

Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Michal Kozák

Schematron Schema Inference

Department of Software Engineering

Supervisor of the master thesis: RNDr. Irena Mlýnková, Ph.D.

Study programme: Informatics

Specialization: Software Systems

Prague 2011

I would like to thank to my supervisor, RNDr. Irena Mlýnková, Ph.D., for her guidance,

helpful suggestions, study materials and the time she spend reading and correcting my

English. It helped me a lot.

I declare that I carried out this master thesis independently, and only with the cited sources,

literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No. 121/2000

Coll., the Copyright Act, as amended, in particular the fact that the Charles University in

Prague has the right to conclude a license agreement on the use of this work as a school

work pursuant to Section 60 paragraph 1 of the Copyright Act.

In date signature

Název práce: Schematron Schema Inference

Autor: Michal Kozák

Katedra / Ústav: Katedra softwarového inženýrství

Vedoucí diplomové práce: RNDr. Irena Mlýnková, Ph.D., Katedra softwarového inženýrství

Abstrakt: XML je populární jazyk pro výměnu dat. Mnoho dokumentů však nemá svůj popis
schématu nebo je tento popis neaktuální. Tato práce navazuje na práce o automatickém
odvozování schémat XML dokumentů a zaměřuje se na odvozování schémat pro
Schematron.

Schematron je jazyk, který validuje XML dokumentu pouze pomocí pravidel, ne jako celou
gramatiku, jako je typické pro DTD nebo XML Schema. Jelikož oblast generování schémat
Schematronu není příliš prozkoumaná, tato práce analyzuje základní problémy, navrhuje
několik postupů a popisuje jejich výhody a nevýhody.

Klíčová slova: XML, XML schéma, Odvozování XML, Schematron

Title: Schematron Schema Inference

Author: Michal Kozák

Department / Institute: Department of Software Engineering

Supervisor of the master thesis: RNDr. Irena Mlýnková, Ph.D., Department of Software
Engineering

Abstract: XML is a popular language for data exchange. However, many XML documents do
not have their schema or their schema is outdated. This thesis continues on the field of
automatic schema inferring for set of XML documents and focuses on Schematron schema
inferring.

Schematron is a language that validates XML documents with rules, it does not compare the
document against a grammar like DTD, and XML Schema does. Because the field of
Schematron schema generation is not so much explored, this thesis analyzes basic problems,
suggests several approaches and describes their advantages and disadvantages.

Keywords: XML, XML schema, XML inferring, Schematron

Contents

1 Introduction .. 1

1.1 Motivation ... 1

1.2 Description of this thesis ... 1

1.3 Structure of the work .. 2

2 Used technologies ... 3

2.1 XML .. 3

2.1.1 Syntax ... 3

2.1.2 Namespaces ... 5

2.2 XPath .. 7

2.2.1 Syntax ... 7

2.2.2 XPath 2.0 .. 10

2.3 DTD .. 10

2.4 XML Schema .. 11

2.4.1 Syntax ... 12

2.4.2 Summary of XSD ... 14

2.5 RELAX NG ... 14

2.5.1 XML Syntax ... 14

2.5.2 Summary of RELAX NG ... 18

2.6 Schematron .. 19

2.6.1 Versions of Schematron ... 19

2.6.2 Language definition .. 19

2.6.3 Difference from other schema languages .. 25

3 Basic Definitions .. 31

3.1 Formal Languages Theory .. 31

3.1.1 Basic definitions ... 31

3.2 Regular expressions and finite automata .. 33

3.2.1 Non-deterministic finite state automata ... 35

Theorem 1 Automata equivalence .. 36

3.3 Regular tree grammars and Hedges .. 36

3.3.1 Local tree grammars and languages .. 40

3.3.2 Single-Type tree grammars and languages .. 41

3.3.3 Regular tree automata ... 42

4 Taxonomy .. 45

4.1 DTD .. 45

4.2 XML Schema .. 45

4.3 Relax NG... 46

4.4 Schematron .. 46

5 Transforming hedges to Schematron schema .. 49

5.1 Definitions .. 49

5.2 Limitations ... 50

5.3 Step 1 – Context generation .. 50

5.3.1 Trivial solution .. 50

5.3.2 K-ancestors ... 52

5.3.3 Absolute path without a recursion .. 53

5.3.4 Single recursion in production rules .. 54

5.3.5 Recursion with deterministic content .. 59

5.3.6 Context for each hedge of grammar .. 67

5.4 Step 2 – Boundary rules ... 69

5.5 Step 3 – order checks .. 71

5.5.1 Basic idea of the algorithm ... 72

5.5.2 Problem analysis... 74

5.5.3 Algorithm .. 75

5.6 Summary .. 84

6 XML Schema inferring ... 86

6.1 iXSD .. 86

6.1.1 Algorithm .. 87

6.1.2 Summary .. 93

7 Implemented solution ... 94

7.1 Data limitations ... 94

7.2 Usage of iXSD ... 95

7.2.1 Inferred grammar ... 95

7.3 Schematron schema generation .. 95

7.4 Experimental data sets .. 96

7.5 Conclusion ... 101

8 Related work ... 103

8.1 Inferring xml schema definitions from xml data ... 103

8.2 Even an Ant Can Create an XSD ... 103

8.3 Automatic Construction of an XML Schema for a Given Set of XML Documents ... 104

8.4 Optimization and Refinement of XML Schema Inference Approaches 104

8.5 Efficient Detection of XML Integrity Constraints ... 105

9 Conclusion ... 106

9.1 Future work ... 106

10 Bibliography ... 108

11 Appendix – Content of the CD ... 111

12 Appendix Program usage .. 112

12.1 iXSD .. 112

12.2 Schematron Generator .. 112

13 Appendix - attachments .. 114

1

1 Introduction

1.1 Motivation

In the current world communication holds a very important role. In the computer

world if two entities want to communicate they can accomplish it in many formats.

One of the mostly used is the Extensible Markup Language (XML) [9].

XML is used in many areas and for many purposes and often between different

subjects. Each XML document can have a different structure. To express the

structure and validate a document against it, XML schema languages were created.

Just to name some of them – DTD[9], XML Schema[12] and Relax NG[3]. These

schema languages describe the structure of a valid XML document and thus

allowing a safe data exchange.

The use of XML schemas is not mandatory and even if they exist, they can outdate

real fast. The problem emerges – how to automatically create an XML schema for a

set of documents. There have been many works on this problem. But most of them

focused on creating a complex grammar. These complex grammars validate the

whole document from its root to every leaf. This kind of validation is often slow and

also not needed.

What if we want to split the validation into several steps? In each step check a

different aspect of the document? What if we want to validate only a specific

construct and leave the rest of the document unchecked? These demands were not

easily satisfied. Rick Jellife created in 1999 a new schema language for XML

validation – Schematron. It uses rules that are able to check only specific parts of an

XML document. Schematron is distinct to grammar based schema languages and

the ability to automatically generate its schema would be interesting.

1.2 Description of this thesis

In this thesis we will introduce a method to infer a Schematron schema from a set

of XML documents. We analyze different aspect of Schematron schema generation.

Since the automatic inferring of XML documents is not a new problem, we will

2

introduce only a single method that we will use in our experimental

implementation.

In our experimental implementation we generate a grammar using the introduced

inferring method. We allow the user to modify the grammar. The grammar is then

transformed into Schematron schema by the use of our algorithm.

1.3 Structure of the work

This chapter presented a motivation and a brief description for this thesis. In

Chapter 2 we introduce used technologies (XML, grammar languages, etc.). In

Chapter 3 we define formalisms from the language theory. The expressive power of

schema languages is compared in Chapter 4. Chapter 5 is the core part of this thesis

presenting an analysis and algorithms for Schematron schema generation. Chapter

6 analyzes XML schema inferring and introduces a single method. In Chapter 7 we

describe our experimental implementation and its results. Chapter 9 contains

summary and also suggestions for possible future work that could not be done in

this thesis. The last part of this thesis is the Appendix that contains a brief user

guide.

3

2 Used technologies

In this chapter we introduce current technologies that are compared and

referenced later in this thesis. These descriptions introduce the technologies only in

main features. It is not the aim of this thesis to provide the full definition of these

technologies.

2.1 XML

In this chapter we define what XML, XML validation and a schema language is. The

Extensible Markup Language (XML) is a text-based language standardized by the

W3C1. XML was derived from SGML [14] that was too complex and thus too difficult

to implement. XML is simpler but preserves the expressive power. For full definition

of XML please refer to [9].

XML is used to describe structured information. XML is a meta-language; it defines

only the syntax how to describe the information but not a concrete way how to do

it. XML is used in many places for many purposes: sharing data (between people,

between programs), communication (e.g. WSDL2), storing data …

2.1.1 Syntax

XML syntax is easy. Here we define basic terms. To full definition of XML, please see

[9]:

Definition 2.1.1. Tag is a markup construct that begins with “<” and ends

with “>”. There are three types of tags – a start tag, an end tag and

an empty tag. The difference between these tags is the existence and

location of the character “/”. Start tag has none, end tag has it right

after “<” and empty tag has it right before the “>”.

There are limitations for characters that are allowed in the tag name. For full

definition of allowed name please see [9].

1
World Wide Web consortium

http://www.w3.org
2
 WSDL – Web Service Description Language

http://en.wikipedia.org/wiki/WSDL

http://www.w3.org/
http://en.wikipedia.org/wiki/WSDL

4

Definition 2.1.2. Element is the building stone of any XML document. It

begins with a start-tag and ends with a corresponding end-tag or it

consists only of a single empty-tag. The names of the tags must match

and is case-sensitive. The data (if any) between the start-tag and end-

tag is called the content of an element. The content can be text or other

elements or both. These elements are called child elements.

Example 2.1.1. XML markup example

<paragraph style=”normal”>

 Here starts some text. <bold>This part is Important!</bold> <newline />

 Some more text on the next line.

</paragraph>

Example 2.1.1 contains three elements: paragraph, bold and newline. Elements bold

and newline are within the content of the element paragraph and thus they are child

elements. Element newline is formed only of empty-tag and has no content.

Definition 2.1.3. Attribute is a name-value pair located within a start-tag

or an empty-tag. The value must be always quoted.

Example 2.1.1 contains one attribute style that is located in the start-tag of the

element paragraph. The attribute style has the value “normal“.

Definition 2.1.4. An XML document is well-formed if it contains exactly one

root element and all elements are terminated within their parent

element’s content. (They must be correctly nested)

Example 2.1.2. Not a well-formed document

<doc>

 <A>

</doc>

Example 2.1.2 is not well-formed because elements A and B are not correctly nested.

Note that the order of elements is generally significant; on the contrary the order of

attributes of an element is not.

5

Definition 2.1.5. An XML document is valid if and only if it is well-formed

and meets some other constraints. These constraints are defined by a

schema language. The process of determination whether the

document is valid is called validation.

Example 2.1.3. Well-formed XML document

<doc>

 <para>

 Here is some text of paragraph 1. <bold>Important information </bold>

 </para>

 <para>

 Here is text of a next paragraph.

 </para>

</doc>

We can see an example of a well-formed document. The root element is doc, it has

two child elements called para that have mixed content of text and element bold

(that can be seen in the first paragraph).

2.1.2 Namespaces

Some XML documents have their content from multiple sources – some elements

belong to a group A, other elements to group B. As the result the names of

elements (or attributes) can collide. Each group has its own schema and we need to

determine what schema to use for validation of every specific element. That is the

situation where namespaces are used.

Definition 2.1.6. Namespace is a context that holds information (e.g.

schema) for logically connected data.

6

Definition 2.1.7. Let us have a namespace NS. Declaration of such a

namespace for an element and its content is done using an attribute in

the following syntax:

xmlns:NS=”URI”

 where URI3 points to the namespace declaration. Default namespace

is defined by setting a value to the attribute xmlns=”URI”

A single element can contain definition for several namespaces. See the Example

2.1.4.

Example 2.1.4. Namespace definition

<a xmlns=” http://www.some.examle.com” xmlns:sch=”
http://purl.oclc.org/dsdl/schematron” >

 <!-- for the content both namespaces are defined-->

 …

The Example 2.1.4 defines two namespaces – default

(http://www.some.examle.com) and namespace sch that points to

http://purl.oclc.org/dsdl/schematron.

Definition 2.1.8. Let us have defined a namespace NS. To assign an XML

element to that namespace we prefix the name of the element with the

namespace. To explicitly set the namespace of an attribute we prefix the

attribute’s name.

Example 2.2.1. Prefixed element with a namespace

<ns1:some-element xmlns:ns1=” http://www.some.examle.com”>

 <!-- content of the element with defined namespace ns1 -->

</ns1:some-element>

In Example 2.2.1 we have an element some-element that belongs to the namespace

ns1. Namespace ns1 is defined in this element. This namespace is accessible from

this element and its content.

3
 URI – Uniform Resource identifier

http://en.wikipedia.org/wiki/URI

http://en.wikipedia.org/wiki/URI

7

2.2 XPath

XPath (XML Path language) [6, 7] is a query language for XML. XPath serves to

address parts of an XML document, allowing navigation in the XML document and

mining values of element, their attributes, etc. XPath is widely used by other

languages and tools (XSLT, XQuery …). Here we introduce the basics of XPath –

syntax, XPath-axis and some of its functions.

2.2.1 Syntax

Here we introduce the syntax of XPath 1.0, its queries and how they are evaluated.

An XML document is represented as a tree, where the root node of the tree is the

XML document itself and the root node has only one child – the root element of the

XML document.

Definition 2.2.1. An XPath node is the smallest XML fragment addressable

by XPath.

There are several types of XPath nodes:

 Root nodes

 Element nodes

 Text nodes

 Attribute nodes

 Nodes for comments, processing instructions, namespaces…

Each XML document has only one root node and, as mentioned above, it is pointing

to the document itself. An element node represents an element in an XML

document but not its content. A text node represents the text content of an

element’s content model (The text is concatenated from each text node that is

located in the content model of the element). An attribute node represents

element’s attributes.

Definition 2.2.2. An XPath axis is a relation that specifies what nodes will

be selected from a current context.

8

There are several types of axes which are listed below. For each description of

an XPath axis we suppose we have selected a context node U that expresses the

relative position.

 Self – returns the current node U.

 Parent – returns the parent node of U.

 Ancestor – returns all ancestors of U. (All nodes that are present on path

from U to the root node, excluding U)

 Ancestor-or-self – returns the result of ancestor axis plus U.

 Child – returns direct child nodes of U.

 Descendant – returns all descendants of U, excluding U.

 Descendant-or-self – returns descendants of U, including U.

 Preceding-sibling – returns all siblings (elements that have the same parent

element) that precede U in the XML document.

 Preceding – returns all elements that precede U in the XML document,

excluding the ancestors of U.

 Following-siblings – returns all siblings (elements that have the same parent

element) that follow U in the XML document.

 Following – returns all nodes that follow U in the XML document, excluding

the descendants of U.

 Attribute – selects the attributes of U.

 Namespace – selects the namespace nodes of U.

Definition 2.2.3. Node test tests the type or name of a node.

Definition 2.2.4. Predicate allows for specifying more complex conditions

for a node. It is written in square parenthesis and allows using of

negation (not), and and or operators.

Predicate can contain another XPath query and (or) use some of the built-in

functions of XPath. (e.g. count, location, position…)

Example 2.2.2. Predicate example

[1] - selects the first node from node set

9

[child] – has a child element “child”

[@id = 500] – has an attribute “id” with a value of 500.

Definition 2.2.5. Location step is a function that returns a set of nodes. It

has the form of:

axis::node-test predicate1 predicate2 … predicateN,

where axis is an XPath axis and it is optional, the default axis is the child

axis, node-test is required and predicates are optional. If the axis is

omitted the double-colon is also omitted.

Example 2.2.3. Examples of location steps

child::book[count(para) > 1]

Example 2.2.3 returns all children of the current node that have the name book and

each returned book must have at least one child element para.

Definition 2.2.6. Location path is a sequence (can be empty) of location

steps concatenated with “/”.

Location path is sometimes called path or query.

Definition 2.2.7. Absolute location path is a location path that begins with

a “/”. The context for absolute path is always the root node.

Example 2.2.4. Absolute location path

/ - absolute path that selects only the root node (no location steps)

/* - selects all children of the root node – document root (there is always only one
document root)

In Example 2.2.4 the second path selects any child node of the root node. The

asterisk (*) select any node that has a name. Each element or attribute has a name.

Definition 2.2.8. Relative location path is a location path without “/” at

the beginning. Relative path must have specified a context set of nodes.

Example 2.2.5. Relative location path examples

Let us use Example 2.1.3 (Well-formed XML document), let the context node be the

root element “doc”. The following relative location path

para/bold/text()

10

would return the text node (the text) of the element bold that is the child of element

para that is the child of the context node.

descendant::bold/parent::para

descendant::para[bold]

Both paths return the element para that has a child element bold.

XPath abbreviations

The mostly used axes have their abbreviations.

 Child <-> /

 Descendant-or-self::node()/ <-> //

 self <-> .

 parent::node() <-> ..

 attribute <-> @

Example 2.2.6. Example of abbreviations

/doc <-> /child:doc

bold/.. <-> bold/parent::node()

//bold <-> /descendat-or-self::node()/bold

2.2.2 XPath 2.0

The next version of XPath – version 2.0 brings new features like data types, more

built-in functions, ordered sequences and regular expressions [8]. Due to space

limitations it is left to the reader for his or her interests to read [8] for more

information.

2.3 DTD

The Document Type Definition (DTD) is a schema language. It allows to define

constrains for SGML family of languages and contrary to later schema languages it

does not use XML. It describes the constraints for every element and its content [9]-

Chapter 2.8.

Example 2.3.1. A DTD example

1. <!DOCTYPE document [

2. <!ELEMENT title (#PCDATA) >

3. <!ELEMENT paragraph (#PCDATA | bold | newline)* >

11

4. <!ELEMENT bold (#PCDATA) >

5. <!ELEMENT newline empty>

6. <!ATTLIST paragraph style CDATA #implied >

7.]>

Example 2.3.1 is a short DTD definition for an XML document. Example 2.1.1

contains a possible XML fragment of such a document.

Each DTD starts with the markup “<!DOCTYPE “ followed by the name of the root

element (In the Example 2.3.1 document). Each element that occurs in the content

of the root element must be listed before the closing markup “]>” .

Definition 2.3.1. A pattern describes the allowed content model. Pattern is

built from other patterns and from basic structures of a validation

language. (e.g. attributes, elements). A pattern of an element is a

definition of the allowed content model of this element.

Elements (including the root element) are defined by the markup “<!ELEMENT ”

followed by the name of the element and its pattern and at last closed by the

markup “>”.

The content of an element can be element or text data. Text data are marked as

“#PCDATA” (line 2 in Example 2.3.1). If the element should be empty, it is defined as

“empty” (line 5). Empty definition cannot be combined. Other types of content can

be combined with each other using several operators: Operator choice (|) and

sequence (,) and quantity operators zero-or-one (?), zero-or-many (*) and one-or-

many (+).

At line 3 of Example 2.3.1 we can see that the element paragraph can contain of any

combination of text data, element bold and newline in any quantity.

2.4 XML Schema

XML Schema [12] is a schema language that evolved over the past few years.

Version 1.0 of the language has been published in 2001 by the W3C. In 2009 a new

candidate version (1.1) has been published [13]. This definition of XML Schema

definition language uses the abbreviation XSD. This abbreviation is also sometimes

used for a XML Schema definition in the meaning of a schema document instance of

12

the XML Schema. If not said otherwise we will use the XSD as the abbreviation of

XML Schema Definition Language.

In this thesis we work with version 1.0 of XSD. Nowadays it is one of the most

commonly used schema languages. It was created because DTD was not strong

enough (bad support for foreign keys, missing data types and namespaces…) but

there are many principles that are similar to DTD.

2.4.1 Syntax

XSD defines the allowed content of an XML document based on defining parent-

child relationship. It defines the allowed content for the root element and its

attributes. Recursively defines the child elements of root and their children.

Definition 2.4.1. XSD file is an XML document with the root element

schema and the namespace “http://www.w3.org/2001/XMLSchema”.

Data types

XSD supports many built-in data types (e.g. boolean, int, double, date, string…) and

allows for defining user-defined types as well. There are two types of data types in

XSD - simple and complex data types.

All embedded XSD types are simple types. A user can create new simple types using

extension or restriction of another simple type or just by defining a list of allowed

values. Simple types are used to store simple values like text, amount of money,

post code… but not a structured data – elements or attributes. For that purpose

complex data types are used.

Example 2.4.1. Simple types in XSD

<xsd:element name=”familyName” type=”xsd:string” />

<xsd:simpleType name=”postCodeType”>

 <xsd:restriction base=”xsd:string”>

 <xsd:length value=”5” />

 </xsd:restriction>

</xsd:simpleType>

<xsd:element name=”postCode” type=”postCodeType” />

13

In Example 2.4.1 we define a simple type for the post code of an address. It is based

on string and we limit its length to 5 characters.

Complex data types are used to store a complex (structured) element content –

containing multiple elements and (or) attributes. A child element may be defined

directly in the definition of its parent element. It is also possible to define its exact

occurrence by using minOccurs and maxOccurs attributes. An item can be made

optional by setting minOccurs to “0”.

There are generally three options to define complex types: deriving from a simple

type (we use simple type with attributes), from a complex type or defining a new

complex type. Deriving from an existing data type is done via extension or

restriction. For purposes of this thesis we show the definition of a brand new

complex type.

Defining the pattern for a complex type is done with pattern operator sequence,

choice or all. These operators control the order of their patterns.

 Operator sequence ensures that child patterns are validated against the

order they are listed in their definition. The content of this operator is

limited to pattern element, sequence and choice.

 Operator choice selects only one pattern from its child patterns. The content

of this operator is limited to pattern element, sequence, choice and all.

 Operator all validates its pattern in any order. The occurrence of patterns

can be set to at most once. This feature is not directly in DTD, but it can be

still expressed by a more complex pattern definition. However the content

of this operator is limited only to elements (Chapter 3.8.2 in [12] also note

the containts in Chapter 3.9.6). These constraints ensure a deterministic

data model.

