
How to Store XML Data
Technical Report No.: 2010/2

Dept. of Software Engineering
Faculty of Mathematics and Physics

Charles University in Prague
November 2010

Pavel Loupal1, Irena Mlýnková2, Martin Nečaský2, Karel Richta2, Michal Valenta1

1 Department of Software Engineering, Faculty of Information Technology,
Czech Technical University in Prague, Czech Republic

{pavel.loupal,michal.valenta}@fit.cvut.cz
2 Department of Software Engineering, Faculty of Mathematics and Physics,

Charles University in Prague, Czech Republic
{mlynkova,necasky,richta}@ksi.mff.cuni.cz



How to Store XML Data?

Pavel Loupal1, Irena Mlýnková2, Martin Nečaský2, Karel Richta2, Michal Valenta1

1 Department of Software Engineering, Faculty of Information Technology,
Czech Technical University in Prague, Czech Republic

{pavel.loupal,michal.valenta}@fit.cvut.cz
2 Department of Software Engineering, Faculty of Mathematics and Physics,

Charles University in Prague, Czech Republic
{mlynkova,necasky,richta}@ksi.mff.cuni.cz

Abstract. The article deals with the methods how to store XML data. We de-
scribe possibilities how to store XML data in relational databases, because rela-
tional systems are widely used. But XML data are trees, not tables, so the main
attention of this article is oriented to native XML databases. We describe general
properties of such sort of databases, and explain possible solutions on the two
experimental native XML database management systems – ExDB and CellStore.

1 Introduction

Without any doubt the eXtensible Markup Language (XML) [14] is currently one of the
most popular formats for data representation. The wide popularity naturally invoked an
enormous endeavor to propose faster and more efficient methods and tools for man-
aging and processing XML data. Soon it was possible to distinguish several different
directions based on various storage strategies. The two most popular ones are methods
which store and process XML data using an (object-)relational database management
system ((O)RDBMSs) – we speak about so-called XML-enabled databases – and native
XML approaches that use special indices, numbering schemas, and/or structures suit-
able particularly for tree structure of XML data. Expectably, the highest-performance
techniques are the native ones, since they are proposed particularly for XML pro-
cessing and do not need to artificially adapt existing structures to a new purpose. On
the other hand, the most practically used ones are methods which exploit features of
(O)RDBMSs. The reason for their popularity is that (O)RDBMSs are still regarded as
universal and powerful data processing tools which can guarantee a reasonable level of
reliability and efficiency.

Contribution. In this paper we are trying to compare different approaches to the
problem of storing XML data. Either we can use existing resources and DBMSs (Data
Base Management Systems), or we can create new tools. DBMSs are complex systems,
so creating new XML-native systems has meaning only if we bring a new options and
a new quality. For this purpose it is necessary to carry out some experiments, to be able

? This work was partially supported by the Czech Science Foundation (GAČR), grants no.
201/09/0990 and 201/09/P364, and also by the Ministry of Education, Youth and Sports under
Research Program no. MSM0021620838.



How to Store XML Data 3

to compare different approaches. There exists two projects of the native XML DBMS
- ExDB and CellStore. Both projects are based on similar ideas, but use a different
environment - ExDB uses Java, CellStore uses Smalltalk.

Outline. The rest of the text is structured as follows: Section 2 introduces the fea-
tures and (dis)advantages of XML-enabled databases. Section 3 deals with the basic
features of XML-native database management systems. Section 4 contains a description
of the ExDB native XML DBMS, and section 5 contains a description of the CellStore
DBMS. Finally, conclusions are attached, with possible future research directions.

2 XML-Enabled Databases

In general the basic idea of XML processing based on an (O)RDBMS is relatively sim-
ple. The XML data are firstly stored into relations – we speak about so-called XML-to-
relational mapping. Then, each XML query posed over the data stored in the database is
translated to a set of SQL queries (which is usually a singleton). And, finally, the result-
ing set of tuples is transformed to an XML document. We speak about reconstruction
of XML fragments.

Consequently, the primary concern of the database-oriented XML techniques is the
choice of the way XML data are stored into relations. On the basis of exploitation
or omitting information from XML schema we can distinguish so-called generic and
schema-driven methods. From the point of view of the input data we can distinguish
so-called fixed methods which store the data purely on the basis of their model and
adaptive methods, where also sample XML documents and XML queries are taken into
account to find more efficient storage strategy. And there are also techniques based on
user involvement which can be divided to user-defined and user-driven, where in the
former case a user is expected to define both the relational schema and the required
mapping, whereas in the latter case a user specifies just local mapping changes of a
default storage strategy.

Approaching the aim form another point of view the SQL standard has been ex-
tended by a new part SQL/XML [29] which introduces new XML data type and op-
erations for XML and relational data manipulation within SQL queries. It involves
functions such as, e.g. XMLELEMENT for creating elements from relational data, XML-
ATTRIBUTES for creating attributes, XMLDOCUMENT or XMLFOREST for creating
more complex structures, XMLNAMESPACES, XMLCOMMENT or XMLPI for creating
more advanced parts of XML data, XMLQUERY, XMLTABLE or XMLEXISTS for query-
ing over XML data using XPath [21, 10] or XQuery [12], etc.

As we have mentioned in the introduction, the native XML databases differ from the
XML-enabled ones in the fact that they do not adapt an existing technology to XML, but
exploit techniques suitable for XML tree structure. Most of them use a kind of number-
ing schema, i.e. an index that captures the XML structure. Examples of such schemas
are Dietz’s encoding [23], interval encoding [38], prefix encoding [22], ORDPATHS
[44] or APEX [19]. And such indices can be also exploited in relational databases to
optimize query processing.



4 Pavel Loupal, Irena Mlýnková, Martin Nečaský, Karel Richta, Michal Valenta

2.1 Generic vs. Schema-Driven Methods

Generic mapping methods [25, 35] do not use (possibly) existing XML schema of stored
XML documents. They are usually based on one of two approaches – creating a general
(O)R schema into whose relations any XML document regardless its structure can be
stored, or a special kind of (O)R schema into whose relations only a certain collection
of XML documents having a similar structure can be stored. The former methods model
an XML document as a tree T according to e.g. the DOM model [4], while the latter
reflect its special "relational" structure.

A typical representative of generic mapping is a group of methods called structure-
centered mapping [35]. It considers all nodes of the tree T having the same structure
defined as a tuple v = (t, l, c, n), where t is the type of the node (e.g. element, attribute,
text,...), l is the node label, c is the node content and n ∈ {1, ..., n} is the list of suc-
cessor nodes. The paper considers the problem how to realize mapping of the lists of
successor nodes. It proposes several kinds of storage strategies focusing on speeding
up the access performance. In Foreign Key Strategy each tree node v is simply mapped
to a tuple with a unique identifier and a foreign key reference to the parent node. The
method is quite simple and the stored tree can easily be modified. Nevertheless, its dis-
advantage is evident – the retrieval of the data involves many self-join operations. In
DF Strategy, conversely, each node of T is given an index value (a couple of minimum
and maximum DF values), which represents its position in T . The DF values are de-
termined when traversing T in a depth first (DF) manner. A counter is increased each
time another node is visited. If a node v is visited for the first time, its minimum DF
value vmin is set to the current counter value. When all child nodes have been visited,
the maximum DF value vmax is set to the current counter value (see Figure 1).

Fig. 1. An example of a generic-tree

Using DF values relationships of nodes (e.g. sibling order, element-subelement rela-
tionship, etc.) can easily be determined just by comparisons. For example, a node v is
a descendant of node u, if umin < vmin and vmax < umax. Moreover, as the nodes can
be totally ordered according to DF values, retrieving a part of a document is linear. The
weak point of this strategy is document update – in the worst case it requires to update
DF values of all nodes of the tree.

