ end i f }

</xsl : template>

Template 6.22: Template for Nodes Referenced from Structural Representa-
tives

156

<xsl : template name=‘{srElmTemplateN ′ } ’ >
{ i f N ′ ∈ D′group }

<xsl : parameter name=‘cg ’ />
{ end i f }
{ process elements(GetSubtreeElements(N ′)) }

</xsl : template>

Template 6.23: Templates for Elements of a Referenced Node

Since we added new types of node attribute wrapper/node element wrap-
per , subroutinesprocess elements/attributes must be again updated.
The updated version of process elements is depicted in Template Frag-
ment 6.24, subroutine generate sr elements reference (generating a ref-
erence of elements from structural representative) is depicted in Template
Fragment 6.25. Subroutine process attributes is modified analogously and
calls and generate sr attributes reference analogous to generate sr el-
ements reference.

// proces s e lements subrou t ine
process elements(elm : list of node element wrappers)
{

foreach node element wrapper nw ∈ elm
{

i f nw i s simple node element
generate element reference with

context.CurrentElement = nw

else i f nw i s content group
generate group reference with

context.CurrentContentGroup = nw

else i f nw i s union elements
generate choice elements reference with

context.CurrentChoiceElements = nw

else i f nw i s choice elements
generate union elements reference with

context.CurrentUnionElements = nw

else i f nw i s structural representative elements
generate sr elements reference with

context.CurrentUnionElements = nw

}
}

Template Fragment 6.24: Templates for Elements and Attributes of a Ref-
erenced Node

157

{ i f context.ForceCallable
i f forceCallableSrElmTemplateN ′ not generated yet

generate forceCallableSrElmTemplateN ′ }
<xsl : cal l−template name=‘{forceCallableSrElmTemplateN ′ } ’ />

{ else }
<xsl : cal l−template name=‘{srElmTemplateN ′}’>

{ i f in group }
<xsl : with−param name=‘cg ’ select=‘$cg ’ />

{ end i f }
</xsl : cal l−template>

{ end i f }
Template Fragment 6.25: Generating SR Elements Reference

The process of creating force callable templates for attributes and ele-
ments – forceCallableSrElmTemplateN ′ and forceCallableSrAttTemplateN ′ is
identical to creating force callable templates for nodes and groups.

The last step to complete the support of structural representatives is to
extend values of match attributes of the top level templates (i.e. all tem-
plates of type appliedNodeTemplate and also of the two diagram templates
greenNodesTemplateD′ and blueNodesTemplateD′).

The idea is that for each node M ′ that is in a subtree of a class referenced
from a structural representative, the node models content at several locations
in the document. The value of match attribute must be ready to accept all
locations. Example in Figure 6.14 demonstrates this.

Figure 6.14: Match Attribute of Top Level Templates

158

<xsl:template match="/X/p1"> <xsl:template match="/X/p2/s2 | /X/p1/s2">

<p1> <s2>

<xsl:call-template name="X-p1-SR-ATT" /> <xsl:attribute name="a2" />

<xsl:call-template name="X-p1-SR-ELM" /> </s2>

</p1> </xsl:template>

</xsl:template> <xsl:template name="X-p1-a1">

<a1></a1>

<xsl:template name="X-p1-SR-ATT"> </xsl:template>

<xsl:attribute name="b1" />

</xsl:template> <xsl:template match="/X/p2">

<xsl:template name="X-p1-SR-ELM"> <p2>

<xsl:apply-templates select="s1" /> <xsl:call-template name="X-p1-SR-ATT" />

<xsl:apply-templates select="s2" /> <xsl:call-template name="X-p1-SR-ELM" />

<xsl:call-template name="X-p1-a1" /> </p2>

</xsl:template> </xsl:template>

<xsl:template match="/X/p2/s1 | /X/p1/s1"> <!--blue nodes template-->

<s1> <xsl:template match="/X">

<xsl:attribute name="a1" /> // usual blue node template body

</s1> </xsl:template>

</xsl:template>

Figure 6.15: Example Document for Diagram in Figure 6.14

The revalidation script in Figure 6.15 shows how match attribute was
extended for nodes s1 and s2 in order to match the instances not only under
node p1 but also under the structural representative node p2. The template
for node p2 shows how templates (srAttTemplatep1 and srElmTemplatep1)
are called from a structural representative node.