Example 2.4.2. Complex type example

<xs:element name=”person”>

 <xs:complexType>

 <xs:sequence>

 <xs:element name=”firstName” type=”xs:string” />

14

 <xs:element name=”middleName” minOccurs=”0” type=”xs:string” />

 <xs:element name=”lastName” type=”xs:string” />

 <xs:choice>

 <xs:element name=”passportNo” type=”xs:string” />

 <xs:element name=”IDCardNo” type=”xs:string” />

 </xs:choice>

 </xs:sequence>

 </xs:complexType>

</xs:element>

In Example 2.4.2 we define a pattern for element “person”. The pattern consists of

a sequence of elements firstName, optional middleName and lastName and a choice

of elements passportNo and IDCardNo.

2.4.2 Summary of XSD

XSD allows for complex definition of a schema for an XML document. It supports

more user friendly features like “all” operator or better support for foreign keys,

and data types. As we will see in Chapter 4, the expressive power of XSD is stronger

than of DTD. Some features of XSD are merely a syntactic sugar (like the operator

all).

2.5 RELAX NG

RELAX NG [3] is another schema language. It was created by merging two former

schema languages – RELAX CORE [15] and TRex [16]. RELAX NG language has a

strong mathematical background. Its schemas can be written in two forms: XML or

“compact”; these two forms can be translated to each other without the loss of

important information. In this chapter we will introduce the basic aspects of XML

syntax of RELAX NG.

2.5.1 XML Syntax

RELAX NG has similar syntax as XSD, but as we will see in Chapter 4, that RELAX NG

is stronger than XSD. It also supports namespaces.

Example 2.5.1. RELAX NG simple example

<element name="addressBook">

 <zeroOrMore>

 <element name="card">

15

 <choice>

 <element name="name">

 <text/>

 </element>

 </choice>

 <choice>

 <element name="email">

 <text/>

 </element>

 </choice>

 </element>

 </zeroOrMore>

</element>

In this example we define pattern for element “addressBook”. It contains zero or

more elements “card”. Each “card” contain either element “name” or element

“email”.

Elements are defined using the element element. Their pattern is defined by

patterns below.

 element

 attribute

 group

 interleave

 optional

 choice

 zeroOrMore

 oneOrMore

 data types

Group pattern connects its child patterns in serial order. Interleave pattern on the

contrary allows its child patterns to be in any order (with no limitation to the child

patterns) but every pattern must be present. Optional pattern allows a pattern to

be omitted. Choice pattern selects only one of its child patterns. ZeroOrMore

16

pattern repeats zero or more times. OneOrMore pattern repeats one or more

times.

RELAX NG supports data types like XSD does. In fact, it allows the usage of data

types from XSD and their parameterization.

Name classes

Both the DTD and XSD allow the definition of elements only by specification of a

name or type (in case of XSD). They are unable to define schema like “The root

element can have only this pattern regardless its name” because in the schema we

do not know the name (or type) of the root element and we do not want to define

it.

RELAX NG has a feature called “name classes”. This feature allows for defining

elements and attributes anonymously or with some restrictions. Normally we would

use the name attribute or element. To define a pattern for more than a single name

we do not give elements (or attributes) their name but we use one of following

elements specifying their name class:

 anyName

 nsName

 choice

Construct anyName defines that the element (or attribute) can have any name. It

can be restricted by nsName or name elements, see Example 2.5.2. There we define

an element that can have any name except for name “root” and must not have the

default namespace.

Example 2.5.2. anyName name class example

<element>

 <anyName>

 <except>

 <name>root</name>

 <nsName ns=”” />

 </except>

 </anyName>

17

 <!—more definition of content -->

</element>

In Example 2.5.2 we define a name class for an element pattern. The element can

have any name from non-default namespace except the name root.

Construct nsName specifies the allowed namespace for a name. Again the

namespace can be restricted by an element except. Choice (in context of name

class) allows combining of previous options.

Example 2.5.3. nsName name class example

<element>

 <nsName ns=” http://www.someNameSpace.com”>

 <except>

 <name>root</name>

 </except>

 </nsName>

 <!—more definition of content -->

</element>

The allowed name for Example 2.5.3 is any name, except the name root, from the

namespace “http://www.someNameSpace.com“.

Example 2.5.4. choice name class example

<element>

 <choice>

 <name>root</name>

 <name>document</name>

 <nsName ns=”” />

 </choice>

 <!—more definition of content -->

</element>

In Example 2.5.4 we define three possible options for name of this pattern – “root”,

“document” or the default namespace.

Definition 2.5.1. Co-constraint or Co-occurrence constraint is a set of

rules that control what markup (elements or attributes) can co-occur

together. [5]

18

RELAX NG allows for expressing some co-constraints, mainly in the parent-child

relationship. See Example 2.5.5. There we define pattern for contact. We allow for

storing two kinds of contacts - email or phone. On the basis of the value of attribute

“type” we control the inner markup.

Example 2.5.5. Co- constraint example

<element name=“contact“>

 <choice>

 <group>

 <attribute name=“type“>

 <value type=“string“>email</value>

 </attribute>

 <element name=“emailAddress“>

 <text />

 </element>

 </group>

 <group>

 <attribute name=“type“>

 <value type=“string“>phone</value>

 </attribute>

 <oneOrMore>

 <element name=“phoneNumber“>

 <text />

 </element>

 </oneOrMore>

 </group>

 </choice>

 <!—other contact definition common for both contact types -->

</element>

In Example 2.5.5 we define pattern for a contact element. It depends on the type

attribute. If the attribute has value email, the rest of the pattern is only an element

emailAddress. If the type is phone then the rest of the pattern is one or more

elements phoneNumber.

2.5.2 Summary of RELAX NG

RELAX NG allows for creation of complex schemas that are well readable. The

schemas can be written in two forms (XML and compact). RELAX NG has two big

19

advantages: name classes and co-constraints. Contrary to XML Schema there is

another advantage – non-determinism. RELAX NG has stronger expressive power

than XSD or DTD.

2.6 Schematron

Schematron is an XML validation language [2]. It defines rules that validate

documents by presence or absence of XML patterns. These rules are short, simple

and allow for printing user friendly messages.

2.6.1 Versions of Schematron

Schematron was developed by Rick Jellife in 1999. Since then many implementation

were created and the language itself evolved. We will describe the most common

variants.

Schematron 1.5

Version 1.5 of Schematron was built by Rick Jellife and contains of two-stage XSLT

1.0 transformation. The first transformation transforms a Schematron definition

into new XSLT transformations these are then run to validate XML documents. It is

easy-to-use but uses only XSLT 1.0 as a query language.

ISO Schematron

Schematron has been standardized by ISO/DSDL [17] project as ISO/IEC 19757-3. It

brings new ideas and extends and changes Schematron 1.5. The main differences

are support for more query languages, variables, abstract patterns and new URI.

In this thesis we will use ISO Schematron if not stated otherwise.

Schematron 1.6

This version of Schematron is the transition between Schematron 1.5 and ISO

Schematron.

2.6.2 Language definition

The syntax for Schematron is fairly easy. A full RELAX NG schema for Schematron

can be found at [2]. We will explain here the most important features and

constructs.

20

Schematron understands namespaces and thus we can combine Schematron with

other namespace-aware schema languages. The namespace definition for

Schematron is located on [18].

As said at the beginning of this chapter, ISO Schematron can use different query

languages – this means, we can create schemas that query using XSLT 1.0 [19], XSLT

1.1 [20], XSLT 2.0 [21], XQuery [22], XPath [6] or XPath 2.0 [8]. The full list of

supported implementations can be found in the ISO Schematron definition and

depends on the implementation used. The list of supported query languages of each

implementation may differ because new query languages can be supported if they

implement a set of rules that corresponds to Schematron definition. The definition

of a query language “queryBinding” is located in the element “schema” and can be

omitted.

Example 2.6.1. Schematron namespace

<schema xmlns=” http://purl.oclc.org/dsdl/schematron” queryBinding="xpath2">

 <title>Simple example of a Schematron schema</title>

 <pattern>

 …

 </pattern>

</Schematron>

In the Example 2.6.1 we define a Schematron schema using Schematron namespace

as a default namespace. We also define the query language - XPath2, title of

schema and a pattern.

Phases and patterns

Each Schematron schema must have at least one pattern element. Each pattern in

Schematron represents a set of rules that are processed. By default every pattern is

marked as active and thus processed during validation process. Schematron allows

for defining phases that change this default behavior. Each phase contains a set of

patterns that should be executed. Phases allow for splitting complex validation

process into steps or parts. The active phase is defined in a command line or in the

schema (attribute defaultPhase).

21

Example 2.6.2. Schematron phases

<schema xmlns=”http://purl.oclc.org/dsdl/schematron“ defaultPhase=”simpleValidation“>

 <title>Example of a Schematron phases</title>

 <phase id=”simpleValidation”>

 <active pattern=”simple_index_validation” />

 <active pattern=”word_blacklist” />

 </phase>

 <phase id=”complexValidation”>

 <active pattern=”word_blacklist” />

 <active pattern=”complex _validation” />

 </phase>

 <pattern id=”simple_index_validation”>… </pattern>

 <pattern id=”word_blacklist”>… </pattern>

 <pattern id=”complex_validation”>… </pattern>

</Schematron>

Schema definition in Example 2.6.2 contains three patterns

(simple_index_validation, word_blacklist and complex_validation) and two phases

(simpleValidation and complexValidation). The default phase is the

simpleValidation. If the default phase is selected, it processes the

simple_index_validation and word_blacklist patterns.

There are three types of patterns in Schematron – normal, abstract and “is-a”

pattern. Normal pattern contains a set of rules and if active, it processes them.

Abstract pattern also contains rules, but must have specified the attribute

abstract=”true”. They may use undefined variables (they are defined by a caller “is-

a” pattern). “Is-a” pattern does not contain any rules. It contains attribute “is-a”

with reference to an abstract pattern. They may contain “param” elements that

define the values of all undefined variables of the abstract pattern.

Example 2.6.3. Patterns

<schema xmlns=” http://purl.oclc.org/dsdl/schematron ">

 <pattern abstract=”false”>

 <!—normal pattern, id and abstract=”false” are optional -->

 <rule>…</rule>

 </pattern>

 <pattern id=”normal_pattern”>

 <!—another normal pattern -->

http://purl.oclc.org/dsdl/schematron

22

 <rule>…</rule>

 </pattern>

 <pattern abstract=”true” id=”abstract1”>

 <!—abstract pattern must have an id-->

 <rule>…</rule>

 </pattern>

 <pattern is-a=”abstract1”>

 <!—is-a pattern of abstract pattern abstract1-->

 <param name=”…” value=”…”>

 </pattern>

</Schematron>

Example 2.6.3 contains four patterns. The first two are normal patterns. Each

defines one rule. The third pattern is an abstract pattern. The last one is a “is-a”

pattern.

Rules and assertions

Schematron validation capability is based on its rules. Each pattern must contain at

least one. Each rule must have a context in which it runs assertions. Schematron

contains two types of assertions: positive - asserts – and negative - reports. If any

assertion of the rule fails the rule fails and the document is marked as invalid. Note

that as the result of this paragraph Schematron allows for both positive and

negative validation.

Definition 2.6.1. An Assertion, in the context of XML validation, is a

statement about an XML fragment. A positive assertion succeeds if the

statement of the assertion succeeds. A negative assertion succeeds if

the statement fails.

Example 2.6.4. Assertions

<schema xmlns=” http://purl.oclc.org/dsdl/schematron” queryBinding="xpath2">

 <pattern>

 <rule context=”//book”>

 <assert test=”title”>Every book must have an element title</assert>

 <report test=”descendant::book”>Book cannot contain any other book
element</report>

 </rule>

 </pattern>

23

</Schematron>

In Example 2.6.4 we have a single rule that contains two assertions about every

book in the tested XML document. Positive (assert) that checks that every book has

an element title. Negative assertion (report) that tests there are no book elements

that would contain other book element in its content.

Diagnostic and value-of

Schematron assertions – assert and report – both contain a user-defined text of

assertion - Example 2.6.4. This text can be enriched by the construct “value-of”.

Value-of queries a value in the validated document and returns it. See Example

2.6.5.

Example 2.6.5. Assertions with value-of

<schema xmlns=” http://purl.oclc.org/dsdl/schematron” queryBinding="xpath2">

 <pattern>

 <rule context=”//book”>

 <assert test=”@id”>Every book must have an id</assert>

 <assert test=”title”>The book with id <value-of select=”@id” /> must have an
element title</assert>

 <report test=”descendant::book”>Book cannot contain any other book
element</report>

 </rule>

 </pattern>

</Schematron>

In Example 2.6.5 we have changed Example 2.6.4. We added an assert for attribute

ID and extended the assert testing the title. Now if the title assert fails it prints the

ID of the book that is missing the title.

Sometimes we would need to print the same message repeatedly for multiple

assertions, like help. For this purpose we can use the diagnostic construct.

Diagnostics generate text and can be referenced from Schematron assertions. If the

assertion fails, it prints its message and then it prints the diagnostic. The diagnostic

construct can contain the “value-of” construct. Its context is the context of the

assertion that called the diagnostic.

24

Example 2.6.6. Diagnostics

<schema xmlns=” http://purl.oclc.org/dsdl/schematron” queryBinding="xpath2">

 <pattern>

 <rule context=”//book”>

 <assert test=”@id” diagnostics=” printHelp“>Every book must have an
id</assert>

 <assert test=”title” diagnostics=” printHelp“>The book with id <value-of
select=”@id” /> must have an element title</assert>

 <report test=”book” diagnostics=” printHelp“>Book cannot have any other
book</report>

 </rule>

 </pattern>

 <diagnostics>

 <diagnostic id=“printHelp“>

 For more information, see the validation requirements for this document.
www.example.com/documentantation

 </diagnostic>

 </diagnostics>

</Schematron>

Example 2.6.6: We have extended Example 2.6.5 with the usage of diagnostics. Each

assertion now prints the same help.

Variables and let construct

Schematron allows creating variables and using them in later queries. Schematron

variables are created with the let construct.

Let construct contains only two attributes name and value. Name attributes defines

the name of variable, the value attribute defines its value. Variables are addressed

with their name prefixed with “$”. See Example 2.6.7.

Example 2.6.7. Let construct

<rule context=”//book”>

 <let name=”book-position” value=”count(preceding-siblings::book) + 1” />

 <assert test=”@id” diagnostics=” printHelp“>Book at position <value-of select=”$book-
position” /> must have defined an id</assert>

</rule>

Example 2.6.7 shows the usage of let construct. We define a rule and store the count

of preceding books. It the book does not have the id attribute, the assertion will

contain the position of the book.

25

Let construct is allowed as a child of schema, phase, pattern and rule. The context

for value expression of the let construct is the rule context for rule, or document

root otherwise.

2.6.3 Difference from other schema languages

Schematron is not a classical XML validation language (like DTD, RELAX NG or XML

Schema) that must define the whole structure of the XML document (regular

grammar) they validate. Schematron defines rules for patterns that validate the

document - we create only rules we are interested in. The number of these rules

can be significantly lower and because of that the whole Schematron document can

be smaller. See Example 2.6.9 for example of DTD. In Example 2.6.10 there is a

Schematron definition for the same file. Other main advantages of Schematron are

that we can define relationships between XML markups (co-constraints) and define

rules for general usage (name classes of RELAX NG, but less restricted) See Example

2.6.13 where we create a rule for the root node independently its name.

Example 2.6.8. Book list example – xml fragment

<books>

 <book id=”1”>

 <author>Božena Němcová</author>

 <title>Babička: obrazy venkovského života</title>

 </book>

 <book id=”2”>

 <author>Karel Čapek</author>

 <title>Krakatit</title>

 </book>

 <book id=”3”>

 <author>Erich Maria Remarque</author>

 <title>Im Westen nichts Neues</title>

 </book>

</books>

In Example 2.6.8 we have an XML fragment from a book database. This fragment is

a part of a bigger XML document. In this example there are three books, each book

has an id attribute (values 1, 2, 3) and elements author and title.

26

Example 2.6.9. DTD definition for the book list

<!DOCTYPE books [

 <!ELEMENT books (book*)>

 <!ELEMENT book (author+, title)>

 <!ELEMENT author (#PCDATA)>

 <!ELEMENT title (#PCDATA)>

 <!ATTLIST book id CDATA #REQUIRED>

]>

In Example 2.6.9 there is a DTD definition for xml fragment from Example 2.6.8.

Note that the DTD allows a book element to have more authors, this cannot be

anticipated from the fragment we have.

Example 2.6.10. Schematron definition

<schema xmlns="http://purl.oclc.org/dsdl/schematron”>

 <title>A simple Schematron definition</title>
 <pattern>
 <rule context=”book”>
 <assert test=”title”>Book must have a title</assert>
 <assert test=”author”>Book must have at least one author</assert>
 <assert test=”@id”>Book misses attribute ID.</assert>
 </rule>
 </pattern>

</schema>

Example 2.6.10 shows the Schematron definition for the XML fragment of Example

2.6.8. It has only one pattern that contains only one rule. This definition checks only

the presence of required attributes, but does not check the order or the occurrence

of elements and attributes. It is for the simplicity of this example. Schematron also

allows for printing defined assertation messages.

Advantages of Schematron

The real strength of Schematron is the ability to define all kinds of relationships we

know from XPath–axes (e.g. “following”, “descendant-or-self”). The classical

grammar languages are able to define only parent/child and sibling relationships.

Notable features:

 Co-constraints: Making a constraint about nodes (XPath) based on a

presence or a value of another node(s). (Element-to-element , attribute-to-

element and attribute-to-attribute)

http://www.zvon.org/ZvonSW/ZvonSchematron/Reference/Output/schema.html
http://www.zvon.org/ZvonSW/ZvonSchematron/Reference/Output/pattern.html
http://www.zvon.org/ZvonSW/ZvonSchematron/Reference/Output/rule.html
http://www.zvon.org/ZvonSW/ZvonSchematron/Reference/Output/assert.html
http://www.zvon.org/ZvonSW/ZvonSchematron/Reference/Output/assert.html
http://www.zvon.org/ZvonSW/ZvonSchematron/Reference/Output/assert.html
http://www.zvon.org/ZvonSW/ZvonSchematron/Reference/Output/assert.html
http://www.zvon.org/ZvonSW/ZvonSchematron/Reference/Output/assert.html
http://www.zvon.org/ZvonSW/ZvonSchematron/Reference/Output/assert.html
http://www.zvon.org/ZvonSW/ZvonSchematron/Reference/Output/rule.html
http://www.zvon.org/ZvonSW/ZvonSchematron/Reference/Output/pattern.html

27

Example 2.6.11: There are two elements min and max. We define that the

value of element min must be lower than or equal to the value of element

max.

Example 2.6.12: If there is an attribute A, the parent element must be C or D

otherwise.

 Making general constraints for elements (like name classes in RELAX NG, but

stronger).

Example 2.6.13: The root element must have a specific form - in this example

a date attribute. If the document is valid, the date information is printed.

(Note that we do not need to know what the name of the root element is.)

 An author of a Schematron schema writes his own messages for asserts. This

is an advantage during validation as it allows explaining the error and can

give hints for correction.

Example 2.6.11. Co-constraints example

<schema xmlns="http://purl.oclc.org/dsdl/schematron”>

 <title>A simple check for limit values </title>
 <pattern>
 <rule context=”limit”>
 <assert test=”max > min”>Value of Max(<value-of select="max"/>)
should be greater than the value of Min (<value-of select="max"/>)</assert>

 </rule>
 </pattern>

</schema>

In this example we check values of two elements – min and max.

Example 2.6.12. Parent element check example

<?xml version="1.0" encoding="utf-8"?>

<schema xmlns="http://purl.oclc.org/dsdl/schematron">

 <title>Simple parent check</title>

 <pattern>

 <rule context="//*[@A and parent::*]">

 <assert test="parent::C">Only element "C" can have a child element with
attribute "A"</assert>

 </rule>

 <rule context="//*[not(@A) and parent::*]">

 <assert test="parent::D">The only allowed parent element for an
element without attribute "A" is element "D"</assert>

http://www.zvon.org/ZvonSW/ZvonSchematron/Reference/Output/schema.html
http://www.zvon.org/ZvonSW/ZvonSchematron/Reference/Output/pattern.html
http://www.zvon.org/ZvonSW/ZvonSchematron/Reference/Output/rule.html
http://www.zvon.org/ZvonSW/ZvonSchematron/Reference/Output/assert.html
http://www.zvon.org/ZvonSW/ZvonSchematron/Reference/Output/assert.html
http://www.zvon.org/ZvonSW/ZvonSchematron/Reference/Output/rule.html
http://www.zvon.org/ZvonSW/ZvonSchematron/Reference/Output/pattern.html

28

 </rule>

 </pattern>

</schema>

Here we define that each element that is not a root element and has an attribute A

must have a parent element C. If it does not have the attribute A, the parent

element must be D. An example of an invalid XML file and the result of validation

follow.

<?xml version="1.0" encoding="utf-8"?>

<D>

 <C>

 <some-element-without-A />

 <element-with-A A=" "></element-with-A>

 </C>

 <any-element-without-A />

 <bad-element-with-A A="should not be here" />

</D>

This file is not valid and contains two errors:

1. /D/C/some-element-without-A: The only allowed parent element for an

element without attribute "A" is element "D".

2. /D/bad-element-with-A: Only element "C" can have a child element with

attribute "A".