On the other hand, schema-driven mapping methods [49, 48] are based on an ex-
isting schema S1 of stored XML documents, written in DTD [14] or XML Schema
[51, 11], which is mapped to (O)R database schema S2. The data from XML docu-
ments valid against S1 are then stored into relations of S2. The purpose of these meth-



How to Store XML Data 5

ods is to create optimal schema S2, which consists of reasonable amount of relations
and whose structure corresponds to the structure of S1 as much as possible. All of these
methods try to improve the basic mapping idea “to create one relation for each element
composed of its attributes and to map element-subelement relationships using keys and
foreign keys”.

Schema-driven mapping methods have several common basic principles resulting
from information stored in the XML. The most important ones are:

– Subelements with maxOccurs = 1 are (instead of to separate tables) mapped to
tables of parent elements (so-called inlining).

– Elements with maxOccurs > 1 are mapped to separate tables (so-called outlin-
ing). Element-subelement relationships are mapped using keys and foreign keys.

– Alternative subelements are mapped to separate tables (analogous to the previous
case) or to one universal table (with many nullable fields).

– If it is necessary to preserve the order of sibling elements, the information is mapped
to a special column.

– Elements with mixed content are usually not supported.
– A reconstruction of an element requires joining several tables.

The best-known and probably the first representative of schema-driven mapping
methods is a group of three algorithms for mapping a DTD to relational schema called
Basic, Shared, and Hybrid [49]. The main idea, further used in all the successive ap-
proaches, is based on a definition of a directed graph, so-called DTD graph, which
represents the processed DTD. Nodes of the graph are elements (which appear exactly
once), attributes, and operators (which appear as many times as in the DTD). Edges
of the graph represent element-attribute, element-subelement or element-operator and
operator-subelement relationships (see Figure 2).

Fig. 2. An example of a generic-tree

The algorithms try to gradually improve the idea “to create one relation for each
element” and they differ according to the amount of redundancy they may cause.

2.2 Fixed vs. Adaptive Methods

All the previously described approaches represented so-called fixed methods, i.e. meth-
ods which provide the target mapping regardless the target application. Adaptive meth-
ods [34, 13, 58, 60] focus on the idea that each application, represented using sample



6 Pavel Loupal, Irena Mlýnková, Martin Nečaský, Karel Richta, Michal Valenta

data and operations (i.e. queries), requires a different storage strategy to achieve optimal
efficiency. So before they provide the resulting mapping, they analyze the given sample
data and operations and adapt the target schema to them.

A representative of flexible schema-driven mapping methods is an algorithm pro-
posed in system LegoDB [13]. First the method defines a fixed mapping of XML Schema
structures (for processing simplicity rewritten into syntactically simpler, but semanti-
cally equivalent p-schemas) to relations. The flexibility is based on the idea to explore
a space of possible XML-to-relational mappings and to select the best one according
to given statistics including information about a sample set of XML documents and
queries. In order to select the best mapping the system in turns applies the following
two steps to the source p-schema, until a good result is achieved:

1. Any possible XML-to-XML transformation is applied to the p-schema.
2. XML-to-relational transformations are applied to the new p-schema and against the

resulting relational schema the given queries are estimated.

As the space of possible p-schemas can be large (possibly infinite), the paper also
proposes a greedy evaluation strategy that explores only the most interesting subset.
The XML-to-XML transformations used in the algorithm are: inlining/outlining, union
factorization/distribution, repetition merge/split, wildcards rewriting, etc. The XML-
to-relational transformations are similar to those described in the previously mentioned
fixed methods.

2.3 User-Defined vs. User-Driven Methods

Both user-defined and user-driven approaches are based on the same idea as adaptive
methods, i.e. to provide a target schema which is optimal for a particular application.
However they achieve this aim using a different strategy – “to leave the whole pro-
cess in hands of a user”. User-defined [6] mapping methods were the first approaches
supported by the commercial systems, probably due to simple implementation . This
approach requires that the user first defines S2 and then expresses required mapping be-
tween S1 and S2 using a system-dependent mechanism, e.g. a special query language,
a declarative interface, etc. At first sight the idea is correct – users can decide what suits
them most and are not restricted by features and especially disadvantages of a particu-
lar technique. The problem is that such approach assumes users skilled in two complex
technologies – (object-)relational databases and XML. Furthermore, for more complex
applications the design of an optimal relational schema is generally an uneasy task.

At present, most of existing systems [3, 1, 2] support some kind of user-driven
mapping [8, 7, 42] where the effort a user is expected to make is lowered. The main
difference is that the user can influence a default fixed mapping strategy using annota-
tions which specify the required mapping for particular schema fragments. The set of
allowed mappings is naturally limited but still enough powerful to define various map-
ping strategies. Each of the techniques is characterized by the following four features:

– an initial XML schema Sinit,
– a set of allowed fixed XML-to-relational mappings {f i

map}i=1,...,n,



How to Store XML Data 7

– a set of annotations A, each of which is specified by name, target, allowed values,
and function, and

– a default mapping strategy fdef for not annotated fragments.

Probably the first approach which faces the mentioned issues is proposed in sys-
tem ShreX [24]. It allows users to specify the required mapping and it is able to check
correctness and completeness of such specifications and to complete possible incom-
pleteness. The mapping specifications are made by annotating the input XML Schema
definition with a predefined set of annotations, i.e. attributes from namespace called
mdf. The set of annotating attributes A is listed in Table 1.

Attribute Target Value Function

outline attribute or
element

true,
false

If the value is true, a separate table is
created for the attribute / element. Other-
wise, it is inlined to parent table.

tablename attribute,
element, or
group

string The string is used as the table name.

columnname attribute, ele-
ment, or sim-
ple type

string The string is used as the column name.

sqltype attribute, ele-
ment, or sim-
ple type

string The string defines the SQL type of a col-
umn.

structurescheme root element KFO,
Interval,
Dewey

Defines the way of capturing the structure
of the whole schema.

edgemapping element true,
false

If the value is true, the element and all
its subelements are mapped using Edge
mapping.

maptoclob attribute or
element

true,
false

If the value is true, the element / at-
tribute is mapped to a CLOB column.

Table 1. Annotation Attributes for ShreX

As we can see from the table, the set of allowed XML-to-relational mappings {f i
map}i=1,...,n

involves inlining and outlining of an element or an attribute, Edge mapping [25] strat-
egy, and mapping an element or an attribute to a CLOB column. Furthermore, it enables
to specify the required capturing of the structure of the whole schema using one of the
following three approaches:

– Key, Foreign Key, and Ordinal Strategy (KFO) – each node is assigned a unique
integer ID and a foreign key pointing to parent ID, the sibling order is captured
using an ordinal value

– Interval Encoding – a unique {start,end} interval is assigned to each node
corresponding to preorder and postorder traversal entering time



8 Pavel Loupal, Irena Mlýnková, Martin Nečaský, Karel Richta, Michal Valenta

– Dewey Decimal Classification – each node is assigned a path to the root node de-
scribed using concatenation of node IDs along the path

As side effects can be considered attributes for specifying names of tables or columns
and data types of columns. Not annotated parts are stored using user-predefined rules,
whereas such mapping is always a fixed one.

3 Native XML Databases

A Native XML Database System (NXDBMS) is a database system whose internal struc-
ture is especially designed for XML data management. XML data are stored in a format
which is maximally adapted according to specific characteristics of XML data – hierar-
chical and irregular structure potentially mixed with unstructured data. Advantages of
NXDBMS in comparison to storing XML data into RDBMS are obvious. An XML doc-
ument may be stored "as it is" without complicated transformation into relational tables
and, therefore, may be easily retrieved from the system in its original form. Moreover,
NXDBMS directly supports XML query languages such as XPath and XQuery and,
therefore, it is not necessary to translate XML queries to SQL queries.

On the other hand, there are also some fundamental disadvantages of NXDBMS we
need to count with. In comparison to RDBMS technologies, NXDBMS technologies
are relatively new and, therefore, not so well developed. Therefore, NXDBMSs rarely
provide a support for, e.g. transactions or advanced query optimizers.