159

Chapter 7

Implementation and
Experiments

7.1 Implementations

The prototype implementation of the XSem model – XCase was presented
in [18].

• XCase is a full-fledged CASE tool for creating PIM and PSM diagrams
using the XSem model.

• It implements the basic translation algorithm proposed in [24] for
translation from an XSem-H PSM diagram into an XSD.

• It contains an experimental implementation proposed in [19] for im-
porting an existing SD into an empty PSM diagram and creating a
PIM diagram for this PSM diagram.

• It contains a simple generator of random XML documents valid against
a PSM diagram.

As a part of this thesis, XCase was extended with following features:

• The ability to maintain several versions of the model.

• A branch function that duplicates a selected version of a model and
connects the source and branched version of the model with version
links (fills the relation VL).

160

• Basic means of editing the relation VL.

• A prototype implementation of the algorithm proposed in Chapter 6.

The prototype implementation generates a revalidation script following
the revalidation algorithm (with several exceptions – changes of attribute
types are ignored in the current implementation, as well as the changes
of the any attribute flag and conversions from a regular PSM class into a
structural representative and vice versa).

The revalidation script can be tested in XCase on random data (Saxon
XSLT processor [1] is used for XSLT processing).

7.2 Experiments

Since there are no real-world projects that use the multi-version extension
of XCase, experiments can be conducted only on the existing specifications
in XML Schema language thanks to the possibility to import an XSD into
a PSM diagram.

By importing two different versions of the same XSD and connecting the
created constructs via version links, our approach can be used for generating
evolution scripts even for the existing specifications.

RSS specification A smaller example is the specification of RSS, versions
0.90 and 2.0 [5] [6]. Although both versions model a similar XML structure,
the structure of the PSM diagrams for the respective versions is different.
The algorithm generates a correct revalidation script.

OpenTravel specification To test the approach on a larger example, two
versions of the schema FS OTA CancelRQ.xsd that is a part of the Open-
Travel Specification [2] (namely the versions 2008A and 2009A) were im-
ported into the program using the XSD to PSM feature.

Most of the version links were created using the trivial matching algo-
rithm that is able to connect unchanged constructs. Version links for the
changed constructs were added manually.

Among open specifications, it is a common practice to create the new ver-
sions of the specifications backwards-compatible and the OpenTravel spec-
ification is also the case (OpenTravel schemas provide a large amount of
freedom to the user in general, for example by declaring all the elements and

161

attributes optional). Nonetheless, the nature of the changes is too complex
for the algorithm to recognize the backward-compatibility, so a non-empty
revalidation script is created. However, the revalidation script is correct and
outputs a valid document.

162

Chapter 8

Conclusion

The aim of the thesis was to propose an approach to XML schema evolution
built upon a conceptual model for XML schemas. It should identify changes
in the schema, determine the impact of the changes on the existing docu-
ments valid against the old version and produce a revalidation script when
revalidation of the existing documents is necessary.

We began by naming the scenarios in which the existing systems us-
ing XML schemas evolve and what are the consequences of the evolution
process (see Chapter 1). A survey of the existing approaches to the XML
schema evolution followed in Chapter 2. In Chapter 3 we formally defined
a conceptual model XSem for platform-independent and platform-specific
modeling.

In Chapter 4 we extended the XSem conceptual model with the ability
to model multiple versions of the model at once. Using version links, each
construct in the model is correctly connected with its counterpart constructs
in all other versions, where the construct exists.