Example 2.6.13. General root constraint example

<schema xmlns="http://purl.oclc.org/dsdl/schematron”>

<title>Root element check</title>
 <pattern>
 <rule context=”/*[1]”>
 <assert test=”@date”>Root element must have attribute date</assert>

 <report test=”date”>Document root cannot contain date element, only
as attribute</report>

 </rule>
 </pattern>

</schema>

In Example 2.6.13 we check the existence of attribute date in the root element. We

accept only date as element, if it should be presented as an element, we report it as

well.

http://www.zvon.org/ZvonSW/ZvonSchematron/Reference/Output/schema.html
http://www.zvon.org/ZvonSW/ZvonSchematron/Reference/Output/pattern.html
http://www.zvon.org/ZvonSW/ZvonSchematron/Reference/Output/rule.html
http://www.zvon.org/ZvonSW/ZvonSchematron/Reference/Output/assert.html
http://www.zvon.org/ZvonSW/ZvonSchematron/Reference/Output/assert.html
http://www.zvon.org/ZvonSW/ZvonSchematron/Reference/Output/assert.html
http://www.zvon.org/ZvonSW/ZvonSchematron/Reference/Output/assert.html
http://www.zvon.org/ZvonSW/ZvonSchematron/Reference/Output/rule.html
http://www.zvon.org/ZvonSW/ZvonSchematron/Reference/Output/pattern.html

29

Disadvantages of Schematron

The language is relatively young and is still evolving. There are many

implementations and versions; however thanks to the standardization of ISO

Schematron, this should be solved.

The Schematron is not suitable for defining and checking the whole structure of an

XML document, mainly the order or cardinality of elements. (We mean the

construct “sequence” from XSD or “group” from RELAX NG.) For this purpose it is

recommended to use a grammar language like RELAX NG, XML Schema or DTD.

Note that Schematron definitions can be placed into XSD or RELAX NG schema and

thus enhances the validation capability of that validation language. In Example

2.6.14 we show an example of a Schematron definition in an XSD schema (Version

1.0). Schematron definitions are placed in the “appinfo” element. Please note that

version 1.1 of XML Schema allows for defining its own constructs of asserts. In this

thesis, we consider only XML Schema of the version 1.0.

Example 2.6.14. Schematron within XML Schema 1.0

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.demo.org"

xmlns="http://www.demo.org"

xmlns:sch="http://purl.oclc.org/dsdl/schematron"

elementFormDefault="qualified">

 <xsd:annotation>

 <xsd:appinfo>

 <sch:title>Schematron validation</sch:title>

 <sch:ns prefix="d" uri="http://www.demo.org"/>

 </xsd:appinfo>

 </xsd:annotation>

 <xsd:element name="Limits">

 <xsd:annotation>

 <xsd:appinfo>

 <sch:pattern">

 <sch:rule context="d: Limits">

 <sch:assert test="d:max > d:min"
diagnostics="lessThan">MAX should be greater than MIN.</sch:assert>

 </sch:rule>

30

 </sch:pattern>

 <sch:diagnostics>

 <sch:diagnostic id="lessThan">Error! Max is less than Min.

Max = <sch:value-of select="d:max"/>

Min = <sch:value-of select="d:min"/>

 </sch:diagnostic>

 </sch:diagnostics>

 </xsd:appinfo>

 </xsd:annotation>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="min" type="xsd:integer"/>

 <xsd:element name="max" type="xsd:integer"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

</xsd:schema>

This example connects XML Schema with Schematron schema. We extend the

Example 2.6.11.

31

3 Basic Definitions

In this chapter we introduce basic definitions that are used later in this thesis. The

definitions are taken from theoretical computer science, Language and Automata

theory. After the basic definitions we formally define regular expressions that were

more or less used in the previous chapter and will be used more in this and later

chapters. Later on we introduce definitions for hedges and regular tree automata

and grammars. At the end of this chapter we define subclasses of regular tree

languages. This chapter is based on [1], [10], [11] and [23].

3.1 Formal Languages Theory

In this chapter we introduce the basics of language theory and regular trees. We

start with basic terms like alphabet, word, language and grammar and introduce the

Chomsky hierarchy.

3.1.1 Basic definitions

Definition 3.1.1. An alphabet ∑ is any finite set of symbols (or letters).

Finite sequence of symbols over an alphabet ∑ is called a word. Empty

word is denoted by λ.

The set of all words over an alphabet ∑ is denoted by ∑*.

Definition 3.1.2. A formal language L over an alphabet ∑ is a subset of ∑*.

A formal language can be defined in several ways: set of words, or by some

formalism like grammar, regular expression or an automaton.

Example 3.1.1. Example of an alphabet, word and a language

Let us have ∑ = all small letters. (That is informally written ∑ = [a-z]).

A word over the ∑ can be “hi”, “a”, “aab”, or any other combination of letters from this
alphabet.

We can define language L to be a set of words {a, ab, abb, abbb, …}

32

Definition 3.1.3. Let us have a word w ∊∑ and i ∊ N, the i-th power of a

word w. We denote as a sequence ⏟

. More formally power is

a function P(w,i), defined as:

P(w,0) = λ

P(w,1) = w

P(w,n) = wP(w, n-1)

Example 3.1.2. Power of words

()

Example 3.1.2 shows the usage of the power function and the result of applying it to

three words.

Definition 3.1.4. A formal grammar G is tuple G=(N, T, S, P), where N is a

finite set of non-terminal symbols, T ∊∑ is a finite set of terminal

symbols that is disjoint from N, S ∈ N is the starting non-terminal and P

is a finite set of production rules of the form (N ⋃ T)*N(N ⋃ T)* →

(N ⋃ T)*

Definition 3.1.5. The language of a formal grammar G=(N, T, S, P), denoted

as L(G), is a set of all words over ∑ that are generated by repeated

application of production rules to S until there are no non-terminal

symbols left.

Example 3.1.3. Production rule

Let us have grammar G1 = (N1, T1, S, P1), where N1 = {S, A, B}, T1 = {a, b} and P1 contains
the following production rules:

S→A | B

A→a | aB

B→b | bB

The generated language L(G1) = {a, b, ab, bb, abb, bbb,…}.

Example 3.1.3 shows a definition of grammar G1 and the language L(G1).

33

Chomsky Hierarchy

Chomsky Hierarchy[23] classifies formal grammars into four categories based on the

complexity of production rules they use. The higher the category is, the stricter the

production rules are.

 Type 0 – unrestricted grammars – include all formal grammars from

Definition 3.1.4. They generate exactly all languages that can be recognized

by a Turing machine.

 Type 1 – context-sensitive grammars – have production rules of the form:

aXb → axb, where a,b ∈ (N ⋃ T)*, x ∈ (N ⋃ T)+ and X ∈ N. The rule S → λ is

allowed only if the non-terminal S does not appear on the right side of any

production rule. These formal grammars generate context-sensitive

languages.

 Type 2 – context-free grammars – have production rules of the form: X →

w, where X ∈ N and w ∈ (N ⋃ T)*. They generate context-free languages.

 Type 3 – regular grammars – have production rules of the form: X → xY or X

→ x, where X,Y ∈ N and x ∈ T. The rule S → λ is allowed only if the non-

terminal S does not appear on the right side of any production rule. This

category of grammars is recognized by a finite state automaton. These

formal grammars generate regular languages. The regular languages can be

also obtained by regular expressions.

3.2 Regular expressions and finite automata

Regular expressions describe a regular language. They have the same expressive

power as a regular grammar. We first introduce the definition of regular

expressions, some informal examples and, finally, a formal definition of regular

expression evaluation is introduced.

Definition 3.2.1. Regular expression R is a sequence over an alphabet

∑ ⋃ {?, *, +, |, (,), “,”}, where ? is the zero-or-one operator, * is the zero-

or-more operator, + is the one-or-more operator, | is the choice

operator, “,” is a sequence operator and (,) are grouping parenthesis.

34

The test if a word is described by a regular expression is called matching. For regular

expression there is often used the abbreviation regex. The sequence operator “,” is

sometimes omitted. E.g. The regex “a,b” equals to “ab”.

We can use regular expression for Example 3.1.3 and define the language L(G1) as

L(G1) = (a|b)b*.

We now informally describe what each regular expression operator does.

 Grouping parenthesis (,) change the scope of operators. Normally operator

matches only single preceding (or following) symbol, if there are grouping

parenthesis then the operator matches the whole content of the

parenthesis.

 Operator | matches either a preceding or a following symbol.

 Quantity operators ?, * and + specify how often the preceding symbol (or

group) can occur.

o Operator ? zero-times or once.

o Operator * zero or many times.

o Operator + one or many times.

Example 3.2.1. Regular expressions

R1 = “ab?c” matches {abc, ac}

R2 = “b|c” matches {b, c}

R3 = “abc*” matches {ab, abc, abcc, …}

R4= “abc+” matches {abc, abcc, abccc,…}

R5 = “a(b|c)+” matches {ab, ac, abb, abc, acb, acc,…}

Now we formally describe the evaluation (matching) of regular expression.

We denote the set of all regular expressions R over and alphabet A as RegExp(A).

Let us have R, R1, R2 ∈ RegExp(A) and a ∈ A. The language of regular expression is

defined by induction:

 R = λ, L(R) = { λ }

 R = a, L(R) = {a}

 R = R1 R2 (sequence) L(R) = {uv | u ∈ L(R1), v ∈ L(R2)}

 R = R1 | R2 (choice) L(R) = L(R1) ⋃ L(R2)

35

 R = R1? L(R) = L(R1) ⋃ {λ}

 R = R1+ L(R) = ⋃ { | ∈ () ∈

 R = R1* L(R) = { λ } ⋃ L(R1+)

 R = (R1) L(R) = L(R1)

3.2.1 Non-deterministic finite state automata

In the previous chapter we have showed one way to express the Regular grammars

(Type 3 in the Chomsky hierarchy). In this chapter we show a different approach

using finite state automata.

Definition 3.2.2. [26]Nondeterministic finite state automaton (NFA) is a

tuple () where

Q is a finite non-empty set of states

X is a finite non-empty alphabet

 is transition function (), where P(Q) is the power set of

Q

 is the set of starting states and

 is the set of final states.

Definition 3.2.3. [26]We say that a word is accepted by NFA

 (), if there exists a sequence that

 ∈ and

 ∈ () for and

 ∈ .

For the later use we define a theorem of automata equivalence. For that we need to

define automaton homomorphism.

Definition 3.2.4. [26]Let us have two NFAs and . We say that the

transition is (automaton) homomorphism if and only if:

 () , that means ∈ ∈ () ∈ ∈

 () ,

 (()) (()) and

 () ().

36

Here we used transition on a set we define it as follows: () means

 ∈ ∈ () ∈ ∈ () .

Theorem 1 Automata equivalence

[26] If there exists automata homomorphism between finite NFAs and

 , then and are equivalent.

Proof

Finite iteration

Let us have (()) (()) and ∈

 ∈ () () ∈ for some ∈

 (()) ∈

 (()) ∈

 () ∈

 ∈ ()

Lemma 1 Each regular expression R can be converted to a NFA so that

 () ().

Proof

There are two ways shown in [26]. We will not show here the whole proof, only the

basic idea. For each symbol ∈ we create an elementary NFA (accepting empty

or single-letter languages). We merge these elementary NFA based on regex

operations.

3.3 Regular tree grammars and Hedges

Now we will define grammar that is used to describe the tree-like documents, such

as XML. This chapter is based on [10] and [11].

37

XML documents are special, they have only one root element. Each element can

have multiple children (elements, attributes…). Without any loss of generality, we

will now consider that XML document consists only of elements. Attributes, text

content, namespaces… can be all considered as special elements with no children.

Our simplified XML document is a tree – it has only one root, elements are nodes

and leaves.

In literature, regular tree grammars are often used for definition of tree languages.

We will introduce here their definition. However, as it may look that XML

documents are well expressed with regular tree grammar, we will show later in this

chapter, that this is not true. Therefore, we introduce hedges and their grammars

and languages.

Definition 3.3.1. [11] A ranked alphabet is a couple (F, Arity) where F is a

finite set and Arity is a mapping from F into . The arity of a symbol

 ∈ is Arity(f).

A ranked alphabet defines an arity for each symbol. Based on their arity we can call

them variables, unary, binary … n-ary operators. Before we introduce regular tree

grammar, we will define term and tree.

Definition 3.3.2. A term t over an alphabet A and a set of variables X is

defined in the form of:

t := a(t1, t2,… tn), or t:=x

where a ∈ A and t1, t2,… tn are terms over A, n>= 0 and x ∈ X.

For ranked alphabet the number n is equal to Arity(a).

We denote set of all terms over an alphabet A and variables X as Term(A,X).

Definition 3.3.3. A ground term g over an alphabet A is a term from

Term(A,). We denote set of all ground terms over A as

GroundTerm(A).

Ground term is in fact a term without a variable.

Definition 3.3.4. A tree t over an alphabet A is a subset of GroundTerm(A).

38

We denote set of all trees over an alphabet ∑ as T(∑).

Next we introduce the definition of regular tree grammar from [11]. We will use this

definition for comparison with hedges.

Definition 3.3.5. [11] Regular tree grammar G over ranked alphabet is a

tuple (S, N, F, R) where

S is a starting symbol, S∊ N, Arity(S)=0

N is a finite set of non-terminals over a ranked alphabet

F is a finite set of terminal symbols from a ranked alphabet and

R: (), where X is set of variables

Hedges

[10] defines regular tree grammars over an alphabet with infinite arity. [11]

contains second definition of regular tree grammars over unranked alphabet. These

definitions of tree grammar are sometimes called hedges.

Using ranked alphabet for XML documents is problematic – elements (terminal

symbols) must correspond to their arity, but an XML document generally does not

limit the number of children of elements. That is the reason we will use unranked

alphabet.

An unranked alphabet is nothing more than just a normal alphabet defined at the

beginning of Chapter 3.

The order of elements in XML may or may not be important. For example for

structured data the order is not important, but for an XML document (e.g.

XHTML[24]) the order may be important. Let us have an XML document with a root

element a and sub trees t1, t2… tn, we can depict the document as a(t1, t2… tn). Now

comes the question, how to call all the sub-trees of the element a. A set of trees is a

forest, but a set does not reflect the order. That is why the term hedge is used.

Hedge is a sequence of trees. Hedges are used for definition of formalism that is

connected with XML.

39

There are many definitions of hedge grammars. We will use the one from [10],

there it is called regular tree grammar, but it is also a hedge grammar definition.

Definition 3.3.6. Regular hedge grammar G is a tuple (N, T, S, P) where:

N is a finite set of non-terminals,

T is a finite set of terminals over an unranked alphabet,

S is a set of start symbols, where S ⊂ N,

P is a finite set of production rules of the form , where

 ∈ ∈ and r is a regular expression over N. X is the left-hand

side, a r is the right-hand side, and r is the content model of this

production rule.

We abbreviate rules of the form of X to the form X . Some definitions of

hedges use parenthesis to separate the regular expression from the label (non-

terminal). We will use this one.

As said before, hedge grammars are used for unranked ordered trees. An extension

for unranked unordered trees could be defined by extending the regular

expressions by introducing an interleave (shuffle) operator. See reference [11] for

more details.

In this thesis we will use the term regular grammar when we do not want to

distinguish between ordered and unordered trees and hedges for ordered trees.

Both tree definitions are used over an unranked alphabet, if not stated otherwise.

Example 3.3.1. Regular hedge grammar

G1 = (N1, T1, S1, P1),

N1 = {Milestone, MandatoryTask, OptionalTask, MandatoryData, Data}

T1 = {milestone, task, data}

S1 = {Milestone}

P1 = { Milestone→milestone (MandatoryTask OptionalTask*), MandatoryTask→
task(MandatoryData), OptionalTask → task (Data), MandatoryData → mandatorydata (λ),
Data → data (λ)}.

In Example 3.3.1 we show a grammar for milestone that contains tasks. The first

task is mandatory, others are only optional.

40

Each grammar generates a language. We introduce here the formal definition from

[10] for a regular tree language.

Definition 3.3.7. [10] An interpretation I of a tree t against a regular

tree grammar G is a mapping from each node e in t to a non-terminal

denoted I(e), such, that:

 I(eroot) is a start symbol where eroot is the root of t, and

 for each node e and its subordinates e0, e1, …, ei there exists a

production rule X→ a r such that

 I(e) is X,

 the terminal (label) of e is a, and

 I(e0)I(e1)…I(ei) matches r.

Definition 3.3.8. A tree t is generated by a regular tree grammar G if there

is an interpretation of t against G. [10]

Definition 3.3.9. A regular tree language is the set of trees generated by a

regular tree grammar. [10]

3.3.1 Local tree grammars and languages

Local tree grammar is a restricted sub-class for a regular tree grammar. The

interpretation is simplified, because each terminal (label) has associated one and

only one non-terminal (there is no competition between non-terminals). This

chapter is based on [10].

Definition 3.3.10. Let us have grammar G = (N, T, S, P). Let

such that

 P1 has the form of X → a r1, P2 has the form of Y → a r2, where .

Then we say the non-terminals X and Y compete with each other.

Example 3.3.2. Competing non-terminals

G2 = (N,T,S,P), where

N= {Database, Man, Woman, ManData, WomanData}

T = {database, person, manData, womanData}

S = { Database }

P = {Database → database (Man| Woman)*, Man → person (ManData), Woman →
person (WomanData), ManData → manData (λ), WomanData → womanData (λ)}

41

In grammar G2 (Example 3.3.2), there are non-terminals Man and Woman that

compete with each other.

Definition 3.3.11. Local tree grammar is a regular tree grammar

without competing non-terminals. Language generated by a local tree

grammar is a local tree language.

Example 3.3.3. Local tree grammar

G3 = (N, T, S, P), where

N= { Database, Person, ManData, WomanData}

T = { database ,person, manData, womanData}

S = { Database}

P = { Database → database (Person*), Person → person (ManData |WomanData), ManData
→ manData (λ), WomanData → womanData (λ)}

We have modified grammar G2 and merged the two non-terminals Man and

Woman into a single non-terminal Person. Now Grammar G3 is a local tree

grammar.

3.3.2 Single-Type tree grammars and languages

This subclass of regular tree languages is less restricted than local tree grammars.

Definition 3.3.12. [10] A single-type tree grammar is a regular tree

grammar such that

1) for each production rule, non-terminals in its content model do not

compete with each other, and

2) start symbols do not compete with each other.

Language generated by a single-type tree grammar is a single-type tree language.

Example 3.3.4. Not a single-type tree grammar

Grammar G2 in Example 3.3.2 is not a single-type grammar. Again non-terminals

Man and Woman in the production rule Database→database(Man|Woman)*

compete.

Example 3.3.5. Single type tree grammar

Grammar G3 in Example 3.3.3 is a single-type grammar.

42

Example 3.3.6. Single-type tree grammar, not local tree grammar

G4 = (N, T, S, P), where

N = {Database, Men, Man, Women, Woman, ManData, WomanData}

T = {database, men, women, person, manData, womanData}

S = { Database }

P = {Database → database (Men Women), Men→men (Man*), Women→women
(Woman*), Man → person (ManData), Woman → person (WomanData), ManData →
manData (λ), WomanData → womanData (λ)}

Grammar G4 is a single-type tree grammar, but not a local tree grammar. Non-

terminals Man and Woman compete, but they do not occur together in any content

model.

3.3.3 Regular tree automata

Regular tree languages are recognized by finite regular tree automata. We

introduce a definition of finite hedge regular tree automata here. This section is

based on [11]. Some basic facts about automata can be found also in [10].

In previous section we have defined tree over ranked alphabet using ground term.

For the definition of hedge automata below, we will redefine the tree using a bit

different way. The following definitions are taken from [11].

Definition 3.3.13. A finite (ordered) tree t over ∑ as partial function t:

N* → ∑ with domain written Pos(t) satisfying following:

1. Pos(t) is finite, nonempty and prefix-closed,

2. ∈ () { | ∈ () { for some .

Function Pos(t) returns all positions of nodes in a tree t. Position “pk” is the k-th

child of a node at the position p. Generally an i-th child of a node x has the position

defined as iPos(x). Again we denote set of all trees over an alphabet ∑ as T(∑).

Example 3.3.7. Tree and Pos()

 t=a(ab(cb)) r - Position of nodes

 a 1

 a b 11 12

 c b 121 122

43

In Example 3.3.7 we have tree t=a(ab(cb)) and a tree r from the same domain. The

nodes of tree r are labeled by the Pos function. The value of t(11) is a – the first child

of the root. The value of t(121) equals to c.

Now we define hedge automata.

Definition 3.3.14. [11] A nondeterministic finite hedge automaton

(NFHA) over alphabet ∑ is a tuple A = (Q, ∑, Qf , P) where Q is a finite

set of states, Qf Q is a set of final states, and P is a finite set of

transition rules of the following form:

a(R) → q

where R ∈ RegExp(Q), a ∈ ∑ and q ∈

This definition defines bottom-up automata. That means that we process the leaves

of a tree first and then we move up the tree towards the root.

Example 3.3.8. Example of NFHA

We want to define NFHA that accepts such trees that have a node c that contains
somewhere in its descendants a node containing two children b. For example a tree t =
c(ba(cbab)).

A1= (Q, ∑, Qf , P), where

Q = {q, q1, q2, qf}

∑ = {a,b,c}

Qf = { qf }

Rules are:

a(Q*) → q a(Q* q1 Q* q1 Q*) → q2 a(Q* q2 Q*) → q2 a(Q* qc Q*) → qc

b(Q*) → q1 b(Q* q1 Q* q1 Q*) → q2 b(Q* q2 Q*) → q2 b(Q* qc Q*) → qc

c(Q*) → q c(Q* q1 Q* q1 Q*) → qf c(Q* q2 Q*) → qf c(Q* qc Q*) → qc

In Example 3.3.8 we have defined NFHA with 12 rules. We mark nodes labeled by b

with state q1. At the next layer, this state is transformed to state q2 (if it contains at

least two q1) or back to default state q. Please note the non-determinism here. Even

if there are two children b of a node, there exists a rule that assigns a default state

q, but also a rule that assigns a state q2.

Next we define the run of the NFHA. For that we use the new definition of tree and

the Pos() function.

44

Definition 3.3.15. [11] A run of NFHA A= (Q, ∑, Qf , P) on a tree t ∈

T(∑) is a tree r ∈ T(Q) with the same domain as t such that for each

node p∈Pos(r) it a t() and r() t ere is a transition rule a()

→ q of A with r(p1)…r(pn) ∈ ere n denotes t e number of

successors of p.