In opposite to relational queries, XML queries deal with not only data items of
stored XML documents but also structural relationships between their XML nodes.
Therefore, NXDBMS can exploit well-known query evaluation algorithms from the
theory of relational databases. However, they also need novel algorithms for evaluating
structural queries. The most important kind of these algorithms widely studied in cur-
rent literature are so called structural join algorithms. In this section, we will describe
the most important representatives of these algorithms in this section. Before this we
introduce the notion numbering schema which is crucial for structural joins.

3.1 Numbering schemas

Obviously, the amount of XML data might be extensive and NXDBMS cannot store it
all in the main memory. It is, therefore, necessary to identify the stored XML nodes so
that we can locate them on the disc. The identification system is generally called num-
bering schema. In this section, we briefly describe the most important ones introduced
in recent literature.

The simplest numbering schema is sequential numbering schema. It numbers XML
nodes starting from 1 and each new XML node is assigned with the last assigned iden-
tifier increased by 1. The advantage of this numbering schema is its simplicity. It does
not require any complex management by the database system. On the other hand, it
does not provide any assistance to the database system when evaluating queries. As we
have noticed, XML queries are not evaluated only on the base of data values of XML
nodes but also on the base of structural relationships between them. The problem is that



How to Store XML Data 9

U

U V U

V V V

W

V V

(1,10)

(2,2)

(3,1)

(4,6)

(5,4) (7,5)

(6,3)

(8,9)

(9,7) (10,8)

U

U V U

V V V

W

V V

1

1.1

2

2.1 2.2

2.1.1

3

3.1 3.2

(a) (b)

Fig. 3. An example of XML document with nodes numbered by (a) Dietz and (b) Dewey encoding

sequential numbering schema does not provide such kind of information. Having num-
bers of two XML nodes, we need to traverse the XML document to find out whether,
e.g. the nodes are in the ancestor/descendant relationship.

To solve the problem with structural information, various kinds of numbering sche-
mas, called structural numbering schemas were introduced in the literature. They are
designed to quickly recognize whether two given XML nodes are in the ancestor/descen-
dant relationship. Formally, a structural numbering schema is a pair (p, L) where L is a
function which assigns each XML node v with a number L(v) and p is a predicate such
that p(L(u), L(v)) = true iff u is an ancestor of v.

An example of a structural numbering schema is Dietz schema. It assigns each XML
node v with a pair L(v) = (pre(v), post(v)) where pre(v) returns the order of v in the
pre-order traversal of the XML tree while post(v) returns its order in the post-order.
Having two nodes u and v, p(L(u), L(v)) = true iff pre(u) < pre(v) and post(u) >
post(v). In other words, u is an ancestor of v iff u appears earlier than v in the pre-order
traversal than v and, vice versa, later than v in the post-order traversal.

As shown, Dietz schema allows for deciding the structural ancestor/descendant re-
lationship effectively. A problem arises when management of identifiers comes to the
scene - inserting a new XML node into an XML tree affects Dietz identifiers of the
ancestors of the new XML node as well as all XML nodes which are after it in the pre-
order traversal. These affected nodes must be renumbered which may be a non-trivial
and time-consuming task. A solution to this problem is to use interval schema. It as-
signs each XML node v with an interval L(v) = (start(v), end(v)) such that L(v) is
contained in the interval L(u) for each ancestor u of v and two intervals of any siblings
nodes do not overlap. The intervals may be "blew up" so that there is a space for new
incoming nodes without the necessity of renumbering the existing nodes.

Another partial solution to the node insertion problem provides Dewey encoding. It
assigns each non-root XML node v with a code L(v) = L(u).position(v) where u is
the parent of v and position(v) is the position of v among the children of u. The root
XML node is assigned with an empty code. Insertion of a new XML node affects the
codes of following siblings and their descendants which is better then in the case of



10 Pavel Loupal, Irena Mlýnková, Martin Nečaský, Karel Richta, Michal Valenta

previous schemas. However, the resulting codes are longer and with a variable length.
Solution to this problem may be found in [9].

A sample XML document with nodes numbered by Dietz and Dewey encoding
schemas is depicted in Fig. 3.

3.2 Structural Join Algorithms

As we have outlined, NXDBMS strongly depends on ability to evaluate queries which
query structural relationships between nodes. For example, an XPath query is typically
a structural query. Its simplest form searches for XML elements or attributes with spec-
ified names and with specified structural relationships between them. In this section, we
consider only ancestor-descendant (AD) and parent-child (PC) relationships.

When evaluating a structural query, the query is firstly represented as a treeQ called
twig pattern. Its nodes have names and represent the queried nodes in XML documents.
Its edges represent the required structural relationships and are, therefore, of two types:
AD and PC. A structural join algorithm then searches for all occurrences ofQ in a given
XML tree (or XML trees). An occurrence of a query Q with nodes q1, . . ., qn is a tuple
u1, . . . , un of XML nodes so that ui has the same name as qi and each pair ui and uj

is a PC or AD structural relationship iff there is an edge of that type between qi and qj ,
respectively.

In general, each structural join algorithm works as follows. It assigns each node
q in the twig pattern Q with an ordered stream of XML nodes from the input XML
document. The sequence contains only XML nodes with the name equal to the name
of q. The algorithm then sequentially reads the input streams and searches for twig
pattern occurrences. It is clear that a crucial property of any structural join algorithm
is its ability to determine whether two given nodes are in PC or AD relationship. This
might be achieved easily by selecting a suitable numbering schema, e.g. some of the
ones introduced in the previous section.

Occurrences of a twig pattern in an XML documents may be searched in various
ways. Each way has significant advantages but drawbacks as well. The majority of
approaches firstly separate Q into smaller components, evaluate these components in-
dividually and then merge the intermediate results into the final output. We distinguish
two groups of such approaches. Approaches in the first group evaluate each edge in Q
separately. This group is called binary structural join algorithms as each edge specifies
a binary structural relationship. Approaches in the second group evaluate each root-
to-leaf path in A separately. This group is called holistic structural join algorithms.
Finally, there are also algorithms which evaluate Q as a whole. This group is called
one-way structural join algorithms.

Binary Structural Join Algorithms The simplest idea to evaluate a twig pattern Q is
to evaluate each edge of Q separately and then merge the intermediate solutions to the
final solution. In this part, we provide an overview of methods based on this idea. They
are, in general, called binary structural join algorithms. The approaches concentrate
solely on the first part of the problem, i.e. finding the intermediate solutions. Merging
intermediate solutions is not so interesting since it can be solved by classical merging



How to Store XML Data 11

algorithms. Historically, binary structural joins algorithms represent the oldest and al-
ready obsolete algorithms. On the other hand, their principles have strongly influenced
state-of-the art holistic structural join algorithms.

The first attempt in this area was the article [59]. It showed that an algorithm spe-
cially designed for twig query matching can significantly outperform classical relational
join algorithms. In [5], Al-Khalifa et al. introduced a binary structural join algorithm
STACK-TREE which put basics of many later algorithms. It sequentially reads two in-
put streams Tu and Tv associated with two nodes qu and qv connected by an evaluated
edge e from Q. For the current XML nodes Cu and Cv from the input sequences, it
decides whether they are in the required PC or AD relationship. If so, it puts the found
pair on the input. For a given XML node from Tu the algorithm searches for all nodes
in Tv which form an occurrence. The problem occurs when there are two nodes u1 and
u2 in Tu s.t. u1 is an ancestor of u2. In that case, all XML nodes from Tv which form
an occurrence with u1 might also form an occurrence with u2 and, therefore, a part of
Tu must be accessed read twice. Therefore, Al-Khalifa et al. proposed to use a stack
to cache nodes from Tu which are in the AD relationship. This prevents from repeated
traversal of Tu.