Adding the version links allowed us to define changes (Chapter 5) that
can occur between two versions v and v′ of a diagram D and an algorithm
that detects these changes. With each change we examined its impact on
the validity of the documents valid against version v (S(D)) and identified
the set of changes that do not violate validity of documents in S(D).

A set of changes CD,D′,v,v′ between versions v and v′ of a diagramD, which
is the output of Algorithm 2, does not expect any particular implementation
language for revalidation.

In Chapter 6 we proposed an algorithm that produces an XSLT script
that revalidates a valid document D ∈ S(D) and produces a new document

163

document D′ ∈ S(D′) valid for version v′. The revalidated document pre-
servers semantical meaning of the constructs thanks to utilizing the version
links defined in Chapter 4.

The main contribution of our approach is the ability to maintain an
arbitrary number of different versions of each diagram with the ability to
quickly generate the revalidation script for any two different versions. The
revalidation script translates a document valid against the first version into
a document valid against the second version.

In contrast to the “recording” approaches (where only the new version
can be edited during the evolution process), the different versions can be
edited separately. The editing can also be suspended and resumed any time,
separate branches of any version can be created on demand and unlimited
amount of versions can be maintained in the model.

Thanks to version links, the algorithm is able to correctly distinguish
moving operations from adding/deleting, correctly handle renaming, reorder-
ing and complex composite changes in the structure of the document. The
version links solve several issues inherent in algorithms discussed in Chapter
2.

The algorithm takes into account a large number of possible constructs
at the platform-specific layer and thus covers a wide set of modeled XML
schemas. Another advantage of the algorithm is that it can be applied regard-
less of the particular XML schema language. The XSem-H platform-specific
diagram models a set of XML documents, it is not a visualization of an XML
schema in any particular XML schema language. The revalidation algorithm
examines the versioned XSem-H PSM diagrams, not the schemas themselves,
therefore the independence of the XML schema language is preserved.

Integration with the XSem model with its PIM and PSM levels leaves
an open field for further enhancements of the system. The PIM level can
be further utilized for generating content (see Section 8.1.1 for details), new
features can be added to the PSM constructs to further tweak the evolution
process.

An experimental implementation of the algorithm was integrated into
XCase and is available on the attached CD.

8.1 Future Work

Our approach takes into account almost all constructs defined in [24] and
usefully extends the XSem model. To further extend its practical applicabil-

164

ity, the future research can examine the following areas.

8.1.1 Generating Content

The revalidation script generated by the revalidation algorithm proposed in
Chapter 6 is able to supply new content when needed. This content is always
a default instance of some part of the XSem-H diagram (see Section 5.4).

Adding the default instance into the document makes the document
valid, but does not contain any semantic value. However, the approach could
be extended to add semantically correct content into the new document. For
this purpose, PIM links could be utilized. A possible solution would be to
generate the content based on the data retrieved from the database. The
database query could be also automatically generated, if the database struc-
ture would correspond to the PIM model.

Figure 8.1: Adding Content

Consider the model in Figure 8.1. It contains a PIM class Customer in
version v and v′ and PSM class derived from it in a PSM diagram. The
attribute name was removed and replaced by attributes first-name and
sure-name in version v′. The revalidation script generated by the current
algorithm would be:

<xsl:template match="/Customer">
<Customer>

<xsl:copy-of select="@id" />
<xsl:attribute name="first-name" />

165

<xsl:attribute name="sure-name" />
</Customer>

</xsl:template>

If we extended the algorithm with considering PIM linked to a relational
database, it could produce a revalidation script like1:

<xsl:variable name="first-name">
{select [FIRST-NAME] from CUSTOMER where ID="/Customer/@id"}

</xsl:variable>
<xsl:variable name="last-name">

{select [FIRST-NAME] from CUSTOMER where ID="/Customer/@id"}
</xsl:variable>
<xsl:template match="/Customer">
<Customer>

<xsl:copy-of select="@id" />
<xsl:attribute name="first-name">

<xsl:value of select="$first-name" />
</xsl:attribute>
<xsl:attribute name="sure-name">
<xsl:value of select="$last-name" />

</xsl:attribute>
</Customer>

</xsl:template>

The most appropriate solution would be to add another type of platform-
specific model – a model of a relational database. This model would be linked
to the PIM model in a similar way as XSem-H diagrams are and the required
queries could be inferred from the links between XSem-H and PIM and PIM
and the relational database model.