Definition 3.3.16. [11] An unranked tree t is accepted by NFHA A if

there is a run r of A on t whose root is labeled by a final state. The

language L(A) of A is the set of all unranked trees accepted by A.

In Example 3.3.8 we have defined a NFHA A1. For a tree t = c(ba(cbab)) A1 assigns a

set of states s={ q, q1, qf}. The tree t is accepted by A1 because there is a final state

qf in s.

We have defined nondeterministic bottom-up hedge automaton, let us define a

deterministic one.

Definition 3.3.17. [11] A deterministic finite hedge automaton

(DFHA) is a finite hedge automaton A = (Q, ∑, Qf , P) such that for all

rules a(R1) → q1 and a(R2) → q2 either or q1 = q2.

The automaton A1 from Example 3.3.8 is not deterministic.

45

4 Taxonomy

In this chapter we compare the power of schema languages: DTD, XML Schema,

Relax NG and Schematron. We assign each of them to a class of regular tree

grammars. This chapter is based on [10] and [11].

4.1 DTD

Based on definition of DTD in [9], DTD requires a deterministic content model and

more importantly contains the following restriction: “For Compatibility, it is an error

if the content model allows an element to match more than one occurrence of an

element type in the content model” [9]. Said in other words, an element - terminal

– cannot have more than one corresponding non-terminal in an XML document.

This is the definition of a local tree language.

4.2 XML Schema

We show that XML Schema corresponds to a single-type tree language. We present

here the general idea. Proofs and examples can be found in [10] and [11].

One of the main features of XML Schema contrary DTD is the declaration and usage

of types. XML Schema allows for elements with the same name to have different

types and thus content model. Types allow XML Schema to overcome limitations of

DTD (local tree language) and define for the same name of element different types

of content.

The Usage of types is limited by a constraint called the “Element Declarations

Consistent” [12]. This constraint says that all elements from the content model of

an element that have the same name and namespace must also have the same

type. E.g. there cannot be two book elements next to each other each having

a different type.

The above constraint corresponds to the limitation of the single-type tree grammar

and, thus, XML Schema belongs to the class of single-type tree languages.

46

4.3 Relax NG

We show the basic idea, that any regular tree grammar can be expressed in Relax

NG. The construction of the schema can be found in [10] (However in [10] it is

described for Relax Core and TRex, but modifying the process for Relax NG is

straightforward).

Relax NG does not impose any restrictions for the content model. Its patterns

(sequence, choice, one-or-more, zero-or-more) in the content model can be easily

transformed to a regular expression. The pattern interleave can be also transformed

to a regular expression. See the shuffle operator in [11].

4.4 Schematron

In previous chapters we classified DTD, XML Schema and Relax NG to their sub-class

of regular tree language. To our best knowledge there is only little or no work that

would classify Schematron to a sub-class of regular tree grammar. We found some

recommendations and general algorithms for expressing schema models with

Schematron in the blog of Rick Jelliffe [25].

In this thesis we introduce an algorithm for transformation of hedges into

Schematron rules – Chapter 5. It this chapter we assign a sub-class of regular tree

grammar to Schematron. We show that the expressive power of Schematron

depends on the used query language.

Analysis

First we identify the differences of Schematron that concern the expressive power

of validation and later we compare those.

The main difference between Schematron and other schema languages is the usage

of rules. Classical grammar schema languages (like Schema or Relax NG) also use

rules, but they do not name them like that. Grammar schema languages define

types and elements. These definitions are in fact rules that validate the content.

However, there is one big difference between the rules of Schematron and

grammar schema languages – finding the context for the rule.

47

Identifying the context in grammar schema languages is trivial; we follow the

structure of the document either from root to leaves or opposite. The previously

processed elements identify the rule (or the set of rules) that should be used to

validate current element. Note the previously identified elements create the

context for the rules to come; that is the general idea of the validation algorithms.

However, Schematron identifies the context for each rule independently. That

means that the expressive power of Schematron is limited by the expression

strength of the used query language.

The second aspect of validation is the validation of the content. From the formal

definitions we know that the content for a regular grammar is expressed by a

regular expression. So if the query language is able to express regular expressions,

there should not be a problem.

We have shown that the expressive power depends on the expressive power of the

query language – how well it can identify hedge. For the purpose of this thesis we

will discuss the strength of XPath 1.0.

XPath 1.0 works only with the element names. So if we want to identify a path in a

document, we have to translate types to their element names. This is one obstacle.

The other one is that XPath 1.0 does not support regular expressions. In this thesis

we use XPath 1.0 and we try to emulate the regular expressions. It can be done in

the most cases but do not know if it is doable in all cases. This disadvantage could

be removed by the use of XPath 2.0. However, there still persists the problem of

context matching. In our analysis in Chapter 5 we discuss several ways how this

could be done.

Even with the regex support, XPath is not able to identify all possible contexts. We

can see that on the grammar G1 from Example 3.3.1. There are two types

MandatoryTask and OptionalTask. Both use the label task, both are children of the

same type. In the Example 3.3.1 the mandatory task is only the first child, but we

could modify this grammar so it could be at any position. In that case XPath is not

able to tell apart these two types.

48

We have shown a case where Schematron with XPath is not able to find context

correctly. So there are two possible candidates for sub-class of regular tree

grammar: local or single-type.

The context of local language is trivial, the names of element types are unique and

XPath can handle these.

Lemma 2 Schematron with XPath with regex support is able to express single-

type tree grammar.

The idea of proof is simple. We show the basic idea of construction of an XPath path

for a single-type tree grammars.

Proof

Let us have a single-type grammar G with a starting type S.

We also know, that each child type of any type has unique label among its siblings.

For any type T, we create unique paths from starting type S to every occurrence of T

in the grammar. Each step in a path uniquely identifies one of child types of the

previous parent type. (Single-type grammar)

Summary

We have shown that the expressive power of Schematron mainly depends on the

used query language. We have shown that if we are using XPath with regular

expression support, Schematron is able to express single-type tree grammar.

49

5 Transforming hedges to Schematron schema

In this chapter we introduce algorithm for generating Schematron rules for a hedge.

We use XPath 1.0 since it is widely spread, but we also suggest the possibility of

using XPath 2.0.

We may encounter some limitations. As we will show, Schematron may not be ideal

for expression general ordered unranked trees, since the schema for expressing

that may be bigger than the schemas of classical grammar schema languages (e.g.

Relax NG, DTD).

We divide the transformation process of a hedge into three steps. Step 1 will

generate the correct context for rules that will be checked by steps 2 and 3. Step 2

controls the correct sum of children and step 3 matches the order of children to the

regex of the hedge.

5.1 Definitions

Here we define terms that will be referenced in the following steps of the

algorithm.

Let us have a hedge regular grammar G = (N, T, S, P) and a hedge a ()

where ∈ ∈ ∈ ∈ ().

Definition 5.1.1. We denote production set S to be the set of all non-

terminals that occur in R.

Two examples of production sets are show below in Example 5.1.1.

Example 5.1.1. Example of a hedge h and S

 (B?C+)

 {

 (BB?C*D*C)

 {

Example 5.1.1 shows examples of hedges h1, h2 and their production sets S1 and S2.

Definition 5.1.2. We denote the translate function that

assigns a terminal to a non-terminal.

50

Function trans is in fact a production rule without the regex part. Note that there

can exist different hedges g, h that have the same terminal, i.e. trans(g) = trans(h).

5.2 Limitations

Before we describe the algorithm itself we introduce two limitations for the

algorithm that the grammar or the XML document must meet.

1) All sibling elements (sharing the same parent) with the same name must

be of the same type.

This constraint is similar to the “Element Declaration Consistent” [12] from XML

Schema. In other words if there is an element of type A, all its siblings with the same

name must have the same type A.

2) If there is a recursion within the derivation sequence of a non-terminal,

the recursion sub-sequence must be deterministic.

The second limitation is deeper explained in Chapter 5.3.5. This restriction is

needed because of the lack of regex support of XPath 1.0.

5.3 Step 1 – Context generation

The correct context for rules is absolutely necessary for the algorithm to work

correctly. The context is used to match an element in an XML document to a hedge

h from grammar G. The context is used for constraints generated by steps 2 and 3.

At first we show a trivial solution and discuss its disadvantages. Later we introduce a

more complex and reliable algorithm also including formal definitions and proofs of

correctness.

5.3.1 Trivial solution

The first thing that can come to a mind is the idea to generate context using relative

path and match only the element and maybe some of its ancestors.

Example 5.3.1. Trivial context matching

 (B?C+)

XPath context: “//a”

51

In Example 5.3.1 we demonstrate a trivial way to match a context for a hedge. The

hedge h1 is taken from Example 5.1.1.

This method may work if and only if there exists an inverse function

 to the function . In that case we can create a simple XPath expression for

each hedge h using only relative path and the name of terminal of the hedge h.

Algorithm 5.3.1 Algorithm for trivial context

String TrivialContext(NonTerminal N) {

 string terminalSymbol = tran(N);

 return ”//” + terminalSymbol;

}

In Algorithm 5.3.1 we have shown how to create a context from hedge. The result

of this algorithm is show in Example 5.3.1 for hedge h1 from Example 5.1.1.

Summary

The trivial context generation may work, but with more strict condition than the

limitation defined in Chapter 5.2. If we want to use relative context, there must not

exist two different hedges with the same terminal. In other words, in the whole

XML document, we must be able to identify a hedge based only on the name of the

element. This satisfies only local tree grammars.

Example 5.3.2. Trivial context not working

 (B?C+)

XPath context: “//a”

 (BB?C*D*C)

XPath context: “//a”

Example 5.3.2 shows hedges from Example 5.1.1 and their generated trivial context.

Both generated contexts are the same and thus the validation would not work

correctly.

52

5.3.2 K-ancestors

This method is used for schema inferring in [27]. It is based on real data properties.

Our trivial solution from Chapter 5.3.1 is, in fact, a specific case of this approach. In

this chapter we will not describe the inferring method – it is described in Chapter 6.

The key idea is to identify context based on the element name and the name of K

closest ancestors. For K = 2 it is the name of the element and the name of the

parent. The trivial solution is a special case of this solution where K = 1.

Example 5.3.3. Example for K-ancestor solution

K = 2

G5 = (N, T, S, P), where

N= { Database, Person, Data}

T = { database ,person, data}

S = { Database}

P = { Database → database (Person*), Person → person (Data),Data → data(λ) }

XPath context for Person: “//database/person”

XPath context for Data: “//person/data”

Example 5.3.3 shows an XPath for identifying the context of the non-terminal Person

and Data.

Algorithm 5.3.2 Algorithm for K-ancestors

String K_AncestorContext(NonTerminal N, int K) {

 var ancestors = get first K ancestors element names from N;

 string xpath = “/”;

 foreach(var name in ancestors in reverse order) {

 xpath += “/” + name;

 }

 return xpath;

}

Summary

Similarly to trivial context generation, K-ancestor solution offers fast and

comfortable way to identify context. On the other hand K-ancestor solution may not

identify some context correctly –e.g. if we have K = 1 the situation is the same as for

53

trivial context. However, the real world data (described in [27]) show that more

than 98% of context matching could be expressed with this solution and the K equal

to 2 or 3.

5.3.3 Absolute path without a recursion

In the previous chapters we showed a trivial ways to identify a context and showed

that these approaches are limited. In this chapter we introduce a more reliable, less

restricted way to identify the correct context. We will use absolute paths to identify

it.

This approach is sufficient for general cases of grammar that do not contain

recursion in hedge transformation or only simple recursion.

Definition 5.3.1. We denote the derivation sequence DA for non-terminal A

to be a sequence of non-terminals produced by production rules that

transformed the starting non-terminal to the non-terminal A of the

hedge h.

Definition 5.3.2. We say that the derivation sequence DA contains a

recursion if there is at least one non-terminal ∈ that occurs more

than once in DA. We say the recursion is a simple recursion if there are

no other non-terminals between any two occurrences of ∈ .

Simple recursion is a sequence where the repetition of a single symbol is not

interrupted by any other.

Multiple derivation sequences may exist for the same non-terminal. Without loss of

generality, we suppose there exists only one such sequence. If more sequences

exist, we can always merge their generated path expressions.

Definition 5.3.3. We denote derivation sequence of terminals DTA for

non-terminal A to be a sequence of terminals defined by the formula

 ∈ (). Derivation sequence of terminals is a translated

derivation sequence DA.

54

The basic idea for generation of an absolute path is the following. When we want to

find a context for hedge h, there exists a sequence DTA of terminals. This sequence

contains terminals that match an absolute path from the root element (that

matches the terminal of the starting symbol) to an element a of the hedge h.

Example 5.3.4. Example of an absolute path without recursion

G6 = (N, T, S, P), where

N = { Database, Person, Data}

T = { database ,person, data}

S = { Database}

P = { Database → database (Person*), Person → person (Data),Data → data(λ) }

DData = (Database, Person, Data),

DTData = (database, person, data), XPathData = “/database/person/data”

Example 5.3.4 shows the derivation sequence for the non-terminal Data and the

respective absolute XPath.

Algorithm for absolute path is trivial. We join the derivation sequence of terminals

with “/”. Please note that the derivation sequence is always deterministic. If there

should be a non-deterministic step (e.g. operator “?” or “|”) in derivation process

from starting hedge to hedge h, we generate several deterministic sequences and

merge all of their results.

5.3.4 Single recursion in production rules

In Example 5.3.4 we showed a simple example for absolute path context using only

the child axis. However, there can be situations when the length of a derivation

sequence (based on Definition 5.2) is not limited. This happens when there is a

recursion in hedges. See Example 5.3.5. In this chapter we introduce algorithm for

dealing with simple recursions that are special cases of recursions with

deterministic content discussed in Chapter 5.3.5.

Example 5.3.5. Absolute path with simple recursion

G7 = (N, T, S, P), where

N= {Indent, Text}

T = {tab, text}

S = {Indent}

P = {Indent→ tab (Indent|Text), Text→ text(λ) }

55

DTText = (tab, tab, …, tab, text)

1) XPathText = “//tab/text” <!—intuitive but not working -->

2) XPathText = “//tab[count(ancestor::tab) = count(ancestor::*)]/text” <!-- working -->

Example 5.3.5 shows an example of a grammar with recursion in its production

rules. There are presented two XPath expressions: 1) with only descendant-or-self

axis and 2) with descendant-or-self axis and a condition checking the count of

ancestors. Expression 1) will find any elements tab, including illegal sequences like

(tab, tab, some-other-element, tab, text). Expression 2) locates only sequences that

match the sequence DTtext.

We have introduced the problem and we extend Definition 5.3.1 to express

recursion in derivation sequence.

Definition 5.3.4. We denote the derivation regular expression DRA for

non-terminal ∈ to be a word over Regex(N) that represents all

derivation sequences of DA .

DRA is able to express several derivation sequences with a single finite word. DRTA is

defined similarly.

Definition 5.3.5. We denote the derivation regular expression for

terminals DTRA for non-terminal ∈ to be a word over Regex(T) –

regular expression over terminals T of grammar G. DRTA is converted

from DRA by the formula:

 ∈ ∈ ()

 ∈ .

We can re-define simple recursion using the derivation regular expression.

Definition 5.3.6. We say that derivation regular expression DRA contains

only simple recursion if and only if all regular operators + and * in

DRA are applied to a single symbol and not to a group.

56

Definition 5.3.7. Let us have a derivation regular expression DR and an xml

fragment F. We denote foreign elements foreign(DR, F) to be such

elements that have to be removed from F in order to be matched by the

DR.

Since x+ can be expressed as xx*, without the loss of generality we can assume that

all simple recursions consist of the form x*.

In Example 5.3.5 we can see path expressions for simple sequences. Now we

introduce the algorithm for XPath generation for grammar with simple hedge

recursion.

This algorithm creates XPath expression that matches undisturbed sequence (that

may not be limited) of elements in the parent/child relation. Since we have only

simple recursion and thus the repeating sequence consists of only single terminal,

our work is fairly easy.

Since XPath 1.0 does not support regular expressions, we have to use the

descendant-or-self axis with constraint on the ancestors. We create a constraint

that will ensure that we will find only such descendants that have no element other

than the element from the simple recursion.

The input is the DRTA for the simple recursion. As denoted in this chapter, without

the loss of generality the DRTA will have the form of “x*”.

The constraint is implemented using the count function, ancestor and descendant

axes. The context for XPath evaluation must be taken at the start of recursion. Now

the algorithm:

Algorithm 5.3.3 Context for simple recursion

/** Creates let statements under the PaternElement context and
returns xPath expression that expresses the context

*/

string CreateSimpleContext(string DRTA, int iterationStartPosition,
Context PaternElement) {

 string subDRTA = DRTA.subSequence(0, iterationStartPosition);

57

 string xPathContext;

 int recursionIndex = findSimpleRecursion(subDRTA);

 if (recursionIndex > -1) {

 //there is at least one simple recursion before the one we
want to analyze, e.g. “a* b x*”

 xPathContext = CreateSimpleContext(subDRTA,
recursionIndex, PaternElement);

 } else {

 //only absolute path, e.g. “a b c” => “a/b/c”

 xPathContext = CreateAbsoluteContext(subDRTA);

 }

 //create two let statements for variables that will be used in
generated xPath

 //variable for all ancestors

 string allCountVar = createUnitVariable(“allCount”);

 //form: <let name=” allCountVar” value=”
count(xPathContext/ancestor::*)” />

 createLetVariable(allCountVar, xPathContext, “*”);

 string iterationCharacter =
DRTA.getIterationCharacter(iterationPosition);

 //variable only for iterationCharacter occurences

 string charCountVar = createUnitVariable(iterationCharacter +
“Count”);

 createLetVariable(charCountVar, xPathContext,
iterationCharacter);

 //return prefix//x[(count(ancestor::x) - $xCount) =
(count(ancestor::*) - $allCount)]

 return string.Format(“{0}//{1}[(count(ancestor::{1}) – {2}) =
(count(ancestor::*) – {3})]”, xPathContext, iterationCharacter,
charCountVar, allCountVar);

 }

We summarize the above algorithm in short: We store into two variables counts of

ancestors - any ancestor (allCount) and ancestors that are x (xCount). Since we

58

generate a Schematron schema we use the let construct for creating these

variables. We generate the XPath expression for context: //x[(count(ancestor::x) -

$xCount) = (count(ancestor::*) - $allCount)]

Lemma 3 Algorithm 5.3.3 matches only the single recursion.

Let us prove that this algorithm does what it is supposed to. We use the absurdum

proof.

Proof

Let us have a derivation sequence (x0, … xi-1, yi, xi+1, … xk) for some ∈

 . Let us assume that this sequence is matched with our algorithm. Without

loss of generality we assume that the variables allCount and xCount are equal to 0.

Let us choose any ∈ . The element xj follows yi since . From the

sequence we can see that xj has j preceding elements from which there are j-1

occurrences of element x. The constrain count(ancestor::xj) = count(ancestor::*) is

thus false and XPath should not match the element xj.

Note that the variables allCount and xCount allows us to ignore any sequence (any

ancestors) before start of the simple recursion since they correct the equation

correctly on both sides.

We have introduced the Algorithm 5.3.3 for simple recursion. See Example 5.3.6 for

the result of this algorithm. The algorithm works also in cases when there are

multiple simple recursions in serial order.

For cases when there is only absolute path before the simple recursion, the

variables xCount and allCount are not necessary since the counts can be counted in

generation time.

Example 5.3.6. Derivation sequence with prefix

DRTText = book paragraph tab+ text

<schema xmlns="http://purl.oclc.org/dsdl/schematron" queryBinding="xpath">

 …

 <pattern>

59

 <let name=” tabCount” value=” count(/book/paragraph /ancestor::tab)” />

 <let name=” allCount” value=” count(/book/paragraph /ancestor::*)” />

 <rule context=" /book/paragraph//tab[(count(ancestor::tab) - $tabCount) =
(count(ancestor::*) - $allCount)]">

 …

 </rule>

 …

 </pattern>

 …

</schema>

Example 5.3.6 took the derivation regex DRTText from Example 5.3.5 and added a

prefix to it. We show a fragment of generated Schematron schema with a single

pattern containing two variables, tabCount and allCount, and an empty rule with

context. Note that in this case we could omit the variables and could count the

values directly from the sequence DRTText; however, we leave it in the example to

show the general approach.

5.3.5 Recursion with deterministic content

In the previous chapter we analyzed only derivation regular expressions with a

simple recursion. In this chapter we introduce a general approach that allows us to

match recursions with deterministic content.

In the first part of this chapter we analyze the situation. In the next part we

introduce and describe limitations and in the last part we propose an algorithm for

Schematron context generation.

We denote the derivation loop to be a part of a derivation regex that is being

repeated. (The inner part of the recursion.)

Analyses

We use the formalism defined for simple recursion and enhance it for a more

general situation.

Example 5.3.7. DRA and DRTA

G7 = (N, T, S, P), where

N= {S, A, B, C}

T = {a}

60

S = {S}

P = {S→ a A, A→a (B|C| λ), B→ a (A), C→ a (A) }

 = S(AB?)+(AC?)* or = S(A(B|C))+

DRTA = a(a(a|a))+

In Example 5.3.7 we show the can have more than one expression and that the

according DRTA can look totally different.

Definition 5.3.8. We denote the lead terminal of the recursion DRA to be

the first terminal of DRTA.

The lead terminal is the first terminal that is repeated. This terminal is interesting

for us, because it starts a new sequence in recursion and, if we can identify it, we

can identify the whole sequence.

Example 5.3.7 showed us that identifying the lead terminal may not be so easy. In

the following text we introduce some limitations that will help us in identification of

lead terminals.

Limitation

The general situation is much trickier than the one of simple recursion. There can

exist nested recursions. In fact, we would have to rewrite general regular expression

for children and descendants into XPath 1.0. That is very problematic and even may

not be solvable. The introduced limitation in this chapter will ensure that our

algorithm will work, if the task satisfies this limitation.

The content of the recursion must be deterministic.

We do not allow for any of these symbols: ? * + |

Now we show some examples that show the problem of non-deterministic content.