The authors showed that STACK-TREE is time and space optimal in case of twig
patterns with AD edges only. If a twig pattern contains also a PC edge, the time com-
plexity degrades. This is because STACK-TREE can join XML nodes only on the AD
relationship and then, it must check whether they are also in the PC relationship. How-
ever, the optimal algorithm would skip the nodes which are not in PC relationship with-
out joining them. This problem was partially solved for holistic structural join algo-
rithms and we will describe the solutions later in this section.

Another disadvantage of STACK-TREE is that it may read XML nodes in Tu or
Tv which cannot form an occurrence. It reads them from the disc and skips them. It
would be more optimal if it would not be necessary to access them at all. This can be
achieved by using a suitable indexing structure. There were introduced several solutions
which allow to skip XML nodes in Tu to the first ancestors of Cv and, vice versa, to
skip XML nodes in Tv to the first descendant of Cu. The first attempt in this area was
using a B+-tree [18]. More optimal solutions are XR-tree [30] and XB-tree [15]. These
indexing techniques may be used also for holistic structural join algorithms we discuss
in the next part of this section.

Holistic Structural Join Algorithms All binary structural join algorithms can solve
only a binary relationship which is usually part of a more complex twig pattern. How-
ever, only parts of the intermediate solutions of the binary relationships contribute to
the final solution of the whole twig pattern. Therefore, these algorithms can produce
unusable intermediate results. This behavior can be partly minimized by the selection
of the appropriate order of the joins [57]. However, such a solution needs expensive
statistics about the XML document.

This problem is partly solved by another family of structural join algorithms called
holistic structural join algorithms. In general, we can identify the following phases in
each holistic structural join algorithm. Note that the algorithms in this family still do
not evaluate a twig pattern as a whole. There is the decomposition of the twig pattern



12 Pavel Loupal, Irena Mlýnková, Martin Nečaský, Karel Richta, Michal Valenta

to root-to-leaf paths which can produce intermediate occurrences that do not contribute
to the final solution. However, the intermediate solutions are much smaller than in case
of binary structural join algorithms. Moreover, there have been proposed various tech-
niques that further minimize them.

In [15], Bruno et al. proposed two holistic structural join algorithms called PATH-
-STACK and TWIG-STACK. This was the first work which introduced the family of
holistic structural joins. PATH-STACK directly extends binary STACK-TREE. More
specifically, it extends the idea of caching intermediate XML nodes which possibly
contribute to any occurrence of the twig pattern. The caching is realized in a stack Sq

assigned to each twig pattern node q. The algorithm reads all input streams sequentially
and stores those which are in the AD relationship on the corresponding stacks similarly
to PATH-STACK. When an XML node corresponding to a leaf node of the twig pattern
is found, occurrences containing this XML node are reconstructed by combining XML
nodes on the stacks.

PATH-STACK is optimal when evaluating a twig pattern without branching nodes
(i.e. a twig pattern which has a form of path). TWIG-STACK introduces an optimiza-
tion. When an XML node corresponding to a twig pattern node q is found it is not
directly put on Sq . Instead, TWIG-STACK checks whether it is in AD relationship with
all current nodes in the input streams corresponding to twig pattern child nodes of q.
This prevents from processing some XML nodes which cannot participate in any oc-
currence. TWIG-STACK is optimal when evaluating twig patterns with AD edges only.

Later there appeared extensions to TWIG=STACKwhich optimize it, e.g. TSGene-
ric [31], TWIG-STACK-LIST [41], or TWIG-BUFFER [37]. These extensions pro-
vide various techniques which allow for evaluation of some twig patterns which contain
PC edges on specific positions. However, they still cannot evaluate a general twig pat-
tern with PC edges on arbitrary position optimally.

One-Way Structural Join Algorithms In [16], another family of structural join al-
gorithms was introduced. It overcomes the main drawback of holistic structural join
algorithms - the necessity to decompose a given twig pattern to root-to-leaf paths and
merging their intermediate results. More specifically, the work introduces algorithm
TWIG2STACK which extends the idea of stacks by so called hierarchical stacks. It is
then able to store a partial occurrence of a twig pattern as a whole on the hierarchical
stacks without decomposition to root-to-leaf paths. The advantage is clear - the merging
phase is reduced. However, it might be necessary to hold the whole XML document in
the hierarchical stacks.

Later algorithm TWIG-LIST [47] was introduced. It optimizes TWIG2STACK by
replacing hierarchical stacks with direct pointers to input streams of XML nodes. This
reduces the space complexity and allows for easier management. There has also ap-
peared further optimizations in [32] or [36] which are based on combining one-way
structural join algorithms with holistic ones.

3.3 Indexing Structures

The effectiveness of any structural join algorithm depends on the way how the data
is stored and indexed by NXDBMS. As we have already showed, each structural join



How to Store XML Data 13

U

U V

V V

W

(1,10)

(2,2), (8,9)

(3,1), (9,7), 

(10,8)

(4,6)

(5,4), (7,5)

(6,3)

Fig. 4. An example of DataGuide

algorithm requires an ordered input stream of XML nodes of a given name associated
with each twig pattern node. It is therefore necessary to store the XML nodes on the disc
in a way which allows to retrieve them in a form of the input streams. In this section,
we will discuss an index structure called DataGuide which is designed for this. We will
also discuss some alternative indexing techniques which help in particular situations
when evaluating XML queries.

DataGuide DataGuide was one of the first NXDBMS=specific indexing structures. It
allows for indexing structure of XML documents. More specifically, a DataGuide of an
XML document is a tree. Its each node represents a single root-to-leaf path of XML
node names in the XML document. Its each edge represents that XML nodes on the
path represented by the parent are parents of the XML nodes on the path represented by
the child. A DataGuide for the sample XML document from Fig. 3 is depicted in Fig. 4.

DataGuide indexes for each of its nodes a sequence of XML nodes on the path repre-
sented by the node. For each indexed XML node, the DataGuide indexes the identifica-
tion number assigned to the XML node by chosen numbering schema. It then allows for
providing structural join algorithms with required input streams of XML nodes. In the
basic version, XML nodes with a given name are put into a common stream. However,
DataGuide allows for more advanced streaming schemas. For example, it may provide
a separate stream for each of its nodes. In other words, XML nodes targeted by the
same root-to-leaf path of names are put into a common stream. As shown in [17], this
improves the time complexity of structural join algorithms when evaluating twig pattern
PC edges. It is also possible to reduce the space complexity by stream compression as
shown in [9].

Covering Indexes Covering index is an index which allows for evaluating queries of
a particular type without accessing source data on the disc. This kind of indexes may
be also found in RDBMS but there are also equivalents in NXDBMS. For example, a
DataGuide is a covering index for queries whose twig patterns do not contain branching
nodes. These queries may be evaluated directly by searching for respective node in the
DataGuide and returning the associated XML node stream.



14 Pavel Loupal, Irena Mlýnková, Martin Nečaský, Karel Richta, Michal Valenta

Having a query whose twig pattern contains branching nodes, we can separate the
twig pattern to root-to-leaf paths, evaluate them using the DataGuide and then join
them using a structural join algorithm. Another possibility is to exploit a stronger index
which covers not only twig patterns in a form of paths but twig patterns in general (i.e.
with branching nodes). This index is called F&B index [33]. F&B index is a DataGuide
constructed over source XML documents complemented with reversed edges of the
original source edges.

In practice, F&B index may be, however, extremely large – even larger then original
data. On the other hand, the authors show in [33] that F&B is the smallest possible
index covering queries whose twig patterns contain branching nodes. The problem with
the size of F&B index may be therefore solved only by restricting the index to cover
only specific kinds of queries. For example, we might index only selected paths in
the XML documents and index them by an F&B index. This is analogical to indexing
tables in RDBMS. Here, it is common practice to index only selected table columns
instead all columns and their combinations. It is up to the database administrator to
decide what paths should be indexed. The overall performance of NXDBMS therefore
depends on the chosen compromise between the number of indexed paths and the size
of the covering index.