8.2 Version Links for Imported Schemas

XCase contains an experimental implementation of an algorithm proposed in
[19] for importing an existing XSD into an XSem-H diagram. Combined with
the algorithm proposed in Chapter 4, the system can be used to generate
revalidation scripts in those scenarios, where we already have both old and
new version of the XSD. The old schema is imported into diagram D, new
schema into D′.

1We use a symbolic notation for incorporating SQL queries into XSLT script. The
correct notation is vendor-specific.

166

The only missing part for the successful run of the algorithm are the
contents of relation VL (version links joining the previous and the evolved
version of each construct). This relation can be created manually by the
user, but it is a time-consuming process.

It would be useful to extend the system with a heuristic that could
create a larger part of VL automatically and ask for user input only in the
unresolved cases. A trivial matching algorithm is already a part of XCase,
but now it can only connect constructs in unchanged parts of the diagram.

There exists a lot of methods for finding similarities and patterns among
two XML schemas (a survey can be found in [25]). Outcomes of these meth-
ods can be transferred into finding similarities between two XSem-H dia-
grams.

8.3 Generalizations and Extensions

XSem model defined in Chapter 3 lacks support for inheritance. However,
translation of inheritance at the level of platform-specific XSem-H diagrams
to XML Schema constructs was proposed in [24]. Adding support for inher-
itance into revalidation involves two tasks:

• handling generalization already present in the diagram in both versions
v and v′ (changes occurred either in the general or in the specific class)

• handling generalizations added/removed in version v′.

167

Appendix A

CD Contents

The attached CD contains:

• PDF version of this thesis - thesis.pdf

• XCase installer (includes a prototype implementation of the algorithm
described in Chapter 6)

• Examples for diagram evolution

• Definitions of the diagram-independent auxiliary templates - auxiliary-
templates.xslt

Running the Examples Examples are stored in the folder Evolution

examples. Each example is an .XCase project file. When the file is opened
in XCase, select the new version of the diagram and click Find changes in
the main toolbar1 to start the change detection algorithm and display the
changes. To generate the revalidation stylesheet, click Evolve and then XSLT
from changes.

The generated revalidation stylesheet can be tested in the same window
on some random input files (generated after clicking Another sample).

Examples 1-5 are described in this thesis (Figures 6.1, 6.3, 6.9, 6.11 and
6.14).

Example 6 contains two versions of a schema for RSS - version 0.90 [5]
and 2.0 [6]. Both versions were obtained first by translating the DTD into
the XSD (via Visual Studio 2008) and then importing the XSD into XCase.

1On machines with smaller display resolution, the button may be hidden and accessible
after clicking the arrow on the right of the toolbar.

168

Example 7 contains two versions of schema FS OTA CancelRQ.xsd that
is a part of the OpenTravel Specification [2] (namely the versions 2008A and
2009A).

169

Appendix B

Sample XML Document and
XML Schema Translation for
Diagram 3.14

XML Schema Translation and a valid document for diagram from Figure
3.14 (p. 49).