As we will see in the description of our algorithm, we use similar constructs as in the

algorithm for simple recursion – counting the ancestors from descendants. Any non-

determinism within the recursion could lead into false match. See simplified

Example 5.3.8.

61

Example 5.3.8. False match in context

DRTA = (abb+)*

Context regex = //a[count(ancestor::a) <= (2*count(ancestor::b))]

False match: a/b/b/b/a/b/a

Example 5.3.8 shows an example of false match of context. The XPath for context

matches the first and the last element a. But it should match only the first one. The

reason for matching the last element a is that the count of elements b from the first

cycle of recursion (3) plus the count from the second cycle of recursion (1) gives up 4

b-ancestors. This satisfies the constraint for the last element a.

The limitation ensures that the number of elements in recursion are deterministic

and our algorithm will be able to match the correct context.

Algorithm for deterministic loop

In this chapter we describe the algorithm for general context generation. We will

extend the algorithm introduced for simple recursion - Algorithm 5.3.3. There we

used descendant-or-self axis with constraint to a single element and checked that

there are no other elements in the axis. We will use this construct, but for our

needs we will extend it and add several more constructs and constraints.

The constraints that will our algorithm check are:

 Lead terminal constraint

 Restriction – no foreign elements are present in a matched sequence

 Completeness constraint – matching the elements to derivation terminal

regex.

The lead terminal constraint ensures that we match the correct lead element. This

constraint may not be used every time, but it is important to notice a situation

when there could be multiple elements of the lead symbol. We refer to Example

5.3.7.

In the algorithm for simple recursion - Algorithm 5.3.3 – we used only the

restriction constraint. Since now there can be more than just one element within

recursion loop, we are going to slightly improve this constraint.

62

The restriction constraints checks only that there are no foreign elements; the

completeness constraint checks that all terminals from derivation terminal regex

are matched to elements within the recursion, thus no elements are missing and all

elements are in correct order. This will ensure that we ignore all other permutated

sequences.

The algorithm will match all possible lead terminals in the descendant axis and

identify the correct ones. We have to ignore all other terminals that are neither a

part of the recursion, nor the lead terminal (e.g. another terminal with the same

name as the lead terminal but occurring inside the recursion loop at a different

position). We will describe the algorithm in three parts – each for a constraints

described above. Each part will produce a predicate for XPath.

To identify the lead terminal we count the ancestor elements that match the lead

terminal and modulo the value. Part I can be omitted if the lead terminal occurs

only once within the recursion loop.

Algorithm 5.3.4 Algorithm for recursion Part I – Modal Count

string GetModuloConstraint (DRT terminalRegex, Context
PaternElement) {

 string LeadTerminal = getLeadingTerminal(terminalRegex);

 int moduloCount = terminalCountInRecursion(terminalRegex,
LeadTerminal);

 //variable lead terminal occurences

 string leadTerVar = createUnitVariable(“modulo” + LeadTerminal);

 //form: <let name=”leadTerVar” value=”count(ancestor::x)” />

 createLetVariable(leadTerVar, xPathContext, iterationCharacter);

 //return (count(ancestor::) - $modulo_x) mod ∑ = 0

 return string.Format(“(count(ancestor::{0}) – {1}) mod {2} = 0”,

 LeadTerminal,

 leadTerVar,

 ModuloCount);

63

}

Lemma 4 Algorithm 5.3.4 finds the correct lead terminals.

Proof

Since we do not allow any nondeterministic behavior within the recursion loop, the

number of terminals that have the same name as the lead terminal is fixed.

Example 5.3.9. Example for algorithm for recursion part I - The lead terminal

DRTA = (aa)*

Generated predicate:

 P1 = count(ancestor::a) mod 2 = 0

Context:

 //a[P1]

Example 5.3.9 shows a predicate for matching the lead terminal a.

Algorithm 5.3.5 is based on Algorithm 5.3.3 for simple recursion. The Algorithm

5.3.3 was used only for simple recursion, and, thus it checks only a single element.

We enhance it to support checking of multiple elements. The description is brief;

please look at the algorithm for simple recursion first.

Algorithm 5.3.5 Algorithm for recursion Part II - restriction

string CreateRestrictionContext(string DRTA, string xPathContext,
Context PaternElement) {

 //we create n + 1 variables, where n is the number of distinc
terminals in DRTA

 string allCountVar = createUnitVariable(“allCount”);

 //form: <let name=” allCountVar” value=”
count(xPathContext/ancestor::*)” />

 createLetVariable(allCountVar, xPathContext, “*”);

 string result = “”;

 foreach (var terminalCharacter in distinct terminals of DRTA) {

 string charCountVar = createUnitVariable(terminalCharacter
+ “Count”);

 createLetVariable(charCountVar, xPathContext,
terminalCharacter);

64

 if (result != “”) {

 result += “ + “;

 }

 result += string.Format(“(count(ancestor::{0}) – {1})”,
terminalCharacter, charCountVar);

 }

 result += string.Format(“ = count(ancestor::*) – {0}”, allCountVar);

 return result;

 }

The proof of correctness is very similar to that presented for Algorithm 5.3.3.

Example 5.3.10. Example for algorithm Path II - Restriction

DRTA = (abcb)*

Generated predicate:

 P2 = (count(ancestor::a) + count(ancestor::b) + count(ancestor::c)) =
count(ancestor::*)

Context:

 //a[P2]

Example 5.3.10 shows a generated predicate for restriction constraint. For simplicity

we do not use variables since the DRTA has no prefix before the recursion.

The following part of our algorithm generates the completeness constraint about

the internal structure of the recursion loop.

The aim of Algorithm 5.3.6 is to check that the internal structure of the recursion

loop matches the regular expression of DRTA. The generated conditions by this part

of the algorithm will ensure that the loop contains all necessary elements and that

they are in a correct order. Since the loop itself is deterministic, the problem ahead

is simplified.

To check the internal structure of a recursion loop, we use nested child condition. In

a single condition we check the child, grandchild, great-grandchild… of the lead

terminal. We denote this condition as the structural check.

65

The generated constrain will check the count of ancestor lead terminals against the

count elements found by the structural check.

We transform the deterministic loop into the structural check:

leading_symbol[child[grand-child[…[leading _symbol]]]

The final parent-child check is matching the lead symbol of the following recursion

loop.

We count the number of occurrences of the lead terminal in the loop. We will

internally denote this constant as $LeadingSymbolCount.

Thanks to the facts that the loop is deterministic, we can afford to check the

internal structure by a single nested XPath condition. We have transformed the

loop e.g. “abcad” into the XPath a[b[c[a[d[a]]]]]. The generated condition will be the

following:

count(ancestor::a) = $LeadingSymbolCount * count(ancestor::a[b[c[a[d[a]]]]])

The DRTA for the loop is abcad, the lead symbol is thus a and the constant

$LeadingSymbolCount expresses the number of symbols of the lead terminal within

the recursion loop. Here it is equal to two.

Algorithm 5.3.6 Algorithm for recursion Part III – minimal validity and order

String generateStructuralCheck(string DRTA) {

 string terminal = getLastTerminal(DRTA);

 string prefix = getPrefixWithoutLastTerminal(DRTA);

 if (prefix == “”) {

 return terminal;

 } else {

 return string.format(“{0}[{1}]”, terminal,
generateStructuralCheck(prefix));

 }

}

/** parameter DRTA contains only the body of recursion, not a prefix

66

*/

String getCompletenessConstraint(string DRTA) {

 string leadTerminal = getFirstTerminal(DRTA);

 int LeadingSymbolCount = count(leadTerminal, DRTA);

 string structuralCheck = generateStructuralCheck(DRTA +
leadTerminal);

 return string.format(“count(ancestor::{0}) = {1} * count({2})”,
leadTerminal, LeadingSymbolCount, structuralCheck);

}

Lemma 5 Algorithm 5.3.6 identifies only the lead terminals preceded by a

complete deterministic recursion body and the recursion body is in the

correct order.

Proof

The structural check ensures that the matched lead terminal is followed by

elements in the correct order and none is missing.

The final part of the structural check – the condition that checks the lead terminal

of the next recursion loop - ensures that structural check checks the whole

structure of the loop. (Not only a part of it).

The algorithm for more general recursions consists of three parts. Each part focuses

on a different problem. All together it ensures that the recursion with a

deterministic loop can be identified.

Summary

We have shown the algorithm for more general cases. However, we do not allow

non-deterministic content in the recursion loop, because XPath 1.0 has only very

limited support for regular expression matching.

Algorithm 5.3.6 could be improved to allow some non-deterministic content. The

way to do so is to split the single XPath sequence into more parts and for each non-

determinism check all possible children/sub-sequences. The main obstacle is that

there could accumulate some sub-sequences in the previous loops and these sub-

67

sequences could falsely satisfy the condition for loops that have these sub-

sequences missing – see Example 5.3.8.

5.3.6 Context for each hedge of grammar

We have introduced several algorithms, i.e. several ways to create the context for a

hedge in the grammar G. In this chapter we identify cases where each of the

algorithms should be applied.

Let us have a grammar G = (N, T, S, P) and a set of hedges. We create a directed

graph ⃗ = (V, E), where V is a set of vertices and V = N, E is a set of edges and E = {

 | ∈ ∈ }. Edges of the graph express the derivation process of the

grammar.

The idea of Algorithm 5.3.7 is as follows. We have the starting set of non-terminals

from the grammar. This starting set can be extended at the beginning by non-

completing non-terminals. We use the BFS (breadth-first search) algorithm from the

starting set of non-terminals to process all non-terminals/vertices. We use BFS so

that we can utilize the already generated context of preceding vertices.

Algorithm 5.3.7 Context for grammar

void CreateContext(grammar G) {

 DGraph = createDirectedGraphFromGrammar(G);

 foreach(var start in G.S) {

 BFS(start, G);

 }

}

void BFS (vertex Start, grammar G) {

 fifo f = new fifo();

 fifo.push(Start);

 while (not fifo.empty()) {

 vertex V = lifo.pop();

68

 if (V.visited) {

 continue;

 }

 If (isNotCompeting(V, G)) {

 generateTrivialContext(V, G);

 } else {

 var DRA = generateDRA(V);

 if (isRecursionFree(DRA)) {

 generateAbsoluteContext(V, G);

 } else if (containsSimpleRecursion(DRA) {

 generateSimpleContext(V,G);

 } else {

 //we suppose the recursion is deterministic

 generateGeneralContext(V,G);

 }

 }

 V.visited = true;

 Foreach(var follower in V.followers) {

 fifo.push(follower);

 }

 }

}

We can utilize variables of Schematron and store the contexts for all non-terminals

that correspond to lead terminals. The use of trivial context generation is optional,

the algorithm will work without it.

Please note that this step only identifies context. The validation is done in steps 2

and 3.

69

5.4 Step 2 – Boundary rules

In Step 1 we identified context for rules that will be generated by the second step

and by the following third step. The found context will be denoted as CONTEXT. In

this step we focus on a simple validation using minimum and maximum occurrence

checks – boundary rules – of elements from the regex part R of the hedge h. We can

detect elements that are not present in the regex R and elements with invalid

occurrence.

We process the regex R and for each non-terminal X from production set S

(Definition 5.1.1) we count the minOccurs and maxOccurs based on Algorithm 5.4.1.

Both functions are defined as follows: minOccurs: {

{ , maxOccurs: { { , where N is the set of

non-terminals.

Algorithm 5.4.1 Algorithm for counting minOccurs and maxOccurs

number minOccurs(n, regex) {

 If (regex.length <= 1) {

 return regex == n ? 1 : 0;

 }

 var operator = getOperator(regex);

 var r1 = getFirstOperand(regex), r2 = getSecondOperand(regex);
//r2 can be empty

 switch(operator) {

 case sequence:

 return minOccurs(n, r1) + minOccurs(n,r2);

 case choice:

 return min(minOccurs(n, r1), minOccurs(n,r2)); //use max()
for maxOccur

 case optional:

 return 0; //return maxOccurs(n, r1) for maxOccurs

 case plus:

 return minOccurs(n, r1); //return unbounded for maxOccurs

 case asterix:

70

 return 0: //return unbounded for maxOccurs

 case group:

 return minOccurs(n,r1);

 }

}

In Algorithm 5.4.1 we use a pseudo-code and recursively parse the regular

expression until we get to a single non-terminal. Based on regex operator used, we

process the result of the inner regular expression. Note that we count with

unsinged integers and the special value ‘unbounded’. Any add operation with this

special value return again the value ‘unbounded’.

The function maxOccurs is very similar and the differences are stated in the code of

function minOccurs.

Example 5.3.11. Example of minOccurs and maxOccurs

minOccurs(B, B?C+) = 0 minOccurs(C, B?C+) = 1

maxOccurs(B, B?C+) = 1 maxOccurs(C, B?C+) = unbounded

minOccurs(B, BB?C*D*C) = 1 minOccurs(C, BB?C*D*C) = 1

maxOccurs(B, BB?C*D*C) = 2 maxOccurs(C, BB?C*D*C) = unbounded

In Example 5.3.11 we show on regular expression from Example 5.1.1 the values

returned by function minOccurs and maxOccurs.

We abbreviate the function calls of minOccurs and maxOccurs by allowing leaving

out the second parameter. The default value is the regex R of hedge h.

Now we get to the rule generation. With defined function minOccurs and

maxOccurs we can generate rules for hedge h. We use the function of XPath count.

First we check that there are no illegal children with a single rule:

∑ (()) (

 ∈

 ild)

Where child::* is an XPath expression for any child element from current context.

71

Next, we generate a rule for each non-terminal from S to check the bounds

(minimum occurrence and maximum occurrence):

⋁{ (()) () (()) ()

 ∈

Note that we may skip the maximum bound check, if maxOccurs equals to the value

‘unbounded’. The same fact can be applied to minOccurs and the value 0.

Example 5.3.12. Boundary rules for hedge h1

<rule context=”CONTEXT”>

 <assert test=”(count(b) + (count(c)) = count(child::*)”>There are illegal children of
element a. Only elements b and c are allowed.</assert>

 <!—min and max bounds check -->

 <assert test=” count(b) <= 1”>Element a can have at most one child element
b.</assert>

 <assert test=”count(c) >= 1”>Element a must have child element c with minimum
occurrence of 1.</assert>

</rule>

Example 5.3.12 contains generated Schematron rules for hedge h1 from Example

5.1.1. We assume that trans(B) = b and trans(C) = c.

5.5 Step 3 – order checks

In step 2 we generate constraints for boundary counts of elements. For unordered

unranked trees these rules would be sufficient. However, we are generating rules

for ordered unranked trees and that is why we need Step 3.

XPath 1.0 does not support regular expressions, the only thing we can do is to

construct several rules that use XPath-axes (preceding, following, etc.) and try to

express the regular expression with it. The full expression of a hedge using

Schematron rules can be found in Chapter 2.2. The basic idea is taken from [25].

We recapitulate in short what we want to do. We have a hedge h with a regular

expression R for its content. We want to generate rules that check that the content

(the child elements) match the regular expression.

72

5.5.1 Basic idea of the algorithm

We have a regular expression R and element e. We want to create a set of rules for

Schematron to test the order of child elements of e. We process the regex R

sequentially from left to right. For each part of the regex we create constraints for

allowed following siblings. A more complex regular expression may require more

rules to express it.

Generally we mimic the work of an NFA. We determine the state we are in and thus

we know what transitions are allowed. If we detect any other following sibling we

report it.

The names of XPath axes are long, so we denote several abbreviations:

 Fn = following-sibling::*[1][self::n] //the first sibling on the right is n

 Pn = preceding-sibling::*[1][self::n] //the first sibling on the left is n

 Dn = preceding-sibling::n //there is some preceding sibling (on the left)

which is called n

We can concatenate these abbreviations:

 PaPb = preceding-sibling::*[1][self::b][preceding-sibling::*[1][self::a]] or with

an equivalent

preceding- sibling::*[1][self::b] and preceding-sibling::*[2][self::a]

 PaDb = preceding-sibling::b[preceding- sibling::*[1][self::a]]

Regular expression operators, except the grouping operator, can be expressed using

conditions on following siblings - see Example 5.5.1. Based on the cardinality of the

following (or preceding) siblings, we may use more than just one condition (see

Example 5.5.2).

Example 5.5.1. Transformation of a sequential regex

R = xyz

Schematron rules:

<rule context=”CONTEXT/x”>

 <assert test=”not(preceding-sibling::*) and Fy”>Element x cannot be preceded by any
other element. Only element y may follow an element x.</assert>

</rule>

73

<rule context=”CONTEXT/y”>

 <assert test=”Fz”>Element y must be followed by an element z. </assert>

</rule>

<rule context=”CONTEXT/z”>

 <assert test=”not(following-sibling::*)”>Element z cannot be followed by any other
element. </assert>

</rule>

In Example 5.5.1 we expressed a simple regex that contains only a sequence of three

elements – x, y and z. We created three rules with help of abbreviation defined at

the beginning of step 2. Each rule checks the follower to match the following

element from regex. We also added border conditions for elements at the beginning

and end of the regex.

Example 5.5.2. Transformation of a regex with a non-trivial cardinality

R = x+yz?

<rule context=”CONTEXT/x”>

 <assert test=”(not(preceding-sibling::*) or Py) and (Fx or Fy)”>Element x cannot be
preceded by any other element. Element x must be followed by other element x or by an
element y.</assert>

</rule>

<rule context=”CONTEXT/y”>

 <assert test=”Fz or not(following-sibling::*)”>Element y may be followed only by an
element z or no element.</assert>

</rule>

<rule context=”CONTEXT/z”>

 <assert test=”not(following-sibling::*)”> Element z cannot be followed by any other
element. </assert>

</rule>

Example 5.5.2 extends Example 5.5.1. We have added a non-trivial cardinality for

elements x and z. The regex allows a sequence of elements x at the beginning and

makes the element z optional. The first and second rules must be extended to

capture the new conditions – element x must be the first element or be preceded by

another element x and must be followed by x or y. Element y must be followed by an

element z, or be the last element. Only the last (third) rule remains the same,

because the element z (if present) can be only the last element.

74

In Example 5.5.1, Example 5.4 and Example 5.5.2 we demonstrated the idea of

generating rules for regular expression. Now we describe the problem in more

detail.

5.5.2 Problem analysis

The Schematron rules are independent of each other and thus make sequential

processing of a regex more complicated. The main problem is to match an element

to a part of a regex. If we succeed in identifying the correct position in the regex,

the testing of the following sibling is fairly easy.

Elements with multiple occurrences in the regex represent the main problem - see

Example 5.5.3. We have to distinguish them using only XPath 1.0.

Example 5.5.3. Double occurrence of an element in a regex

R = a?a?

L(R) = {λ, a, aa}

In Example 5.5.3 we can see a regex that contains two occurrences of a, each one is

optional. The word “a” generated by the regex R is generated by either the first or

the second element a.

In order to simplify the work with this task, we transform the regex to NFA [26].

Each state in the NFA can have multiple paths (words) to access it (or produce the

state). In Example 5.5.3 the first element a is produced only by the empty word λ

and the second element a is produced by words λ and a. Note that both elements a

are produced by the empty word λ, but only the second one is produced also by a

word a. This illustrates the general problem – each state is produced by a set of

words, different states can have non-empty intersection of these sets.

Definition 5.5.1. Let us have a NFA = (). We denote the

production set of the state ∈ as () { ∈

 | () .

Using this definition we can write the production sets for states for regex in

Example 5.5.3 as Product(a1) = { λ} and Product(a2) = {λ, a}.

75

Let us have two states p and q that have a non-empty intersection P of their

production sets. When we receive a word from P, the active state of the NFA can be

either p or q. This means that the next allowed state can be the follower of either

state p or q.

The solution for our problem with multiple elements in a regex is the following.

When we have an element x that is present in the regex R more than once, we

compute the production sets for each occurrence of x and intersect them. We

merge the rules for words that are in some intersection, since they are not

differentiable.

5.5.3 Algorithm

We have a regex R and want to create Schematron rules for validation. We analyzed

the problem in the previous chapter. Now we introduce our algorithm for

transforming the regex into Schematron rules.

Algorithm 5.5.1 Transformation of regular expression to Schematron rules

void generateRules (regex R, context C) {

 var terminals = getTerminalSet(R);

 foreach(var terminal in terminals) {

 if (count(terminal, R) == 1) {

 generateSimpleRule(terminal, R, C);

 } else {

 generateComplexRule(terminal, R, C);

 }

 }

}

void generateSimpleRule (string T, regex R, context C) {

 var element = getElement(T, R); //find the corresponding element
for terminal in R

 var followers = getFollowers(element, R);

76

 writeRule(T, null, followers); //there are no conditions for this
terminal

}

void generateComplexRule (string T, regex R, context C) {

 var paths = getPaths(T, R); //find all paths that lead from states of
terminal T to the start of Regex.

 var prefixAutomaton = PrefixAutomaton.EMPTY;

 foreach(var path in paths) {

 mergeNFA(prefixAutomaton, path);

 }

 foreach(var terminalState in prefixAutomaton.outputs) {

 var condition = getCondition(terminalState);

 var followers = getFollowers(terminalState, mergedNFA);

 writeRule(T, condition, followers);

 }

}

Let us describe Algorithm 5.5.1. We generate rules for each terminal in the regular

expression. If the terminal has only a single occurrence in the regex, we generate a

single rule without any complex conditions. Otherwise we have to tell apart each

occurrence of this terminal in the regex since the followers may differ.

In method generateComplexRule we find a list of all words that lead to the terminal

(see the production set from Definition 5.5.1). Multiple words can lead to the same

terminal. To find all the words we can use a NFA with reverted production function

and keep the found words represented as an automaton. We will merge those

automatons into a single prefix automaton. This automaton will serve as the source

for conditions to tell apart terminals T at different positions in the given regex R.

In the above paragraph and also in Algorithm 5.5.2 we use the term prefix

automaton. It is an extended NFA that contains one additional symbols in the input

alphabet – ^. Symbol ^ means the same as in the common regex usage - no

77

preceding symbol. In the prefix automaton we have two categories of states –

whether they have a transition to a following state (node state) or not (leaf state).