Adaptive Indexes Another solution to the problem of optimization of evaluating queries
with twig patterns with branching nodes which moreover decreases the size of the re-
sulting index is so called adaptive indexation. An adaptive method indexes primarily
some basic structural relationships and extends them in runtime according to incoming
queries.

For example, the APEX index [20] primarily indexes only edges in a DataGuide of
a given set of XML documents. In other words, it indexes only which pairs of XML
nodes are connected by a edge corresponding to an edge of the DataGuide. Then, it
extends the index according to evaluated queries by concatenating the edges to longer
paths. A path is indexed by the APEX index only when the ratio of all user queries
containing the path to all use queries exceeds a given threshold.

An advantage is that the system automatically reflects actual user queries. On the
other hand, when users start pushing different kind of queries, the index cannot be used.

The best way, therefore, is to combine the presented approaches. I.e. to index a set
of paths using a fixed F&B index and then also use an adaptive index for other, not
indexed paths.

4 ExDB Native XML DBMS

ExDB (Experimental XML DataBase) [39] is a native XML database management sys-
tem being developed at the Czech Technical University in Prague by students of Faculty
of Electrical Engineering and Faculty of Information Technology. The primary goal of
the project is to prototype a working system based upon the XML-λ Framework – a
functional framework for XML and thus confirm its suitability for such use case. The
framework and related research activities are described in detail in Loupal’s Ph.D. the-
sis [40].



How to Store XML Data 15

4.1 Concept and Architecture of the System

The main design goals have been set as follows: (1) design and develop a modular and
configurable system, (2) target the system more as a educational project, hence take care
more about system quality, stability and code readability instead of chasing for superior
performance results. We claim that such approach ensures long-term maintainability of
the code base but nevertheless can bring up an efficient and stable database system.

The modular design is shown in Figure 5. That sort of modularity allows us to dis-
tribute relatively independent assignments to particular developers; new features can be
afterwards designed and programmed in parallel and ongoing integration is not compli-
cated.

ExDB Deployment View

ExDB ServerClient

«interface» TCP/IP

«system facility»

TCP/IP Stack
«interface» TCP/IP

«ExDB module»

ConnectionManager

«ExDB module»

TransactionManager

«ExDB module»

StorageManager

«executable»

ExDB Core

Server

Configuration

«ExDB module»

QueryProcessor

«ExDB module»

ACL Management

«system facility»

TCP/IP Stack

ExDB Client

«flow»

«flow»

«flow»

Fig. 5. The ExDB Architecture

Let us provide a brief sketch of all modules employed in current version of the system.

Connection Manager manages all client connections (Recall that ExDB is designed as
a client/server system only; we do not plan to support its embedded clone). Nowadays,
we offer only a TCP/IP-based proprietary communication protocol (users may select
among a command-line, Java-based GUI or a web-based clients) but there is an existing
need for additional alternatives such as web services or REST-through-servlet API.

ACL Managment Each DBMS must obviously support user authentication and corre-
sponding authorization covering all activities being performed. Within ExDB we have
designed a module that utilizes XACML 2.0 (an OASIS standard dealing with this
field); more exactly, a SUN’s implementation of this standard [43].



16 Pavel Loupal, Irena Mlýnková, Martin Nečaský, Karel Richta, Michal Valenta

Storage Manager aims to persistently save data and provide efficient access to it. As
the main topic of this paper, we discuss it in detail later in Section 4.3.

Query Processor can process XPath, XQuery and XML-λ queries. It is basically the
main “customer” of the Storage module in the system and the ability of these two mod-
ules to effectively communicate determines the overall both functional and performance
outcomes of the database system. What might be seen as a distinct feature is the fact
that all queries are first converted into their XML-λ’s form and only then evaluated in a
Virtual Machine (see Section 4.4 for more).

Transaction Manager is a planned module used for solving simultaneous access to
stored data. Due to its relative complexity, we have not been able to design a solution
in sufficient quality yet.

All these components are controlled by the Core module responsible for startup,
initial configuration and message routing among all parts of the system.

4.2 System Internals
All operations with XML data are performed through a library implementing the XML-λ
functional data model. It is the most important fact that distinguishes ExDB from other
systems. Strict use of the data model, its influence even into the structure of low-level
paging mechanism is a thorough test of fuctional approach’s features. The following
text deals with the key topics.

Functional Data Model The data model utilized inside the ExDB for encoding XML
data is exclusively based on the functional data model introduced by Pokorný [46] and
later altered in [40]. These works describe its formal base in deep detail. For purpose of
this paper, we select its main properties only and incite the reader to explore the detailes
there.

In the XML-λ Framework, an XML document is modelled as a tripleD = 〈E,T,S〉
where E denotes a set of abstract elements, i.e. unique entities corresponding to ele-
ments from particular XML document, S denotes a set of all strings (either element or
attribute content), and finally T denotes a set of functions that encode relations between
abstract elements and strings; informally, we can say that these functions describe the
parent-child relationship for all elements within the document.

4.3 The Storage Subsystem
ExDB generally offers two storage options for XML data: (1) filesystem-based, and
(2) native storage. The first choice is a (trivial) testing-only alternative not suitable for
production deployment. Data is stored in available filesystem in directories and files that
are named by one-to-one collection/directory and XML document/file mapping. Due to
its simplicity this alternative is not worth mentioning in detail here. The latter option,
native storage, is obviously more efficient and configurable solution and is accordingly
more important for us. With no doubt, its design is one of the most critical issues of the
database system.



How to Store XML Data 17

Native Storage The storage is divided into three logical parts which realize particu-
lar operations for collections / documents, indices and text content, respectively. Un-
derneath, that high-level interface is backed by a Data Manager performing requested
operations on structures designed with respect to available filesystem. This low-level
persistence layer does not principally differ from existing solutions; it uses fixed-size
blocks as fundamental elements of data and provides exchange of these blocks between
operational memory and disk drives. The effectivity of this operations is ensured by
involving some caching mechanisms and by clustering related data into one block (if
possible, of course; if not, then into multiple but adjoining blocks).

The overall schema of the storage is depicted in Figure 6.

H
ig

h-
Le

ve
l

In
te

rf
ac

e
Pe

rs
is

te
nt

 
St

or
ag

e

Collections /
Documents IndicesText Content

<<interface>>
Index

Management

<<interface>>
XML Resource
Management

<<interface>>
Text Content
Management

<<interface>>
Collection

Management

ExDB Storage Service Requestors (XPath/XQuery modules, etc.)

Ph
ys

ic
al

Le
ve

l

<<interface>>
Data Manager

Fig. 6. Schema of the persistent storage within the ExDB

4.4 Query Processing

Let us briefly describe the approach for query processing within the system. As de-
scribed in [40] there exists a query language based on the XML-λ data model and sim-
ply typed λ-calculus – XML-λ Query Language. ExDB uses this language for evaluat-
ing queries written in “conventional” query languages such as XQuery or XPath. Input
queries are first transformed into a respective XML-λ form and consequently evaluated
in a virtual machine (see Figure 7). We claim that this unification lets us concentrate
on improving the evaluation capability of the functional approach and hence encourage
futher research activities within this field.



18 Pavel Loupal, Irena Mlýnková, Martin Nečaský, Karel Richta, Michal Valenta

Fig. 7. Evaluation of XPath/XQuery Queries in ExDB

4.5 Issues and Future Work

ExDB is a software project still under active development (lasts more than four years up
to now). The relatively slow progress in introduction of new features can be expected
with respect to project’s original goals and its management – the development team
(comprising of Bc. and MSc. students) changes almost each semester and quality of
the deliverables varies. However, we managed to design and develop multiple working
releases of both client and server parts with particular features. Such “long-term” ap-
proach to software development cannot be obviously applied for a commercial project
but for research-oriented project is acceptable. The vision of the “final state” version
can be closely defined and the deliverables can be polished by continuous development.