<?xml version="1.0" encoding="utf-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="catalog" type="CategoryType"/>

<xs:complexType name="BookType">
<xs:sequence>

<xs:element name="author" type="xs:string"/>
<xs:element name="title" type="xs:string"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="CategoryType">
<xs:sequence>

<xs:element name="description" type="xs:string" />
<xs:element name="category" type="CategoryType"

minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="books">

<xs:complexType>
<xs:sequence>

<xs:element name="book" type="BookType"
minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

170

</xs:element>
<xs:element name="best-seller" type="BookType"

minOccurs="0"/>
</xs:sequence>
<xs:attribute name="code" type="xs:string" />
<xs:attribute name="title" type="xs:string" />

</xs:complexType>

</xs:schema>

<?xml version="1.0"?>
<root-category code="1" title="Main">

<category code="1.1" title="Fiction">
<description>All fiction books</description>
<category code="1.1.1" title="History">

<description>History books</description>
<books>

<book>
<title>#</title>
<author>#</author>

</book>
...

</books>
<best-seller>

<author>#</author>
<title>#</title>

</best-seller>
</category>
<category code="1.1.2" title="Drama">

<description>Drama books</description>
....

</category>
...
<books />

</category>
<category code="1.2" title="Non-fiction">

<description>All non-fiction books</description>
...

</category>
<books />

</root-category>

171

Appendix C

Sample XML Document for
Diagram 6.13

<Log>
<Unassigned>

<id>1</id>
<id>2</id>

</Unassigned>
<Error>

<id>1</id>
<text>Missing ’;’.</text>
<severity>1</severity>

</Error>alg:change-detection
...
<Error>

<id>2</id>
<text>Method named ’Create’ already exists</text>
<severity>1</severity>

</Error>
<Warning>

<id>3</id>
<text>Method Show() is obsolete.</text>
<severity>5</severity>

</Warning>
</Log>

Figure C.1: Sample Document for Diagram from Figure 6.13

172

Bibliography

[1]

[2] OpenTravel Specification. http://www.opentravel.org/.

[3] Oracle XML DB Developer’s Guide - Oracle XML Schema Annotations.
http://download-uk.oracle.com/docs/cd/B28359_01/appdev.111/b28369/
xdb05sto.htm#i1030452.

[4] Oracle XML DB Developer’s Guide - XML Schema Evolution. http:
//download-uk.oracle.com/docs/cd/B28359_01/appdev.111/b28369/
xdb07evo.htm#BCGFEEBB.

[5] RSS 0.90 Specification. http://www.rssboard.org/rss-0-9-0.

[6] RSS 2.0 Specification. http://cyber.law.harvard.edu/rss/rss.html.

[7] XCase - tool for XML data modeling. http://xcase.codeplex.com/.

[8] A. Khan, M. Sum. Introducing Design Patterns in XML Schemas.
http://developers.sun.com/jsenterprise/archive/nb_enterprise_pack/
reference/techart/design_patterns.html.

[9] D. Booth, C. K. Liu. Web Services Description Language (WSDL) Version 2.0 Part
0: Primer. W3C, June 2007. http://www.w3.org/TR/wsdl20-primer/.

[10] E. Domı́nguez, J. Lloret, A. L. Rubio, and M. A. Zapata. Evolving xml schemas
and documents using uml class diagrams. In K. V. Andersen, J. K. Debenham,
and R. Wagner, editors, DEXA, volume 3588 of Lecture Notes in Computer Science,
pages 343–352. Springer, 2005.

[11] G. Guerrini, M. Mesiti. XML Schema Evolution and Versioning: Current Approaches
and Future Trends.

[12] G. Guerrini, M. Mesiti, and M. A. Sorrenti. Xml schema evolution: Incremental vali-
dation and efficient document adaptation. In D. Barbosa, A. Bonifati, Z. Bellahsene,
E. Hunt, and R. Unland, editors, XSym, volume 4704 of Lecture Notes in Computer
Science, pages 92–106. Springer, 2007.

[13] Hong Su, D. K. Kramer, E. A. Rundensteiner. XEM: XML Evolution Management.

173

[14] ISO. ISO/IEC 9075-14:2008 - SQL – Part 14: XML-Related Specifica-
tions (SQL/XML). http://www.iso.org/iso/iso_catalogue/catalogue_ics/
catalogue_detail_ics.htm?csnumber=45499.