Algorithm 5.5.2 Merging NFA of terminals

void mergeNFA(prefixA aut, NFA nfa) {

 var mapping = initMapping();

 var mapped = mapping[nfa.startingState];

 if (mapped != null && mapped != aut.start) {

 update mapping with mergeAutomatonStates(aut.start,
mapped);

 } else {

 Add new mapping for nfa.startingState and aut.start

 }

 doMerge(nfa.startingState);

}

void doMerge (NFAState startingState) {

 var mapping = initMapping();

 var lifo = LIFO.emptyLifo;

 lifo.push(startingState);

 while (not lifo.isEmpty()) {

 var state = lifo.pop();

 var automatonState = mapping[state];

 switch(automatonState.type) {

 case NODE:

 foreach(var trans in state.forwardTransitions) {

 if (automatonState.hasTransition(trans.letter) {

 handleExistingTransition(automatonState,
lifo, trans);

 } else {

 createNewTransition(automatonState, lifo,
trans);

78

 }

 }

 break;

 case LEAF:

 if (automatonState.nfaReference.isEmpty()) {

 automatonState.nfaReference.add(state);

 } else if (isDifferentNFA
(automatonState.nfaReference[0], state)) {

 // the same prefix part, we need to update this
state

 lifo.push(state); //repeat the evaluation for this
state, after this leaf is processed (either changed to NODE or
FINAL_LEAF);

 var leafState = automatonState.nfaReference[0];

 if (leafState.forwardTransitions.length > 0) {

 automatonState.type = NODE;

 lifo.push(leafState);

 } else {

 automatonState.type = FINAL_LEAF;

 }

 }

 break;

 case FINAL_LEAF:

 automatonState.nfaReference.add(state);

 break;

 }

 }

}

void createNewTransition (AState automatonState, LIFO lifo,
Transition trans) {

 if (mapping.contains(trans.finalState)) {

79

 automatonState.connectToState(mapping[trans.finalState]);

 } else {

 var createdState =
automatonState.createTransitionState(trans.letter);

 //asociate the newly created automaton state with the NFA
state

 addMapping(trans.finalState, createdState);

 }

 lifo.push(trans.finalState);

}

void handleExistingTransition (AState automatonState, LIFO lifo,
Transition trans) {

 var foundAState = automatonState.forwardTransitions[trans.letter];

 if (no mapping for trans.finalState) {

 //this state in NFA is was not yet visited, associate it with this
automaton state

 trans.finalState.image = foundAState;

 addMapping(trans.finalState, foundAState);

 lifo.push(trans.finalState);

 } else if (trans.finalState.image != foundAState) {

 //state from NFA cannot point to two different automaton
states -> merge them

 var mergedAState =
mergeAutomatonStates(trans.finalState.image, foundAState);

 updateMapping(trans.finalState, mergedAState);

 lifo.push(trans.finalState);

 } else {

 //already visited

 }

}

80

AState mergeAutomatonStates(AState state1, AState state2) {

 //state LEAF may change to NODE or FINAL_LEAF, we need to
be certain of the outcome

 If (state1.type == LEAF) {

 doMerge(state1.nfaReference[0]);

 }

 If (state2.type == LEAF) {

 doMerge(state2.nfaReference[0]);

 }

 //now we have only type NODE or FINAL_LEAF

 If (state1.type == FINAL_LEAF || state2.type == FINAL_LEAF) {

 //merge into single FINAL_LEAF, destroy possible following
states in the automaton

 state1.type = FINAL_LEAF;

 state1.nfaReference.add(state2.nfaReference);

 state1.removeTransitions();

 state1.replaceState(state2);

 } else {

 //both states are of type NODE, merge their followers
recursivly

 state1.nfaReference.add(state2.nfaReference);

 state1.replaceState(state2);

 foreach (var trans in state1.forwardTransitions) {

 if (state2.hasTransition(trans.letter) {

 trans.finalState =
mergeAutomatonStates(trans.finalState, state2.transition[trans.letter]);
//recursive merge

 state2.removeTransition(trans.letter);

 }

 }

 //add the rest of the transition from state 2

 state1.forwardTransitions.add(state2.forwardTransitions);

81

 }

 return state1;

}

In Algorithm 5.5.2 we introduce the algorithm to create a prefix automaton. The

prefix is constructed from the position of the terminal in regex R in the direction to

the beginning of the regex R. We want to find unique suffixes of prefixes or to know

that some prefixes cannot be decided.

In our prefix automaton the leaf states will contain a reference to NFA of terminals

and their follower list. Any leaf state identifies a word that identifies a specific

terminal.

This algorithm starts in the state that represents the terminal in the NFA and the

starting state of the prefix automaton. We simulate all the paths from the NFA in

the prefix automaton and add new states to it. We connect states from processed

NFA to the states of the automaton – to detect cycles. Each state from NFA can

have at most one connection to a state in the automaton.

Now we can build the prefix automaton. Example 5.5.4 shows a process of building

the automaton step by step.

Example 5.5.4. Building the prefix automaton

R = abca, indexed: R = a1b1c1a2

NFA:

 a b c a

 S F

Path for

 a1: a^ a2: acba^ b1: ba^ b2: cba^

The construction of the prefix automaton for a:

 I. There is only an empty automaton, containing only the starting state that
represents the terminal a. It is LEAF.

 S LEAF is associated with a1, the processing for a1 ends for now

82

 II. Processing a2. The starting state is also a LEAF for a1. The NFA (path) for a1
contains another symbol: ^. We change the type of the starting state to NODE. And process
a1 further.

 III. We create a new state for a1 – LEAF for symbol ^. The processing for a1 ends
here.

 ^ (a1)

 S

 IV. We continue processing of a2. We create a new state (LEAF) for symbol b and
end. We do not need to continue, since we found unique suffixes of prefixes for both a1 and
a2.

 ^ (a1)

 S

 c (a2)

Example 5.5.4 show the work of Algorithm 5.5.2 – the creation of a prefix

automaton for terminal a.

Conditions generation

After creation of the prefix automaton we can start to generate rules. From the

prefix automaton we know what states are easily distinguishable and what states

are similar (share the same output state). We do use the word similar, because if

there exists a cycle on a path from automaton start to the output state, there can

also exist a hidden condition for the repetition counts. Each of the similar states can

have a different repetition condition. See Example 5.5.5.

Example 5.5.5. Example of similar states in prefix automaton

R = (a+b)|((aa)+c), indexed = (a1+b)|((a2a3)+c)

Final prefix automaton:

 ^ (a1,a2,a3)

S

 a

Example 5.5.5 shows that even a distinct occurrence of a terminal in a regex can be

merge into a single state in the prefix automaton. We must not express this

83

situation by only a single rule (as it may look correct at first sight) since symbol “c”

can only occur after even number of symbols “a”.

If there is no cycle in the path, we can generate the Schematron rule for that

terminal of the output state. See Example 5.5.6.

Example 5.5.6. Schematron rules for simple prefix automaton

R = abca, indexed: R = a1b1c1a2

Prefix automaton:

 ^ (a1)

 S

 c (a2)

Tell-apart condition for a1: no-preceding

Tell-apart condition for a2: c

Followers of a1: b

Followers of a2: none

Schematron rules:

<rule context=”CONTEXT/a[not(preceding-sibling::*)]”>

 <assert test=”Fb”> Only element b may follow after an element a.</assert>

</rule>

<rule context=”CONTEXT/a[Pc]”>

 <assert test=”not(following-sibling::*)”> Element a cannot be followed by any other
element.</assert>

</rule>

Example 5.5.6 shows the generation of rules and conditions from prefix automaton

created in Example 5.5.4.

Cycle handling

Example 5.5.5 showed us that our algorithm is not perfect. However, we will not

show a solution for this problem in this thesis and leave it for a future work.

Future optimizations

There are several aspects that can be done to improve the performance of

generated rules. This chapter is merely for motivation purposes for future work.

84

As we saw in Example 5.5.5 it can happen that more occurrences merge in the

prefix automaton, leaving only a single rule and thus does not need additional

condition like other complex rules.

Another feature of our algorithm is that for each output state of the prefix

automaton there is generated a rule with a single Schematron assert. Again this

could be improved by merging similar rules and adjusting asserts.

Another possible optimization would be the use of XPath 2.0. XPath 2.0 supports

regexes that would help greatly in Schematron schema generation. However, using

a simple regex for validating content has a downside –asserts are simplified and will

not tell the user where exactly an error is.

5.6 Summary

We have shown that expressing hedges with XPath1.0 is possible, but contains

some limitations. In this chapter we summarize these limitations and identify the

sub-class of regular grammar that we can express.

We introduced three-step algorithm. Step 1 generates correct context for later

steps. Steps 2 and 3 generate Schematron rules. All steps introduce a limitation for

the content – we are unable to differentiate types. Thus we cannot allow two

different types for a single element in the same content model, i.e. we do not allow

competition between non-terminals. This restricts the grammar to a Single Type

tree grammar.

Step 1 introduces another limitation. It does not allow for any non-determinism in

the recursion of the grammar. This is limited neither by a local tree grammar, nor by

a Single type grammar. However, as we will see in the next chapter, the k-ancestor

approach offers a nice way to handle the most real-world data.

Step 3 matches regular expression of a hedge. We have shown an approach that

uses XPath 1.0. We also showed that there are some cases where our algorithm

may not work – i.e. tell apart odd and even number of preceding siblings. Step 3 can

be omitted if we want to generate rules for unordered hedges.

85

The expression strength of our algorithm is thus limited by step 1 and 3. In may be

possible to improve the algorithm from step 3 and utilize it also for step 1 and lift

some limitations, but that is a possible task for a future work.

86

6 XML Schema inferring

This chapter describes ways of XML schema inferring. We will not go into deep

details, because this problem has been analyzed many times before, but we will

describe single method more deeply since we use it in our implementation. A

deeper analysis can be found for example in [28] and [29].

There are two different general approaches to XML schema inferring – heuristic

approach and grammar-inferring approach.

Heuristic approaches come from practical needs. They utilize empiric observations

and are more human-oriented. Results of heuristic approach are created by

generalization of a simple schema based on empiric observations (e.g. if an element

occurs three or more times, we denote it as unbounded). Based on this fact, the

inferred schemas cannot be assigned to a specific type of grammar.

Grammar-inferring approaches are based on a theoretical basis. Each method of

this family generates defined grammar type. However, based on the Gold’s theorem

[31], the language cannot be learned only from positive examples. As such, there

has to be typically some user input to direct the algorithm to the result.

6.1 iXSD

This algorithm was introduced in [30]. It is a grammar-inferring approach that

generates single-type grammar (in the form of XML Schema - XSD).

The authors of this method analyzed the real world data and came with two

following observations:

 Locality [30]: The content model of an element in more than 98% of XSDs in

practice turns out not to depend on the whole labeled path from the root to

the element, but only on the k last element names in that path, with

typically .

 Single occurrence [30]: The regular expressions in more than 99% of XSDs in

practice are of a very specific form: each element name occurs at most once

in them.

87

We use these observations in the following definitions.

Definition 6.1.1. We denote an XML document k-local if any of its content

models depends at most on the last k labels of ancestors.

Definition 6.1.2. We denote single occurrence regular expression (SORE)

to be a regular expression ∈ (), where each symbol ∈ is

present at most once.

Example 6.1.1. SORE

S1 = a+b?c is SORE

S2 = aa? is NOT SORE

Example 6.1.1 shows two regular expressions. The first one (S1) is a SORE expression,

but the second one (S2) is not because there are two occurrences of a.

The iXSD algorithm supposes that the input set of XML documents is k-local and

contains only content models expressible by single occurrence regular expressions.

6.1.1 Algorithm

The algorithm of iXSD consists of two steps – iLocal and Reduce. iLocal identifies all

k-local content models and creates types of them. Reduce step merges similar-

enough types.

For the needs of the algorithm we define several terms.

Definition 6.1.3. We denote paths(f) for an XML fragment f to be a set of all

labeled paths starting at root element in f.

Definition 6.1.4. We denote k-path | of path p to be a path formed by the

last k labels of path p. Two paths p and q are k-equivalent if | | .

Example 6.1.2. XML fragment and paths

F :=

<library>

 <documents>

 <book>

 <title>Krakatit</title>

 <author>Karel Čapek</author>

88

 </book>

 <book>

 <title>Big encyclopedia </title>

 <author>Some author 1</author>

 <author>Some author 2</author>

 <summary>Some summary of the Big Encyclopedia</summary>

 </book>

 <article>

 <title>Some technical article</title>

 < author >Author </ author >

 <summary>Summary of this technical article</summary>

 </article>

 </documents>

</ library>

paths(F) = { , library, library documents, library documents book, library documents book
title, library documents book author, library documents book summary, library documents
article, library documents article title, library documents article author, library documents
article summary}

2-paths(F) = { , library, library documents, documents book, book title, book author, book
summary, documents article, article title, article author, article summary}

Example 6.1.2 shows a XML fragment and all paths and 2-paths.

Definition 6.1.5. We define strings(f, p) , where f is an XML fragment and p

is a path, to be the a set of all names of element directly below an

occurrence identified by the path p.

If the path p in the string(f, p) is a k-path we use the term k-strings(f, |).

Example 6.1.3. K-string example

2-strings(F, documents book) = {title author, title author author summary}

1-strings(F, author) = { , , , , }

Example 6.1.3 shows the usage of function string on the XML fragment from

Example 6.1.2.

Now we have basic definitions and can proceed to the main algorithm.

Algorithm 6.5.3 iLocal

Types iLocal (int K, XMLFragments[] C) {

 var paths = paths(C);

89

 var types = create type for each unique k-path from paths;

 foreach(type t in types) {

 //create single occurrence automata

 t.soa = iSOA(k-strings(C, t.kPath));

 //convert the automata to SORE

 t.regex = createSore(t.soa);

 }

 Foreach(path (p,a) in paths) {//(p,a) consist of a path ‘p’ and a
label ‘a’

 Type[|].addTypeMapping(a, types[()|]);

 }

 return types;

}

Automata iSOA(string [][] labels) {

 var aut = create empty SOA;

 var uniqueNames = getUniqueNames(labels);

 aut.createVertices(uniqueNames);

 foreach (string[] labelSet in labels) {

 let labeSet have the form of (s1, s2, …, sn)

 aut.connectVertices ((aut.start, s1), (s1, s2),…(sn, aut.out));

 }

 return aut;

}

The iLocal - Algorithm 6.5.3 – creates types based on their K-path. Note that there

will be more types than necessary. E.g. all empty elements with different k-paths

will have different types, but they could easily have only a single type – empty. We

will thus post-process the result of iLocal and merge the same types using the

Minimalize algorithm.

Example 6.1.4. Ilocal results

Types generates by iLocal on F (Example 6.1.2) and k = 2:

90

 , library, library documents, documents book, document article, book title, book author,
book summary, article name, article author, article summary

Example 6.1.4 shows the types that will be found on the XML fragment from

Example 6.1.2. Note that e.g. types book title, book author, article name could be

merged into the same type since they contain only text data.

Algorithm 6.5.4 Minimalize

Void minimalize(Types T, Type ignore, XMLFragments[] C) {

 while(exists Type ∈) {

 If (setsEqual(k-strings(C, t.kPath), k-string(C, s.kPath)) {

 foreach(Type k that contains mapping to t) {

 k.changeMapping(a, s);

 }

 T.removeType(t);

 }

 }

}

Example 6.1.5. Output of Minimalize

Minimalize on the result of Example 6.1.4 will return these types:

 , library, library documents, documents book, document article, book title

Example 6.1.5 shows the minimalization of equal types of iLocal algorithm from

Example 6.1.4. Note that there is significantly less types now. All types with empty

content were merged into a single type with kPath book title.

After running the iLocal and Reduce algorithms, we have set of types that are each

unique. The next step – Reduce - will identify similar types and merge them. For

that we will define the distance of types.

We have to modify the iSOA algorithm. Each edge will contain a number usage –

how many words from k-strings used this edge. Let as have a look on the adapted

iSOA.

Algorithm 6.5.5 Adapted iSOA

Automata iSOA(string [][] labels) {

91

 var aut = create empty SOA;

 var uniqueNames = getUniqueNames(labels);

 aut.createVertices(uniqueNames);

 foreach (string[] labelSet in labels) {

 let labeSet have the form of (s1, s2, …, sn)

 foreach(edge e in {(aut.start, s1), (s1, s2),…(sn, aut.out)}) {

 if (aut.hasEdge(e)) {

 aut.edge[e].usage++;

 } else {

 add edge e to automata aut with usage 1.

 }

 }

 }

 return aut;

}

To determine the usage between two labels a and b of an Automaton A we use the

function ().

Example 6.1.6. Example of adapted iSOA

2-path documents book:

in 2 title 2 author

 1

 1 1

 Out 1 summary

Example 6.1.6 shows a SOA for content model of the type “documents book” with

edges and their usages. The XML fragment is taken from Example 6.1.2. In that

fragment there are two occurrences of the type “documents book”, but only one

contains summary and multiple authors.

92

Definition 6.1.6. Let A=(E,V) and B=(W, F) be two SOA. We define the

normalized edit distance dist as follows:

 ()
∑ ()()∈

∑ ()()∈

∑ ()()∈

∑ ()()∈
.

Definition 6.1.7. An XSD is a triple D =() where T is a set of types,

 (), where X is set of label names, and is mapping

() that assign a type to a child element.

Definition 6.1.8. For an XSD D = (), let () denote the set of all

element names a for which () is defined. The set () of

pairs of types jointly reachable from (s, t) is the least set containing (s,

t) such that () ∈ () and ∈ () ()

implies that (() ()) ∈ ().

Intuitively, () is the set of all pairs () for which there exists a path p

such that () and () .

In the next definitions we also use the function soa(t), that represents the result of

adopted iSOA algorithm that we store for each type.

Definition 6.1.9. The edit distance () between two inferred types is

defined as

 () ()∈ () (() ()).

Now we have defined the edit distance of two types and can proceed to the

algorithm Reduce that finds similar types and merges them.

Algorithm 6.5.6 Reduce

void Reduce(Types T, double E) {

 var M = {() ∈ | ()

 while (M is non-empty) {

 foreach((s,t) in M) {

 foreach(x,y) in reach(s,t)) {

93

 x.soa = x.soa y.soa;

 y.soa = x.soa;

 foreach(a in elems(y) – elems(x)) {

 x.addTypeMapping(a, y.mapping[a]);

 }

 foreach(a in elems(x) – elems(y)) {

 y.addTypeMapping(a, x.mapping[a]);

 }

 }

 recompute M = {() ∈ | ()

 }

 }

 Foreach(type t in T) {

 t.regex = createSore(t.soa);

 }

 Minimalize(T);

}

We demonstrate the work of the Reduce algorithm on an example.

Example 6.1.7. Reduce demonstration

Reduce on the result of Example 6.1.5 with E=0.5 will return these types:

 , library, library documents, documents book, book title.

It merged types

s = documents book and t = documents article

since Dist(s,t) = ⁄

6.1.2 Summary

The iXSD algorithm recognizes a single type grammar. It is able to identify types

based on a definable context and not only on element names. The iXSD uses two

parameters – k for the size of the context and E for the sensitivity for type merging.

94

7 Implemented solution

In previous chapters we analyzed and described a lot of algorithms. In this chapter

we introduce our implementation for Schematron schema inferring.

Our goal is to infer a Schematron schema out of a set of XML documents. Our

solution is divided into two parts – grammar inferring and Schematron schema

generation. For the grammar inferring part we use the iXSD algorithm described in

Chapter 6.1. For the Schematron schema generation part we use our three part

algorithm from Chapter 5.

The reason for splitting our solution into two independent parts is because of the

nature of Schematron. The inferred grammar can contain types that we are not

interested in, or some types may not have been identified correctly. With our

approach, the user can fix and simplify the inferred schema and thus gaining a

better control of the output. Another advantage is that a user may choose a

different inferring tool.

Our solution is written in C# over .NET Framework 3.5 as two separate command

line applications. The usage is described in the appendix.

7.1 Data limitations

Since we use the iXSD algorithm, we expect that the data follow the two

observations – locality and single occurrence. If the data will not support these two

expectations, the result may be too general since the iXSD algorithm will always try

to return SORE content models.

Our algorithm from Chapter 5 comes with two limitations on the input grammar.

The first limitation – single type – is trivially fulfilled by the fact that the iXSD

algorithm produces single type grammar. The second – determinism in derivation

sequence – will be resolved by the k-local feature of the iXSD that will be used also

in the context matching of our Schematron schema generation.

95

7.2 Usage of iXSD

In our solution we used the core of the iXSD algorithm as described in Chapter 6.1.

The only difference from the intended usage of the iXSD is the form of the inferred

grammar. We do not use XML Schema but a very simple form of grammar

description. The Relax NG schema for inferred grammars can be found in the

appendix.

7.2.1 Inferred grammar

The result of the step 1 of our solution is an XML document referenced as the

inferred grammar. It contains two sets of definitions – types and elements.

The type definitions describe the whole inferred grammar. Each definition contains

the description of its own content model, the names of child elements and their

types. The section is similar to a Relax NG or XSD schema in the meaning that it

defines all the hedges of the documents.

The other section - elements - contains constrains for content models of XML

documents. Based on K ancestors it references a type that should be used to

validate the content. This approach lets user to validate only a specific parts of XML

documents and thus a more Schematron-like approach.

Relax NG schema for inferred grammar can be found on the CD and in the

Appendix.

The second part of our solution – Schematron schema generation – uses constrains

from elements.

7.3 Schematron schema generation

 The Schematron schema generation consists of three parts: context matching,

boundary rules and order check.

In this thesis we discussed several ways of context matching. Because of the locality

observation of the iXSD algorithm, we choose the k-ancestor approach.

96

Although the inferred grammar of the iXSD algorithm should contain only SORE

content models, our solution supports also simple multi-occurrence regular

expressions. This support is limited as discussed in Chapter 5.

7.4 Experimental data sets

We used our solution on experimental data taken from real world. We present two

data sets. Each set is presented in the same folder structure. It contains folder for

grammars where all schemas and inferred grammars are stored and a folder for

XML data.