Nowadays, we can describe the following topics as the most important areas for
further research and development:

– Experimental results. We need to perform both functional and performance bench-
marking of the system. So far we have executed only a few particular experiments
but still have not performed complex tests such as comparison with other systems
or execution of some existing standard-compliance suites.

– Storage improvements. The storage module can be still improved in terms of im-
plemented indexing methods and related algorithms. We plan to redesign the mod-
ule (especialy the structure of its interface) to gain more efficient access to data.

– Query optimization. XPath and XQuery query languages are complex enough to
allow us to yield various optimizations. It is a wide topic we plan to address in our
future research work – we claim that the model where XPath/XQuery queries are
converted into their XML-λ equivalents and only then are evaluated offers a very
good chance to perform optimizations within the functional machine.

In spite of existing issues, we claim that ExDB is a usable working prototype of
a native XML DBMS utilizing the functional approach for XML (entitled XML-λ as
described in [40]). The project fulfils its goals but still offers a pool of challenging
topics to be solved in the future.



How to Store XML Data 19

5 CellStore Native XML DBMS

We are going to present CellStore project [55] in this section. We’ll concentrate on its
storage subsystem to be consistent with the main topic of the report. But it is necessary
shortly introduce the context of the CellStore project itself. This context information is
done in the first subsection, while the main contribution – CellStore storage subsystem
is the subject of subsection 5.3.

5.1 What is CellStore

The main goal of the CellStore project is to develop XML-native database engine for
both educational and research purposes. It is meant rather as experimental platform then
an in-box and ready-to-use database engine.

We planed such an engine because our students can easily look inside it, under-
stand and create new components for this engine, e.g. in-built XSLT engine, a query
optimizer, an index engine, an event-condition-action(ECA) processing, etc.

According to this goal the development platform had been chosen. Especially: it
should be easy to change of subsystems functionality, it should be purely object-oriented
for development and design, it must enable component reusing, test-driven development
and trace & log facilities for both debugging and educational purposes. At the end we
selected Smalltalk/X as the development platform.

Development Strategy Several grants were applied in order to establish wider user
and development community. The project was reported as interesting and well-planed,
but, unfortunately, non of applied grants was accepted. Hence CellStore development is
managed incrementally mostly by master thesis of individual participants. There are 8
already successfully finished and 1 ongoing master thesis on the project. Its transaction
subsystem [53] is also the topic of a PhD thesis of Pavel Strand, and code-debugging
framework Perseus [56] was added recently in order to approve concepts of PhD thesis
of Jan Vraný. The evolution potential of the project is also occasional participation on
more general projects covered by grants.

History Project was started at 2004 with the first implementation of storage subsys-
tem. Implementation of part of XQuery functionality (2007) was the next step. Then
implementation of modules for simple-indexing, DML, transactional processing, cache
management, web-based approach, remote client, and test setting and evaluation envi-
ronment followed from 2007 to 2009.

At 2008 a significant change in the system architecture had been done. Jan Vrany
included Perseus framework into CellStore’s architecture. It brought really illustrative
code debugger based on event mechanism.But on the other hand it also requires partial
redesign of several already done subsystems and slightly slow-down CellStore effi-
ciency.



20 Pavel Loupal, Irena Mlýnková, Martin Nečaský, Karel Richta, Michal Valenta

CellStore’s State of The Art There are two stages in CellStore history – before and
after Perseus incorporation. The first – pre-Perseus stage – provided several relatively
well integrated modules. CellStore worked as embedded DBMS with partial imple-
mentation of XQuery 1.0. It had a database console and a Transaction management and
monitoring tool. A comprehensive description of CellStore at this stage was published
in [45].

In 2008 several new modules or subsystems were under development (web and line
clients, DML module, testing tool). At the same time Jan Vrany started with Perseus im-
plementation [54]. His work implied the necessity of partial redesign of several already
developed modules as well as modules just under development. The redesign process
was successfully done on new XQuery interpreter, partially on transaction manager, and
is ongoing (master thesis) on modules for DML and indexing. Some modules (web and
line clients and testing tools were not affected), and the others (namely cache manage-
ment module) were not redesigned yet.

5.2 System Architecture

CellStore’s architecture is depicted on figure 5.2. It can be approached through sev-
eral interfaces on a different level of services. The lowest layer – low level storage –
consist on several cooperating modules. Modules depicted in solid boxes are already
implemented while modules in dotted boxes are not ready yet.

Storage Manager is responsible for I/O operations. It operates on physical data layer,
it uses both persistent storages – cell space and text space. It also uses its own low-level
cache subsystem. Physical structure of both storages is described in detail in subsection
5.3 below.

Higher Level Cache Manager was designed and partially implemented and tested as
a master thesis of Karel Příhoda in 2008. It is meant as “database buffer cache”.

Transaction Manager is subject of PhD work of Pavel Strnad. Some concepts and
benchmarks were already published [50]. It uses non-blocking taDOM algorithms de-
veloped by Theo Härder and his research group [27].

ACL Manager is just a plan - it was not yet designed nor implemented. Thinking
seriously about database engine, one cannot omit multiuser access which implies boths
– transaction management and user/role subsystem with granting abilities.

Front End APIs The rest of the system architecture is marked as “Front End APIs”.
Individual APIs are represented by interface marks in the CellStore’s architecture 5.2.
They provide various additional services and abstraction layers like XPath or XQuery
etc.



How to Store XML Data 21

5.3 Storage Subsystem

We developed a new method for storing XML data. The method is based on work of
Toman [52] and partially inspired by solutions used in DBMSs of Oracle and Gemstone.
Structural and data parts of XML document are stored separately. Of course, it increases
necessary time to store and reconstruct documents. But on the other hand, it provides a
great benefit in disk space management especially in the case of documents update and
also in query processing and indexing stored XML data.

Let us describe the storage model more in detail. The description is based on the
first implementation version, because it is more illustrative. There exist improvements
in the newer versions of CellStore, but they are not so important for this quick view.
XML data documents are parsed and placed in two different files during the storing
process – the cell file and the data file. The structure of each of them is described
in an individual subsection. We will illustrate the structure of files by example of the
following document:

<?xml version="1.0"?>
<!DOCTYPE simple PUBLIC
"-//CVUT//Simple Example DTD 1.0//EN" SYSTEM simple.dtd">
<simple>
<!-- First comment -->
<?forsomeone process me?>
<element xmlns="namespace1">
First text

<ns2:element xmlns:ns2="namespace2"
attribute1="value1" ns2:attribute2="value2">

</ns2:element>
<empty/>
</element>

</simple>

Cell-File Structure This file consists of fixed-length cells. Each cell represents one
DOM object (document, element, attribute, character data, etc.) or XML:DB API object
(collection or resource). Remind that this API is developed by XML:DB Initiative for
XML Databases [28]. Cells are organized into fixed-length block.

Database block is the smallest I/O unit of transfer between disk and low-level stor-
age cache. Only the cells from one document can be stored in one block. The set of
blocks describing the structure of the whole document is called segment. Each block
starts with header with a bitmap describing the density of the block. This storing strat-
egy is effective also in the case of repeated changes of stored documents.

Inside the cell structure internal pointers are used to represent parent-child and sib-
ling relationships of nodes. Each cell consists of eight fields. The meaning of some
fields can differ with different types of cells. The following cell types are in the system:
character data, attribute, document, document type, processing instruction, comment,
XML Resource, and collection. The general structure of cell is described in the follow-
ing Table 2:See figure 5.3 to grasp the idea how the cell storage looks for the sample XML document
mentioned above.

Text File Structure This file contains all text data (i.e. contents of DOM’s text ele-
ments and attributes). The data is organized into blocks too. One block belongs just



22 Pavel Loupal, Irena Mlýnková, Martin Nečaský, Karel Richta, Michal Valenta

Name Content Reason
Head 1 byte The type of cell.
Parent cell pointer Pointer to parent cell.
Child cell pointer Pointer to the first child.
Sibling cell pointer Pointer to the next cell brother (NIL if there is no one).
D1, D2, depends on type Contain either data or pointers (possibly to text file or
D3, D4 tag file) depending to the type of cell.