[15] M. Kay. XSLT 2.0 and XPath 2.0 4th Edition. Wrox, 2008.

[16] M. Kay. XSL Transformations (XSLT) Version 2.0. W3C, January 2007. http:
//www.w3.org/TR/xslt20/.

[17] M. Klettke. Conceptual xml schema evolution — the codex approach for design
and redesign. In M. Jarke, T. Seidl, C. Quix, D. Kensche, S. Conrad, E. Rahm,
R. Klamma, H. Kosch, M. Granitzer, S. Apel, M. Rosenmüller, G. Saake, and
O. Spinczyk, editors, Workshop Proceedings Datenbanksysteme in Business, Tech-
nologie und Web (BTW 2007), pages 53–63, Aachen, Germany, March 2007.

[18] J. Kĺımek, L. Kopenec, P. Loupal, and J. Malý. XCase - A Tool for Conceptual
XML Data Modeling. In Advances in Databases and Information Systems, volume
5968/2010 of Lecture Notes in Computer Science, pages 96–103. Springer Berlin /
Heidelberg, March 2010.

[19] J. Kĺımek. Xml Schema Evolution, 2009.

[20] J. Miller and J. Mukerji. MDA Guide Version 1.0.1. Object Management Group,
2003. http://www.omg.org/docs/omg/03-06-01.pdf.

[21] I. Mlynkova and J. Pokorny. Five-level multi-application schema evolution. 2009.

[22] M. M. Moro, S. Malaika, and L. Lim. Preserving xml queries during schema evolu-
tion. In WWW ’07: Proceedings of the 16th international conference on World Wide
Web, pages 1341–1342, New York, NY, USA, 2007. ACM.

[23] M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy of xml schema languages
using formal language theory. ACM Trans. Internet Technol., 5(4):660–704, 2005.

[24] M. Necasky. Conceptual Modeling for XML, volume 99 of Dissertations in Database
and Information Systems Series. IOS Press/AKA Verlag, January 2009.

[25] M. Nečaský and I. Mlýnková. Exploitation of similarity and pattern matching in
xml technologies. In DATESO 2009, volume 471 of CEUR Workshop Proceedings,
pages 90–104. MatfyzPress, 2009.

[26] Object Management Group. UML Infrastructure Specification 2.1.2, nov 2007.
http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF/.

[27] Object Management Group. UML Superstructure Specification 2.1.2, nov 2007.
http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF/.

[28] A. M. P. V. Biron, K. Permanente. XML Schema Part 2: Datatypes (Second Edition).
W3C, October 2004. http://www.w3.org/TR/xmlschema-2/.

[29] S. Systems. Enterprise Architect. http://www.sparxsystems.com.au/products/
ea/.

174

[30] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau. Extensible Markup
Language (XML) 1.0 (Fourth Edition). W3C, September 2006. http://www.w3.
org/TR/REC-xml/.

[31] B. Thalheim. Entity-Relationship Modeling: Foundations of Database Technology.
Springer Verlag, Berlin, Germany, 2000.

[32] H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema Part
1: Structures (Second Edition). W3C, October 2004. http://www.w3.org/TR/
xmlschema-1/.

[33] C. M. S.-M. Tim Bray, Jean Paoli. Document type declaration. 2000.

[34] W3C. Document Object Model (DOM) specification. http://www.w3.org/DOM/.

[35] W3C. XML Path Language (XPath) 2.0. http://www.w3.org/TR/xpath20/.

[36] W3C. XQuery 1.0: An XML Query Language. http://www.w3.org/TR/xquery/.

[37] W3C. XQuery Update Facility 1.0 specification. http://www.w3.org/TR/
xquery-update-10/.

[38] W3C. XQuery Update Facility 1.0 specification. http://www.w3.org/TR/
xquery-update-10/.

175