The inferred schema (produced by step 1 of our solution) is named

InferredGrammar.xml. The generated Schematron schema is named

schematronSchema.sch. For all of our experimental data sets we use the default

settings for grammar inferring (k=2, E=0.3).

Data set 1

This data set contains XML representation of a very common book – the Bible. We

do not have any schema, just a single XML document. The XML document has a

simple internal structure see Example 7.4.1. The full version of the XML document

can be found on the CD.

Example 7.4.1. XML fragment of the Bible data set

<book title="Genesis">

 <chapter number="1">

 <verse number="1">In the beginning God created the heaven and the
earth.</verse>

 <verse number="2">And the earth was without form, and void; and darkness
[was] upon the face of the deep. And the Spirit of God moved upon the face of the
waters.</verse>

 <verse number="3">And God said, Let there be light: and there was
light.</verse>

 …

 </chapter>

 …

</book>

Example 7.4.1 shows an XML fragment - the first verses of the first book of the Bible.

97

Example 7.4.2. Inferred grammar for Bible

<schema>

 <definitions>

 <definition name="chapter">

 <oneOrMore>

 <element name="verse" type="ValueOrEmpty" />

 </oneOrMore>

 </definition>

 <definition name="ValueOrEmpty">

 <empty />

 </definition>

 <definition name="book">

 <oneOrMore>

 <element name="chapter" type="chapter" />

 </oneOrMore>

 </definition>

 </definitions>

 <elements>

 …

 <element ofType="chapter">

 <location>

 <parent name="chapter">

 <parent name="book" />

 </parent>

 </location>

 </element>

 </elements>

</schema>

In Example 7.4.2 we part of the inferred grammar for the first data set. The full

version of the grammar can be found on the CD.

As we can see in Example 7.4.2, the inferred grammar for Bible is also simple. All

content models are single occurrence and thus we should not have any difficulties

in Schematron schema generation.

Example 7.4.3. Schematron schema for data set 1

<schema xmlns="http://purl.oclc.org/dsdl/schematron">

 <pattern>

98

 <rule context="//book/chapter">

 <assert test="count(verse) >= 1">There must be at least 1 element(s)
"verse".</assert>

 <assert test="(count(verse)) = count(child::*)">There are illegal
elements. Only elements "verse" are allowed</assert>

 </rule>

 <!--rules for checking regex regex "verse+"-->

 <rule context="//book/chapter/verse">

 <assert test="following-sibling::*[1][self::verse] or not(following-
sibling::*)">Element "verse" can only be followed by "verse" or cannot be followed by any
other element</assert>

 </rule>

 </pattern>

 <pattern>

 <rule context="//chapter/verse">

 <assert test="count(child::*) = 0">No children are allowed.</assert>

 </rule>

 </pattern>

</schema>

Example 7.4.3 shows part of the generated Schematron schema. The full version of

the Schematron schema can be found on the CD.

The generated Schematron schema contains one pattern for each element

definition in the inferred grammar. Each pattern consists of several rules

constraining the corresponding grammar type.

Data set 2

In the second data set we initially had only XSD schema (schema.xsd) for NASC

arrays. The XSD contains choices, sequences and types. There are more types than

in the data set 1. Because the both the inferred grammar and the corresponding

Schematron schema are too big we will show only small interesting XML fragments

as examples. All the referenced files can be found on the CD.

Based on the XSD we generated two sample XML documents – the first with

random choice and repetition and the second one without repetition.

The inferred grammar is bigger this time. It contains 23 types and about 130

element definitions. Schematron schema for this bigger grammar is also supplied

99

and it works. Note that there are some examples of multi occurrence content

models. However for better performance the inferred grammar should be

simplified.

Example 7.4.4. Complex definition from the inferred grammar for data set 2

<definition name="Source">

 <choice>

 <oneOrMore>

 <element name="StockCode" type="ValueOrEmpty" />

 </oneOrMore>

 <group>

 <element name="Individual" type="ValueOrEmpty" />

 <choice>

 <element name="Organism" type="ValueOrEmpty" />

 <group>

 <element name="IndivGeneChar" type="ValueOrEmpty" />

 <optional>

 <element name="GeneticBackground"
type="ValueOrEmpty" /> </optional>

 </group>

 </choice>

 </group>

 <group>

 <element name="invitroTreat" type="Other" />

 <element name="CellLineSource" type="ValueOrEmpty" />

 <optional>

 <element name="Age" type="ValueOrEmpty" />

 </optional>

 </group>

 <group>

 <optional>

 <element name="SeperationTechnique" type="Other" />

 </optional>

 <element name="CellLineSource" type="ValueOrEmpty" />

 <optional>

 <element name="Age" type="ValueOrEmpty" />

 </optional>

 </group>

100

 <group>

 <element name="IndivGeneChar" type="ValueOrEmpty" />

 <optional>

 <element name="GeneticBackground" type="ValueOrEmpty" />

 </optional>

 </group>

 <group>

 <element name="Other" type="Other" />

 <element name="CellSourceType" type="Other" />

 </group>

 </choice>

</definition>

Example 7.4.4 is a typical example of a multi-occurrence content model. E.g. the

type StockCode or IndivGeneChar is occurring more than once.

We can see some suspicious type definitions in the inferred grammar. We can also

notice some multi-occurring content models. See Example 7.4.4. This is caused by a

small set of input XML documents and their small variability and also by the

complex type used to generate the data. Our implementation of the iXSD algorithm

was not able to simplify enough the regex of this type. Thanks to this fact, we can

demonstrate the ability of basic multi-occurrence support of our Schematron

schema generation.

Example 7.4.5. Multi-occurrence support of Schematron schema generation

<!-- Symbol IndivGeneChar: -->

<!--Warning: support for multi-occurence symbols is not fully implemented-->

 <rule context="//Extract/Source/IndivGeneChar[not(preceding-sibling::*)]">

 <assert test="following-sibling::*[1][self::GeneticBackground] or not(following-
sibling::*)">Element "IndivGeneChar" can only be followed by "GeneticBackground" or
cannot be followed by any other element</assert>

 </rule>

 <rule context="//Extract/Source/IndivGeneChar[preceding-
sibling::*[1][self::Individual]]">

 <assert test="following-sibling::*[1][self::GeneticBackground] or not(following-
sibling::*)">Element "IndivGeneChar" can only be followed by "GeneticBackground" or
cannot be followed by any other element</assert>

 </rule>

Shows part of the regex-checking rules for multi-occurring element IndivGeneChar.

Our algorithm detected two occurrences with different prefixes. However, notice

101

that the following asserts are identical and thus the generation process could be

further improved.

In the inferredGrammarSimplified.xml we removed element definitions of type

ValueOrEmpty and Other. Only this simple removal of the two most common (and

trivial) element types reduced the number of element definitions to 26. Based on

the user preferences the inferred grammar could be simplified further.

7.5 Conclusion

Our solution works on the most data from the real world – we use the iXSD

algorithm. See Chapter 6.1 for more details about the properties of the real world

data. However, we could see that both the inferred grammar and the generated

Schematron schema are often bigger than necessary.

The most trivial comparison is by the file sized of the schemas of the second

experimental data set: XSD Schema – 20kB, inferredGrammar - 23kB,

inferredGrammarSimplified - 13kB, SchematronSchema – 71kb,

SchematronSchemaSimplified - 51kB. We must note that the original XSD schema

also contains comments and attributes definitions that are not contained in the

inferredGrammar nor in the SchematronSchema.

Our implementation is a proof of concept that a Schematron schema can be

generated for set of XML documents. For the real-world usage the generator should

be optimized and the inferred grammar reduced.

We did not compare the effectiveness of the validation between Schematron and

other languages, but based on the file sizes of the schemas we recommend that

Schematron is used only for validation of some interesting parts of XML documents

and not for the validation of the whole document.

There is another interesting feature of our implementation. We can see that the

most rules come from the regex matching. If we could reduce their number the

resulting Schematron schema would be greatly simplified. This could be done by

two approaches – firstly we could use a different query language with a regex

102

support, secondly we could allow any-order groups in the regex definition and thus

skipping the regex matching altogether.

103

8 Related work

There has been research already done on the field of XML schema inference. In this

chapter we describe in short the most related work on this field. For a much bigger

overview of XML inferring methods we recommend the [32].

8.1 Inferring xml schema definitions from xml data

Paper [30] analyses the properties of real world XML documents and defines two

most common properties - locality and single occurrence. Based on those two

properties it introduces the iXSD algorithm. Since we described this approach in

Chapter 6.1, we will no redefine the whole algorithm again. We will only summarize

the basic idea.

Locality property means that each content model depends only on the last K

ancestors. Single occurrence states that content models consists only of single

occurrence regular expressions (each terminal is present at most once). The iXSD

algorithm identifies types based on the locality property and merges the similar

types. The output is a single-type tree grammar in the form of an XSD.

8.2 Even an Ant Can Create an XSD

Paper [33] introduces the Schema miner. This approach generates an XSD. It is a

heuristic approach and allows inferring elements with the same name but with a

different structure. It is also able to infer unordered sequences in a content model.

This approach exploits the ACO (Ant Colony Optimization, [34], [35]), sk-string, (k,h)-

context and MDL-principle. The ACO is a heuristics that is able to find a suboptimal

solution. It uses “ants” that search the space S of possible solutions. Ants try to find

an optimal solution; each found solution is evaluated by the MDL principle. Each ant

does only predefined amount of steps before it dies. In each step an ant searches a

subspace of S for a local suboptimum. Based on how good a found solution is, the

ant gives a positive feedback – pheromones. The following iterations of other ant

adjust their search based on the amount of pheromones.

SK-string method is used for finding and merging equivalent states. It is a more

relaxed form of Nerode equivalence. The Nerode equivalence says that two states p

104

and q are equivalent if the sets of all paths leading to terminal states are equivalent.

For the simplicity sk-string compares only s most probable k-strings. K-string returns

only paths of the length K or shorter that lead to a terminal state.

Definition 8.1.1. A regular language L is k-contextual, if there exists a finite

automaton A s.t. L = L(A) and for any two states pk, qk of A and all input

symbols a1a2…ak: if there are two states p0 q0 of A s. t. ()

 and () , then .

Definition 8.1.2. A regular language L is k-contextual, if there exists a finite

automaton A s.t. L = L(A) and for any two states pk, qk of A and all input

symbols a1a2…ak: if there are two states p0 q0 of A s. t. () ,

 () , …, () and () , () , …,

 () then for every i s. t. .

8.3 Automatic Construction of an XML Schema for a Given Set of

XML Documents

Thesis [29] enhances the Schema miner from previous chapter and introduces the

Schema builder. The aim of Schema builder is to allow user interaction and

recognize inheritance between types. Another improvement is that Schema builder

matches elements with different name but similar structure.

User can preview identified types and adjust their regular expressions. However,

the main addition of the user interaction is the ability to define inheritance between

types.

8.4 Optimization and Refinement of XML Schema Inference

Approaches

Another work that builds upon paper [33] is [36]. The author focusses on the fact,

that many XML documents have some schema, but that schema is outdated, invalid

or not complete. He proposes a method of inferring an updated schema from the

old one. The benefit of this approach is that the new schema is enforced not to

deviate much from the old one.

105

Another goal of this work is to develop a finer MDL metric. The newly proposed

MDL metric should prefer simpler schemas.

8.5 Efficient Detection of XML Integrity Constraints

It is common that XML data have some integrity constraints. Even if these

constraints are known, there may be some XML documents that violate some of the

constraints. The work [37] discusses the problem of correcting these violations with

the least modification as possible to the input documents.

The author introduces repair groups for different types of violations. Each repair

action from a repair group is weighted and the least invasive is chosen. Another

aspect of the this work is that the algorithm allows user input.

106

9 Conclusion

This thesis has brought a way to infer a Schematron schema for a set of XML

documents. We have introduced Schematron in deeper, because it uses a different

way of XML validation – it uses rules instead of grammar validation. Schematron

supports more query languages, we chose XPath 1.0, since the support from third

parties implementations of Schematron validators is the most common for XPath

1.0.

To our best knowledge, there has not been much work on automatic Schematron

schema generation. Because of this fact we focused on analyzing and describing

different ways of transforming a single type grammar to Schematron rules. This is

the main part of this thesis and more future work can be based on it.

Since there have been works on automatic XML schema inferring (e.g. [28] or [29]),

we reduced the analysis of existing inferring methods to a single representative –

the iXSD algorithm. We used the iXSD algorithm later in our implementation.

Our implementation consists of grammar inferring part and of a Schematron

schema generation part. User interaction is supported, since the user can modify

the inferred simple grammar description or even write its own.

At the end we show some experimental results.

9.1 Future work

In this thesis there are some areas that we did not discuss at all or only a little.

Some new areas came up as we proceeded with our analysis. These areas can bring

new results and improve the current results. We will try to describe them in short in

the following paragraphs.

One of the main areas that have not been touch is negative examples handling.

Schematron (in contrast to other major validation languages) is able to express and

check negative constraints. Current inferring methods use only positive examples. It

would be interesting to be able to define negative constraints.

107

Schematron supports more query languages. We used XPath 1.0 since it is widely

supported. We were limited by the use of XPath 1.0 in algorithms mainly because of

the lack of regex support. However, other query languages can work better – like

XPath 2.0. They bring new possibilities to match elements and thus they could

greatly improve and simplify our algorithms.

There is another a way to reduce the number of generated rules and simplify the

Schematron schema - by introducing any-order alternative for a group (like XS:any

in XML Schema). In current implementation the majority of generated rules are for

regex checking and thus, for unordered content models, these rules could be left

out.

Our algorithm suggests a way to handle multi-occurrence content models with the

help of prefix automata. However, this method is not fully completed since it does

not handle all cases – mainly the length of repeated loops. Also there is some place

to improve the generated queries and simplify them.

Lastly, the whole Schematron schema is not optimized. It can query multiple times

the same elements or on the other hand uses too much variables. We think that this

could be improved. Also the generated schema is too big and not all elements must

be checked. The inferred grammar could be automatically optimized.

108

10 Bibliography

[1] Introduction to automata theory, languages, and computation, John E.

Hopcroft, Rajeev Motwani, Jeffrey D. Ullman,

[2] Schematron, Eric van der Vlist, March 2007, ISBN: 978-0-596-55874-1

http://www.schematron.com

[3] (Relax NG homepage) http://www.relaxng.org , 2010.

[4] Relax NG book, Eric van der Vlist, December 2003, ISBN: 0596004214

http://books.xmlschemata.org/relaxng

[5] W3C wiki http://esw.w3.org/Co-occurrence_constraints

[6] XML Path Language (XPath) Version 1.0, W3C http://www.w3.org/TR/xpath,

16 November 1999

[7] Technologie XML, RNDr. Irena Mlýnkova, Ph.D , Martin Nečaský, Ph.D., 2010

http://www.ksi.mff.cuni.cz/~mlynkova/prg036/slajdy/PRG036_XPath1.pdf

[8] W3C, XML Path Language (XPath) Version 2.0 (Second edition),

http://www.w3.org/TR/xpath20/, 14 December 2010

[9] W3C, Extensible Markup language (XML) 1.0 fifth edition,

http://www.w3.org/TR/REC-xml/, 26 November 2008

[10] Makoto Murata, Dongwon Lee, Murali Mani, and Kohsuke

Kawaguchi. 2005. Taxonomy of XML schema languages using formal

language theory. ACM Trans. Internet Technol. 5, 4 (November 2005)

[11] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, C. Löding, S. Tison

and M. Tommasi. Tree automata techniques and applications.

https://gforge.inria.fr/projects/tata/, November 18 2008.

[12] W3C, XML Schema Part 1: Structures Second Edition,

http://www.w3.org/TR/xmlschema-1, 28 October 2004

[13] W3C, W3C XML Schema Definition Language (XSD) 1.1 Part 1:

Structures, http://www.w3.org/TR/xmlschema11-1/, 3 December 2009

[14] W3C, On SGML and HTML, http://www.w3.org/TR/REC-

html40/intro/sgmltut.html

[15] M. Murata, “RELAX (Regular Language description for XML)”,

http://www.xml.gr.jp/relax/, October 2000

http://www.schematron.com/
http://www.relaxng.org/
http://books.xmlschemata.org/relaxng
http://esw.w3.org/Co-occurrence_constraints
http://www.w3.org/TR/xpath
http://www.ksi.mff.cuni.cz/~mlynkova/prg036/slajdy/PRG036_XPath1.pdf
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/REC-xml/
https://gforge.inria.fr/projects/tata/
http://www.w3.org/TR/xmlschema-1
http://www.w3.org/TR/xmlschema11-1/
http://www.w3.org/TR/REC-html40/intro/sgmltut.html
http://www.w3.org/TR/REC-html40/intro/sgmltut.html
http://www.xml.gr.jp/relax/

109

[16] J. Clark, “TREX – Tree Regular Expressions for XML”,

http://www.thaiopensource.com/trex/, 2001

[17] ISO JTC1/SC34, Document Schema Definition Languages,

http://www.dsdl.org/, March 2010

[18] Schematron namespace http://purl.oclc.org/dsdl/schematron

[19] W3C, XSL Transformations (XSLT) Version 1.0,

http://www.w3.org/TR/xslt, 16 November 1999

[20] W3C, XSL Transformations (XSLT) Version 1.1,

http://www.w3.org/TR/xslt11/, 24 August 2001

[21] W3C, XSL Transformations (XSLT) Version 2.0

http://www.w3.org/TR/xslt20/, 23 January 2007

[22] W3C, XQuery 1.0: An XML Query Language,

http://www.w3.org/TR/xquery/, 3 January 2011

[23] Michal Chytil, Automaty a gramatiky, 1. Vyd. Praha : Státní

nakladatelství technické literatury, 1984. -- 331 s

[24] W3C, XHTML ™ 1.0 The Extensible HyperText Markup Language

(Second Edition), http://www.w3.org/TR/xhtml1/#xhtml, 26 January 2000,

revised 1 August 2002

[25] Rick Jeliffe, Converting Models to Schematron, November 16 2006,

http://www.oreillynet.com/xml/blog/2006/11/converting_content_models_

to_s.html

[26] R. Barták: Automaty a gramatiky:

http://kti.mff.cuni.cz/~bartak/automaty/, 2001

[27] Geert Jan Bex, Frank Neven, and Stijn Vansummeren. Inferring xml

schema definitions from xml data. In VLDB '07: Proceedings of the 33rd

international conference on Very large data bases, pages 998–1009. VLDB

Endowment, 2007.

[28] Automatická konstrukce schématu pro množinu XML dokumentů,

Ondřej Vošta, Master Thesis, Department of Software Engineering, Charles

University in Prague, 2005

http://www.thaiopensource.com/trex/
http://www.dsdl.org/
http://purl.oclc.org/dsdl/schematron
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt11/
http://www.w3.org/TR/xslt20/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xhtml1/#xhtml
http://www.oreillynet.com/xml/blog/2006/11/converting_content_models_to_s.html
http://www.oreillynet.com/xml/blog/2006/11/converting_content_models_to_s.html
http://kti.mff.cuni.cz/~bartak/automaty/

110

[29] Automatic Construction of an XML Schema for a Given Set of XML

Documents, Julie Vyhnanovská, Master Thesis, Department of Software

Engineering, Charles University in Prague, 2009

[30] Geert Jan Bex, Frank Neven, and Stijn Vansummeren. Inferring xml

schema definitions from xml data. In VLDB '07: Proceedings of the 33rd

international conference on Very large data bases, pages 998–1009. VLDB

Endowment, 2007.

[31] E. Mark Gold: Language identification in the limit. 1967. Information

and Control, 10(5): 447-474

[32] Irena Mlýnková, XML Schema Inferrence: A Study, Department of

Software Engineering, Charles University in Prague

[33] O. Vosta, I. Mlynkova, and J. Pokorny. Even an Ant Can Create an XSD.

In DASFAA'08: Proc. of the 13th Int. Conf. on Database Systems for Advance

Applications, LNCS, pages 35-50. Springer, 2008.

[34] M. Dirigo, A. Calorni and V. Maniezzo, Positive feedback as a search

strategy. Technical Report 91-016, Dipartimento di Elettronica, Politecnico di

Milano, Milan, Italy, 1991

[35] R. K. Wong and J. Sankey, On Structural Inference for XML Data,

Technical Report UNSW-CSE-TR-0313, School of Computer Science, The

University of New South Wales, 2003.

[36] Michal Klempa, Optimization and Refinement of XML Schema

Inference Approaches, Master Thesis, Department of Software Engineering,

Charles University in Prague, 2011

[37] Michal Švirec, Efficient Detection of XML Integrity Constraints,

Master Thesis, Department of Software Engineering, Charles University in

Prague, 2011

111

11 Appendix – Content of the CD

The CD is part of this thesis. It contains this text, implementation, data sets and

Relax NG schema for inferred grammar. Implementation is divided into two projects

of Visual Studio 2010 – iXSD implementation and Schematron schema generator.

Experimental data set contains data sets and also an Ant build file for running

Schematron schemas on the input XML documents.

 content.txt text of this chapter

 text – A directory with the pdf file with the text of this thesis

 src – A directory with sources for our implementation and Relax NG schema

for the inferred grammars.

 bin – A directory with binaries of our implementation

 experimental data – A directory for experimental data sets

112

12 Appendix Program usage

In this chapter we describe the usage of our implemented solution. The solution is

divided into two parts iXSD.exe and SchemaGenerator.exe.

For help, run any program with the “-h” parameter.

Both binaries require RegularExpression.dll to be present in the run content and

support for .NET framework 3.5.

12.1 iXSD

The iXSD.exe infers the grammar out of the input set of XML documents and

generates the inferred grammar. The recognized parameters are:

Usage: [-h] [-k INTEGER] [-e DOUBLE] [-o OutputFile] (inputFile)*

Where:

 -h prints help and terminates

 -k is the number of ancestors to identify a type.

 -e is the number (0 – 1.0) for merging similar types (see Chapter 6.1).