Table 2. CellStore cell structure

to one document. The set of data blocks belonging to one document is called again a
segment. Text pointer is a pointer to text file. It consists from the text block# and the
record#. Each text block contains a translation table which accepts the record number
and returns the offset and the length of the data block. This is effective for storing data
changes. The translation table grows from the end of block, while data grows from the
beginning. The translation table contains the number of actual records for these pur-
poses. The header of a text block contains also the pointer to the root of its cell node.
It is useful for fulltext searching - for the case we need documents containing some
patterns. The example content of text file structure is shown on fig. 5.3.

Low-level subsystem was fully implemented. Its stability had been tested on INEX
data set. INEX is the set of articles from IEEE; see [26] for an overview. It contains
approximately 12 000 individual XML documents (without figures), total size of the set
is about 500MB.

The newer version of low-level subsystem implementation allows individual set-
ting of cell, cell-pointer, and block sizes. All these parameters can be used to optimize
low-level storage according to specific data needs 3. Unfortunately, we did not provide
enough experiments yet to be able to approve efficiency of such low-level customiza-
tion.

Storage discussion Our storage strategy has obvious drawback – necessity to divide
XML data into text and structure parts during the storing process and their repeat joining
during the document reconstruction.

On the other hand it was experimentally shown, that the space requirement of our
storage method is acceptable even in the case of frequent changes of parts of stored data.
Moreover, some obvious improvements like using convenient compress algorithms on
text space are evident, although they are not approved by experiments yet.

We believe that our storage method can also provide a significant benefits in XQuery
processing. Of course, it requires well designed and complex (XQuery) optimizer, which
is able to guess and decide when to prefer text and when structure selection criteria.

Separation structural and text information may also allow to apply special indexing
algorithms. Unfortunately, all this notions are still on the level of hypothesis.

3 Similarly, in Oracle DBMS a BLOCK_SIZE, PCT_FREE, and extent-allocation parameters
can be used to optimize storage.



How to Store XML Data 23

5.4 CellStore’s Future

CellStore project is already running more then 6 years with a very alternate develop-
ment activities. The main idea of educational and research platform is still vital and
attractive. Actually a lot of design and programming work had been done, on the other
hand the development strategy described above can be hardly changed under the same
circumstances.

6 Conclusions

In this report, attention is paid to methods how to store XML data. Initially, we try to
employ commonly used relational systems. Various methods are presented, how it is
possible to store XML data in relational systems. Then we try to formulate principles
of so called native XML DBMS and we presented methods how to store XML data in
native systems. Finally, the most original artifacts are ExDB and CellStore native XML
database management systems, that we realize as prototypes of native systems, and we
have presented main principles of these two proposals.

Most important for any kind of DBMS is querying and its effectivity. The standard
of the query language for XML data is at the present time the XQuery language. The
future research can be oriented to the way how to compare all possible representations
presented in this report in the effectivity of evaluation of queries written in the XQuery
language.



24 Pavel Loupal, Irena Mlýnková, Martin Nečaský, Karel Richta, Michal Valenta

Fig. 8. CellStore Architecture



How to Store XML Data 25

Fig. 9. CellStore cellfile structure

Fig. 10. CellStore textfile structure



Bibliography

[1] DB2 Product Family. IBM. http://www-01.ibm.com/software/data/db2/.
[2] Microsoft SQL Server 2008. Microsoft Corporation.

http://www.microsoft.com/sqlserver/2008/.
[3] Oracle Database 11g. Oracle Corporation.

http://www.oracle.com/technology/products/database/oracle11g/.
[4] Document Object Model (DOM). W3C, 2005.
[5] Shurug Al-Khalifa, H. V. Jagadish, Jignesh M. Patel, Yuqing Wu, Nick Koudas,

and Divesh Srivastava. Structural Joins: A Primitive for Efficient XML Query
Pattern Matching. In Proceedings of the 18th International Conference on Data
Engineering (ICDE), pages 141–152, 2002.

[6] S. Amer-Yahia. Storage Techniques and Mapping Schemas for XML. Technical
Report TD-5P4L7B, AT&T Labs-Research, 2003.

[7] S. Amer-Yahia, F. Du, and J. Freire. A Comprehensive Solution to the XML-to-
Relational Mapping Problem. In WIDM’04, pages 31–38, New York, NY, USA,
2004. ACM.

[8] A. Balmin and Y. Papakonstantinou. Storing and Querying XML Data Using
Denormalized Relational Databases. The VLDB Journal, 14(1):30–49, 2005.

[9] Radim Bača, Jiří Walder, Martin Pawlas, and Michal Krátký. Benchmarking the
Compression of XML Node Streams. In Proceedings of the BenchmarX 2010
International Workshop, DASFAA. Springer-Verlag, 2010.

[10] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernï£¡ndez, M. Kay, J. Ro-
bie, and J. Simeon. XML Path Language (XPath) 2.0. W3C, January 2007.
http://www.w3.org/TR/xpath20/.

[11] P. V. Biron and A. Malhotra. XML Schema Part 2: Datatypes (Second Edition).
W3C, 2004. http://www.w3.org/TR/xmlschema-2/.

[12] S. Boag, D. Chamberlin, M. F. Fernï£¡ndez, D. Florescu, J. Robie, and
J. Simeon. XQuery 1.0: An XML Query Language. W3C, January 2007.
http://www.w3.org/TR/xquery/.

[13] P. Bohannon, J. Freire, P. Roy, and J. Simeon. From XML Schema to Relations:
A Cost-based Approach to XML Storage. In ICDE’02, pages 64–75, Washington,
DC, USA, 2002. IEEE.

[14] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensible
Markup Language (XML) 1.0 (Fourth Edition). W3C, 2006.

[15] Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic Twig Joins: Optimal
XML Pattern Matching. In Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data (SIGMOD), pages 310–321, 2002.

[16] Songting Chen, Hua-Gang Li, Jun’ichi Tatemura, Wang-Pin Hsiung, Divyakant
Agrawal, and K. Selçuk Candan. Twig2Stack: Bottom-up Processing of
Generalized-Tree-Pattern Queries over XML Documents. In Proceedings of the
32nd International Conference on Very Large Data Bases (VLDB), pages 283–
294. VLDB endowment, 2006.



How to Store XML Data 27

[17] Ting Chen, Jiaheng Lu, and Tok Wang Ling. On Boosting Holism in XML Twig
Pattern Matching using Structural Indexing Techniques. In Proceedings of the
2005 ACM SIGMOD International Conference on Management of Data (SIG-
MOD), pages 455–466, 2005.

[18] Shu-Yao Chien, Zografoula Vagena, Donghui Zhang, Vassilis J. Tsotras, and Carlo
Zaniolo. Efficient Structural Joins on Indexed XML Documents. In Proceedings
of 28th International Conference on Very Large Data Bases (VLDB), pages 263–
274, 2002.

[19] C.-W. Chung, J.-K. Min, and K. Shim. APEX: an Adaptive Path Index for XML
Data. In SIGMOD’02, pages 121–132, New York, NY, USA, 2002. ACM.

[20] Chin-Wan Chung, Jun-Ki Min, and Kyuseok Shim. Apex: an adaptive path index
for xml data. In SIGMOD ’02: Proceedings of the 2002 ACM SIGMOD interna-
tional conference on Management of data, pages 121–132, New York, NY, USA,
2002. ACM.

[21] J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0. W3C, Novem-
ber 1999. http://www.w3.org/TR/xpath.

[22] E. Cohen, H. Kaplan, and T. Milo. Labeling Dynamic XML Trees. In PODS’02,
pages 271–281, New York, NY, USA, 2002. ACM.

[23] P. F. Dietz. Maintaining Order in a Linked List. In STOC’82, pages 122–127, New
York, NY, USA, 1982. ACM.