 -o is the name of created output file. If not provided, standard output will

be used

 Any following parameters are considered to be names of input XML

documents

There must be provided at least one filename. All other parameters are optional.

12.2 Schematron Generator

The binary takes the inferred grammar (most likely from the iXSD part) and

generates Schematron schema out of it. The recognized parameters are:

Usage: [-h] [-i inputFile] [-o OutputFile]

Where:

 -h prints help and terminates

 -i specifies the location of inferred grammar. If not provided standard input

is used.

113

 -o specifies the location for the generated Schematron schema. If not

provided, schema is printed to standard output.

All parameters are optional.

114

13 Appendix - attachments

Example 12.1.1. Relax NG schema for inferred grammar

<?xml version="1.0" encoding="utf-8"?>

<grammar

 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes"

 xmlns="http://relaxng.org/ns/structure/1.0"

 xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0">

 <start>

 <element name="schema">

 <group>

 <element name="definitions">

 <zeroOrMore>

 <element name="definition">

 <ref name="definition"/>

 </element>

 </zeroOrMore>

 </element>

 <element name="elements">

 <zeroOrMore>

 <element name="element">

 <ref name="element"/>

 </element>

 </zeroOrMore>

 </element>

 </group>

 </element>

 </start>

 <define name="definition">

 <attribute name="name">

 <text/>

 </attribute>

 <ref name="regex"/>

 </define>

 <define name="regex">

 <choice>

 <element name="empty">

 <empty/>

115

 </element>

 <element name="element">

 <attribute name="name">

 <text/>

 </attribute>

 <optional>

 <attribute name="type">

 <text/>

 </attribute>

 </optional>

 </element>

 <element name="optional">

 <ref name="regex"/>

 </element>

 <element name="zeroOrMore">

 <ref name="regex"/>

 </element>

 <element name="oneOrMore">

 <ref name="regex"/>

 </element>

 <element name="choice">

 <group>

 <ref name="regex"/>

 <oneOrMore>

 <ref name="regex"/>

 </oneOrMore>

 </group>

 </element>

 <element name="group">

 <group>

 <ref name="regex"/>

 <oneOrMore>

 <ref name="regex"/>

 </oneOrMore>

 </group>

 </element>

 </choice>

 </define>

116

 <define name="element">

 <attribute name="ofType">

 <text/>

 </attribute>

 <element name="location">

 <ref name="location"/>

 </element>

 </define>

 <!-- Location serves to locate elements in XML document and to identify their type
without the need to define grammar for the whole XML-->

 <define name="location">

 <element name="parent">

 <choice>

 <group>

 <attribute name="name">

 <text/>

 </attribute>

 <optional>

 <ref name="location"/>

 </optional>

 </group>

 <element name="none">

 <empty/>

 </element>

 </choice>

 </element>

 </define>

</grammar>

Relax NG schema for our inferred grammar.

	1 Introduction
	1.1 Motivation
	1.2 Description of this thesis
	1.3 Structure of the work

	2 Used technologies
	2.1 XML
	2.1.1 Syntax
	Definition 2.1.1. Tag is a markup construct that begins with “<” and ends with “>”. There are three types of tags – a start tag, an end tag and an empty tag. The difference between these tags is the existence and location of the character “/”. Start t...
	Definition 2.1.2. Element is the building stone of any XML document. It begins with a start-tag and ends with a corresponding end-tag or it consists only of a single empty-tag. The names of the tags must match and is case-sensitive. The data (if any) ...
	Definition 2.1.3. Attribute is a name-value pair located within a start-tag or an empty-tag. The value must be always quoted.
	Definition 2.1.4. An XML document is well-formed if it contains exactly one root element and all elements are terminated within their parent element’s content. (They must be correctly nested)
	Definition 2.1.5. An XML document is valid if and only if it is well-formed and meets some other constraints. These constraints are defined by a schema language. The process of determination whether the document is valid is called validation.

	2.1.2 Namespaces
	Definition 2.1.6. Namespace is a context that holds information (e.g. schema) for logically connected data.
	Definition 2.1.7. Let us have a namespace NS. Declaration of such a namespace for an element and its content is done using an attribute in the following syntax: xmlns:NS=”URI” where URI points to the namespace declaration. Default namespace is defi...
	Definition 2.1.8. Let us have defined a namespace NS. To assign an XML element to that namespace we prefix the name of the element with the namespace. To explicitly set the namespace of an attribute we prefix the attribute’s name.

	2.2 XPath
	2.2.1 Syntax
	Definition 2.2.
	Definition 2.2.1. An XPath node is the smallest XML fragment addressable by XPath.
	Definition 2.2.2. An XPath axis is a relation that specifies what nodes will be selected from a current context.
	Definition 2.2.3. Node test tests the type or name of a node.
	Definition 2.2.4. Predicate allows for specifying more complex conditions for a node. It is written in square parenthesis and allows using of negation (not), and and or operators.
	Definition 2.2.5. Location step is a function that returns a set of nodes. It has the form of: axis::node-test predicate1 predicate2 … predicateN, where axis is an XPath axis and it is optional, the default axis is the child axis, node-test is requir...
	Definition 2.2.6. Location path is a sequence (can be empty) of location steps concatenated with “/”.
	Definition 2.2.7. Absolute location path is a location path that begins with a “/”. The context for absolute path is always the root node.
	Definition 2.2.8. Relative location path is a location path without “/” at the beginning. Relative path must have specified a context set of nodes.
	XPath abbreviations

	2.2.2 XPath 2.0

	2.3 DTD
	Definition 2.3.
	Definition 2.3.1. A pattern describes the allowed content model. Pattern is built from other patterns and from basic structures of a validation language. (e.g. attributes, elements). A pattern of an element is a definition of the allowed content model...

	2.4 XML Schema
	2.4.1 Syntax
	Definition 2.4.
	Definition 2.4.1. XSD file is an XML document with the root element schema and the namespace “http://www.w3.org/2001/XMLSchema”.
	Data types

	2.4.2 Summary of XSD

	2.5 RELAX NG
	2.5.1 XML Syntax
	Name classes
	Definition 2.5.
	Definition 2.5.1. Co-constraint or Co-occurrence constraint is a set of rules that control what markup (elements or attributes) can co-occur together. [5]

	2.5.2 Summary of RELAX NG

	2.6 Schematron
	2.6.1 Versions of Schematron
	Schematron 1.5
	ISO Schematron
	Schematron 1.6

	2.6.2 Language definition
	Phases and patterns
	Rules and assertions
	Definition 2.6.
	Definition 2.6.1. An Assertion, in the context of XML validation, is a statement about an XML fragment. A positive assertion succeeds if the statement of the assertion succeeds. A negative assertion succeeds if the statement fails.
	Diagnostic and value-of
	Variables and let construct

	2.6.3 Difference from other schema languages
	Advantages of Schematron
	Disadvantages of Schematron

	3 Basic Definitions
	3.1 Formal Languages Theory
	3.1.1 Basic definitions
	Definition 3.
	Definition 3.1.
	Definition 3.1.1. An alphabet ∑ is any finite set of symbols (or letters). Finite sequence of symbols over an alphabet ∑ is called a word. Empty word is denoted by λ.
	Definition 3.1.2. A formal language L over an alphabet ∑ is a subset of ∑*.
	Definition 3.1.3. Let us have a word w ∊∑ and i ∊ N, the i-th power of a word w. We denote ,𝑤-𝑖.as a sequence ,,𝑤𝑤𝑤…𝑤.-𝑖−𝑡𝑖𝑚𝑒𝑠.. More formally power is a function P(w,i), defined as: P(w,0) = λ P(w,1) = w P(w,n) = wP(w, n-1)
	Definition 3.1.4. A formal grammar G is tuple G=(N, T, S, P), where N is a finite set of non-terminal symbols, T ∊∑ is a finite set of terminal symbols that is disjoint from N, S ∈ N is the starting non-terminal and P is a finite set of production rul...
	Definition 3.1.5. The language of a formal grammar G=(N, T, S, P), denoted as L(G), is a set of all words over ∑ that are generated by repeated application of production rules to S until there are no non-terminal symbols left.
	Chomsky Hierarchy

	3.2 Regular expressions and finite automata
	Definition 3.2.
	Definition 3.2.1. Regular expression R is a sequence over an alphabet ∑ ⋃ {?, *, +, |, (,), “,”}, where ? is the zero-or-one operator, * is the zero-or-more operator, + is the one-or-more operator, | is the choice operator, “,” is a sequence operator...
	3.2.1 Non-deterministic finite state automata
	Definition 3.2.2. [26]Nondeterministic finite state automaton (NFA) is a tuple 𝐴=(𝑄, 𝑋, 𝛿, 𝑆, 𝐹) where Q is a finite non-empty set of states X is a finite non-empty alphabet 𝛿 is transition function 𝛿:𝑄×𝑋→𝑃(𝑄), where P(Q) is the power set ...
	Definition 3.2.3. [26]We say that a word 𝑤=,𝑥-1.,𝑥-2.…,𝑥-𝑛. is accepted by NFA 𝐴=(𝑄, 𝑋, 𝛿, 𝑆, 𝐹), if there exists a sequence ,𝑞-1.,,𝑞-2., …,,𝑞-𝑛+1. that ,𝑞-1. ∈𝑆 and ,𝑞-𝑖+𝑖.∈ 𝛿(,𝑞-𝑖., ,𝑥-𝑖.) for 𝑖=1..𝑛 and ,𝑞-𝑛+𝑖.∈ 𝐹.
	Definition 3.2.4. [26]Let us have two NFAs ,𝐴-1. and ,𝐴-2.. We say that the transition ℎ: ,𝐴-1.→,𝐴-2. is (automaton) homomorphism if and only if: ℎ,,𝑄-1..=,𝑄-2., that means ∀𝑞∈,𝑄-1. ∃𝑝∈,𝑄-2.: ℎ,𝑞.=𝑝 ∧ ∀𝑝∈,𝑄-2. ∃𝑞∈,𝑄-1.: ℎ,𝑞.=𝑝, ℎ,,�..

	Theorem 1 Automata equivalence

	3.3 Regular tree grammars and Hedges
	Definition 3.3.
	Definition 3.3.1. [11] A ranked alphabet is a couple (F, Arity) where F is a finite set and Arity is a mapping from F into ℕ. The arity of a symbol 𝑓∈𝐹 is Arity(f).
	Definition 3.3.2. A term t over an alphabet A and a set of variables X is defined in the form of: t := a(t1, t2,… tn), or t:=x where a ∈ A and t1, t2,… tn are terms over A, n>= 0 and x ∈ X. For ranked alphabet the number n is equal to Arity(a).
	Definition 3.3.3. A ground term g over an alphabet A is a term from Term(A, ∅). We denote set of all ground terms over A as GroundTerm(A).
	Definition 3.3.4. A tree t over an alphabet A is a subset of GroundTerm(A).
	Definition 3.3.5. [11] Regular tree grammar G over ranked alphabet is a tuple (S, N, F, R) where S is a starting symbol, S∊ N, Arity(S)=0 N is a finite set of non-terminals over a ranked alphabet F is a finite set of terminal symbols from a ranked alp...
	Hedges
	Definition 3.3.6. Regular hedge grammar G is a tuple (N, T, S, P) where: N is a finite set of non-terminals, T is a finite set of terminals over an unranked alphabet, S is a set of start symbols, where S ⊂ N, P is a finite set of production rules of t...
	Definition 3.3.7. [10] An interpretation I of a tree t against a regular tree grammar G is a mapping from each node e in t to a non-terminal denoted I(e), such, that: I(eroot) is a start symbol where eroot is the root of t, and for each node e and i...
	Definition 3.3.8. A tree t is generated by a regular tree grammar G if there is an interpretation of t against G. [10]
	Definition 3.3.9. A regular tree language is the set of trees generated by a regular tree grammar. [10]
	3.3.1 Local tree grammars and languages
	Definition 3.3.10. Let us have grammar G = (N, T, S, P). Let 𝑃1, 𝑃2 𝜖 𝑃 such that P1 has the form of X → a r1, P2 has the form of Y → a r2, where 𝑋 ≠𝑌. Then we say the non-terminals X and Y compete with each other.
	Definition 3.3.11. Local tree grammar is a regular tree grammar without competing non-terminals. Language generated by a local tree grammar is a local tree language.

	3.3.2 Single-Type tree grammars and languages
	Definition 3.3.12. [10] A single-type tree grammar is a regular tree grammar such that 1) for each production rule, non-terminals in its content model do not compete with each other, and 2) start symbols do not compete with each other.

	3.3.3 Regular tree automata
	Definition 3.3.13. A finite (ordered) tree t over ∑ as partial function t: N* → ∑ with domain written Pos(t) satisfying following: 1. Pos(t) is finite, nonempty and prefix-closed, 2. ∀𝑝 ∈𝑃𝑜𝑠,𝑡., ,𝑗 .𝑝𝑗 ∈𝑃𝑜𝑠,𝑡.}={1..𝑘} for some 𝑘≥0.
	Definition 3.3.14. [11] A nondeterministic finite hedge automaton (NFHA) over alphabet ∑ is a tuple A = (Q, ∑, Qf , P) where Q is a finite set of states, Qf ⊆ Q is a set of final states, and P is a finite set of transition rules of the following form:...
	Definition 3.3.15. [11] A run of NFHA A= (Q, ∑, Qf , P) on a tree t ∈ T(∑) is a tree r ∈ T(Q) with the same domain as t such that for each node p∈Pos(r) with a = t(p) and q=r(p) there is a transition rule a(R) → q of A with r(p1)…r(pn) ∈ R, where n d...
	Definition 3.3.16. [11] An unranked tree t is accepted by NFHA A if there is a run r of A on t whose root is labeled by a final state. The language L(A) of A is the set of all unranked trees accepted by A.
	Definition 3.3.17. [11] A deterministic finite hedge automaton (DFHA) is a finite hedge automaton A = (Q, ∑, Qf , P) such that for all rules a(R1) → q1 and a(R2) → q2 either 𝑅1 ∩𝑅2= ∅ or q1 = q2.

	4 Taxonomy
	4.1 DTD
	4.2 XML Schema
	4.3 Relax NG
	4.4 Schematron
	Analysis
	Summary

	5 Transforming hedges to Schematron schema
	5.1 Definitions
	Definition 4.
	Definition 5.
	Definition 5.1.
	Definition 5.1.1. We denote production set S to be the set of all non-terminals that occur in R.
	Definition 5.1.2. We denote the translate function 𝒕𝒓𝒂𝒏𝒔:𝑵→𝑻 that assigns a terminal to a non-terminal.

	5.2 Limitations
	5.3 Step 1 – Context generation
	5.3.1 Trivial solution
	Summary

	5.3.2 K-ancestors
	Summary

	5.3.3 Absolute path without a recursion
	Definition 5.2.
	Definition 5.3.
	Definition 5.3.1. We denote the derivation sequence DA for non-terminal A to be a sequence of non-terminals produced by production rules that transformed the starting non-terminal to the non-terminal A of the hedge h.
	Definition 5.3.2. We say that the derivation sequence DA contains a recursion if there is at least one non-terminal 𝑋∈,𝐷-𝐴. that occurs more than once in DA. We say the recursion is a simple recursion if there are no other non-terminals between any...
	Definition 5.3.3. We denote derivation sequence of terminals DTA for non-terminal A to be a sequence of terminals defined by the formula ∀𝑋∈,𝐷-𝐴.:𝑡𝑟𝑎𝑛𝑠(𝑋). Derivation sequence of terminals is a translated derivation sequence DA.

	5.3.4 Single recursion in production rules
	Definition 5.3.4. We denote the derivation regular expression DRA for non-terminal 𝑨∈𝑁 to be a word over Regex(N) that represents all derivation sequences of DA .
	Definition 5.3.5. We denote the derivation regular expression for terminals DTRA for non-terminal 𝑨∈𝑁 to be a word over Regex(T) – regular expression over terminals T of grammar G. DRTA is converted from DRA by the formula:
	∀𝑋 ∈ ,𝐷𝑅-𝐴. ⋀ 𝑋∈𝑁:𝑡𝑟𝑎𝑛𝑠,𝑋.
	∀𝑋 ∈ ,𝐷𝑅-𝐴. ⋀ 𝑋∉𝑁:𝑋.
	Definition 5.3.6. We say that derivation regular expression DRA contains only simple recursion if and only if all regular operators + and * in DRA are applied to a single symbol and not to a group.
	Definition 5.3.7. Let us have a derivation regular expression DR and an xml fragment F. We denote foreign elements foreign(DR, F) to be such elements that have to be removed from F in order to be matched by the DR.

	5.3.5 Recursion with deterministic content
	Analyses

	Theorem 1.
	Theorem 2.
	Theorem 3.
	Theorem 4.
	Theorem 5.
	1.
	2.
	3.
	Definition 5.3.8. We denote the lead terminal of the recursion DRA to be the first terminal of DRTA.
	Limitation
	Algorithm for deterministic loop
	Summary

	5.3.6 Context for each hedge of grammar

	5.4 Step 2 – Boundary rules
	5.5 Step 3 – order checks
	5.5.1 Basic idea of the algorithm
	5.5.2 Problem analysis
	Definition 5.4.
	Definition 5.5.
	Definition 5.5.1. Let us have a NFA = (𝑄, 𝑋, 𝛿, 𝑞, 𝐹). We denote the production set of the state 𝑝∈𝑄 as 𝑷𝒓𝒐𝒅𝒖𝒄𝒕,𝒑.=,𝑤∈,𝑋-∗..,𝛿-∗.,𝑞, 𝑤.=𝑝}.

	5.5.3 Algorithm
	Conditions generation
	Cycle handling
	Future optimizations

	5.6 Summary

	6 XML Schema inferring
	6.1 iXSD
	Definition 6.
	Definition 6.1.
	Definition 6.1.1. We denote an XML document k-local if any of its content models depends at most on the last k labels of ancestors.
	Definition 6.1.2. We denote single occurrence regular expression (SORE) to be a regular expression 𝑅∈𝑅𝑒𝑔𝑒𝑥,𝐿., where each symbol 𝑙∈𝐿 is present at most once.
	6.1.1 Algorithm
	Definition 6.1.3. We denote paths(f) for an XML fragment f to be a set of all labeled paths starting at root element in f.
	Definition 6.1.4. We denote k-path ,𝑝|-𝑘. of path p to be a path formed by the last k labels of path p. Two paths p and q are k-equivalent if ,𝑝|-𝑘.=,𝑞|-𝑘..
	Definition 6.1.5. We define strings(f, p) , where f is an XML fragment and p is a path, to be the a set of all names of element directly below an occurrence identified by the path p.
	Definition 6.1.6. Let A=(E,V) and B=(W, F) be two SOA. We define the normalized edit distance dist as follows: 𝑑𝑖𝑠𝑡,𝐴,𝐵.≔,,,𝑎,𝑏.∈𝐸−𝐹-,𝑠𝑢𝑝𝑝-𝐴.,𝑎,𝑏..-,,𝑎,𝑏.∈𝐸-,𝑠𝑢𝑝𝑝-𝐴.,𝑎,𝑏...+,,,𝑎,𝑏.∈𝐹−𝐸-,𝑠𝑢𝑝𝑝-𝐵.,𝑎,𝑏..-,,𝑎,𝑏.∈𝐹-,...
	Definition 6.1.7. An XSD is a triple D =(𝑇, 𝜌,𝜏) where T is a set of types, 𝜌:𝑇⟶𝑅𝑒𝑔𝑒𝑥(𝑋), where X is set of label names, and 𝜏 is mapping (𝑇×𝑋)⟶𝑇 that assign a type to a child element.
	Definition 6.1.8. For an XSD D = (𝑇, 𝜌,𝜏), let ,𝑒𝑙𝑒𝑚𝑠-𝐷.(𝑡) denote the set of all element names a for which 𝜏(𝑡,𝑎) is defined. The set ,𝑟𝑒𝑎𝑐ℎ-𝐷.,𝑠,𝑡. of pairs of types jointly reachable from (s, t) is the least set containing (s, t...
	Definition 6.1.9. The edit distance ,𝑑𝑖𝑠𝑡-𝐷.,𝑠,𝑡. between two inferred types is defined as ,𝑑𝑖𝑠𝑡-𝐷.,𝑠,𝑡.≔,𝑚𝑎𝑥-,𝑥,𝑦.∈,𝑟𝑒𝑎𝑐ℎ-𝐷.,𝑠,𝑡..𝑑𝑖𝑠𝑡(𝑠𝑜𝑎,𝑥., 𝑠𝑜𝑎,𝑦.).

	6.1.2 Summary

	7 Implemented solution
	7.1 Data limitations
	7.2 Usage of iXSD
	7.2.1 Inferred grammar

	7.3 Schematron schema generation
	7.4 Experimental data sets
	Data set 1
	Data set 2

	7.5 Conclusion

	8 Related work
	8.1 Inferring xml schema definitions from xml data
	8.2 Even an Ant Can Create an XSD
	Definition 7.
	Definition 8.
	Definition 8.1.
	Definition 8.1.1. A regular language L is k-contextual, if there exists a finite automaton A s.t. L = L(A) and for any two states pk, qk of A and all input symbols a1a2…ak: if there are two states p0 q0 of A s. t. 𝛿,,𝑝-0.,𝑎-1.,𝑎-2.…,𝑎-𝑘..=,𝑝-𝑘...
	Definition 8.1.2. A regular language L is k-contextual, if there exists a finite automaton A s.t. L = L(A) and for any two states pk, qk of A and all input symbols a1a2…ak: if there are two states p0 q0 of A s. t. 𝛿,,𝑝-0.,𝑎-1..=,𝑝-1., 𝛿,,𝑝-1.,𝑎...

	8.3 Automatic Construction of an XML Schema for a Given Set of XML Documents
	8.4 Optimization and Refinement of XML Schema Inference Approaches
	8.5 Efficient Detection of XML Integrity Constraints

	9 Conclusion
	9.1 Future work

	10 Bibliography
	11 Appendix – Content of the CD
	12 Appendix Program usage
	12.1 iXSD
	12.2 Schematron Generator

	13 Appendix - attachments