[24] F. Du, S. Amer-Yahia, and J. Freire. ShreX: Managing XML Documents in Re-
lational Databases. In VLDB’04, pages 1297–1300, Toronto, ON, Canada, 2004.
Morgan Kaufmann Publishers Inc.

[25] D. Florescu and D. Kossmann. Storing and Querying XML Data Using an
RDMBS. IEEE Data Eng. Bull., 22(3):27–34, 1999.

[26] N. Govert and G. Kazai. Overview of the initiative for the evaluation of xml
retrieval (inex) 2002. In Proc. of the first Workshop of the INitiative for the Eval-
uation of XML Retrieval (INEX), pages 1–17, 2002.

[27] M. Haustein and T. Harder. tadom: A tailored synchronization concept with tun-
able lock granularity for the dom api. In Proc. ADBIS’03, pages 88–102. Springer-
Verlag LNCS 2798, 2003.

[28] XML:DB Initiative. XML:DB, 2003.
[29] ISO/IEC 9075-14:2003. Part 14: XML-Related Specifications (SQL/XML). Int.

Organization for Standardization, 2006.
[30] Haifeng Jiang, Hongjun Lu, Wei Wang, and Beng Chin Ooi. XR-Tree: Indexing

XML Data for Efficient Structural Joins. In Proceedings of the 19th International
Conference on Data Engineering (ICDE), pages 253–263, 2003.

[31] Haifeng Jiang, Wei Wang, Hongjun Lu, and Jeffrey Xu Yu. Holistic Twig Joins
on Indexed XML Documents. In Proceedings of 29th International Conference
on Very Large Data Bases (VLDB), pages 273–284, 2003.

[32] Zhewei Jiang, Cheng Luo, Wen-Chi Hou, Qiang Zhu, and Dunren Che. Efficient
processing of xml twig pattern: A novel one-phase holistic solution. In Database
and Expert Systems Applications (DEXA), pages 87–97, 2007.

[33] Raghav Kaushik, Philip Bohannon, Jeffrey F Naughton, and Henry F Korth. Cov-
ering indexes for branching path queries. In SIGMOD ’02: Proceedings of the
2002 ACM SIGMOD international conference on Management of data, pages
133–144, New York, NY, USA, 2002. ACM.



28 Pavel Loupal, Irena Mlýnková, Martin Nečaský, Karel Richta, Michal Valenta

[34] M. Klettke and H. Meyer. XML and Object-Relational Database Systems – En-
hancing Structural Mappings Based on Statistics. In Selected papers from the 3rd
Int. Workshop WebDB’00 on The World Wide Web and Databases, pages 151–170,
London, UK, 2001. Springer.

[35] A. Kuckelberg and R. Krieger. Efficient Structure Oriented Storage of XML Docu-
ments Using ORDBMS. In VLDB’02 Workshop EEXTT and CAiSE’02 Workshop
DTWeb, pages 131–143, London, UK, 2003. Springer.

[36] Jiang Li and Junhu Wang. Fast matching of twig patterns. In Database and Expert
Systems Applications (DEXA), pages 523–536, 2008.

[37] Jiang Li and Junhu Wang. Twigbuffer: Avoiding useless intermediate solutions
completely in twig joins. In Database Systems for Advanced Applications, 10th
International Conference (DASFAA), pages 554–561, 2008.

[38] Q. Li and B. Moon. Indexing and Querying XML Data for Regular Path Ex-
pressions. In VLDB’01, pages 361–370, San Francisco, CA, USA, 2001. Morgan
Kaufmann Publishers, Inc.

[39] Pavel Loupal. Experimental DataBase (ExDB) Project Homepage.
http://exdb.fit.cvut.cz.

[40] Pavel Loupal. XML-λ : A functional framework for XML. Ph.d. thesis, Department
of Computer Science and Engineering, Faculty of Electrical Engineering, Czech
Technical University in Prague, February 2010.

[41] Jiaheng Lu, Ting Chen, and Tok Wang Ling. Efficient processing of XML twig
patterns with parent child edges: a look-ahead approach. In Proceedings of the
13th ACM international conference on Information and knowledge management
(CIKM), pages 533–542, 2004.

[42] I. Mlynkova. A Journey towards More Efficient Processing of XML Data in
(O)RDBMS. In CIT’07, pages 23–28, Los Alamitos, CA, USA, 2007. IEEE.

[43] OASIS. Xacml 2.0. http://sunxacml.sourceforge.net/.
[44] P. O’Neil, E. O’Neil, S. Pal, I. Cseri, G. Schaller, and N. Westbury. ORDPATHs:

Insert-Friendly XML Node Labels. In SIGMOD’04, pages 903–908, New York,
NY, USA, 2004. ACM.

[45] J. Pokorný, K. Richta, and M. Valenta. Cellstore: Educational and experimental
xml-native dbms. In Information Systems Development 2007, pages 1–11, Gal-
way, 2007. National University of Ireland.

[46] Jaroslav Pokorný. XML-λ: an extendible framework for manipulating XML data.
In Proceedings of BIS 2002, pages 160–168, Poznan, 2002.

[47] Lu Qin, Jeffrey Xu Yu, and Bolin Ding. TwigList : Make twig pattern matching
fast. In Database Systems for Advanced Applications, 10th International Confer-
ence (DASFAA), pages 850–862, 2007.

[48] K. Runapongsa and J. M. Patel. Storing and Querying XML Data in Object-
Relational DBMSs. In EDBT’02, pages 266–285, London, UK, 2002. Springer.

[49] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt, and J. F.
Naughton. Relational Databases for Querying XML Documents: Limitations and
Opportunities. In VLDB’99, pages 302–314, San Francisco, CA, USA, 1999. Mor-
gan Kaufmann Publishers Inc.

[50] P. Strnad and M. Valenta. On benchmarking transaction managers. In Database
Systems for Advanced Applications DASFAA 2009 International Workshops:



How to Store XML Data 29

BenchmarX, MCIS, WDPP, PPDA, MBC, PhD, Brisbane, Australia, April 20 -
23, 2009, pages 79–92, Berlin, 2009. Springer.

[51] H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema Part
1: Structures (Second Edition). W3C, 2004. http://www.w3.org/TR/xmlschema-
1/.

[52] K. Toman. Storing xml data in a native repository. In Proc. of DATESO 2004,
pages 51 – 62. CEUR Workshop Proceedings, Vol. 98, 2004.

[53] M. Valenta and P. Strnad. Object-oriented implementation of transaction manager
in cellstore project. In Objekty 2006, pages 273–282, Ostrava, 2006. Technická
universita Ostrava - Vysoká škola báňská.

[54] J. Vraný and Bergel A. Perseus framework, 2008.
[55] J. Vraný, P. Strnad, and M. Valenta. Cellstore, 2008.
[56] Vraný, J. and Bergel A. The debuggable interpreter design pattern. In Proceed-

ings of the International Conference on Software and Data Technologies (ICSOFT
2007), pages 1–17, 2007.

[57] Y. Wu, J. M. Patel, and H. Jagadish. Structural Join Order Selection for XML
Query Optimization. In Proceedings of ICDE 2003, pages 443 – 454. IEEE CS,
2003.

[58] W. Xiao-ling, L. Jin-feng, and D. Yi-sheng. An Adaptable and Adjustable Map-
ping from XML Data to Tables in RDB. In VLDB’02 Workshop EEXTT and
CAiSE’02 Workshop DTWeb, pages 117–130, London, UK, 2003. Springer.

[59] Chun Zhang, Jeffrey Naughton, David DeWitt, Qiong Luo, and Guy Lohman. On
Supporting Containment Queries in Relational Database Management Systems. In
Proceedings of the 2001 ACM SIGMOD international conference on Management
of data, pages 425–436. ACM Press, 2001.

[60] S. Zheng, J. Wen, and H. Lu. Cost-Driven Storage Schema Selection for XML. In
DASFAA’03, pages 337–344, Kyoto, Japan, 2003. IEEE.


