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Abstract. As the XML has become a standard for data representation, it is in-
evitable to propose and implement techniques for efficient managing of XML
data. A natural alternative is to exploit features of (object-)relational database sys-
tems, i.e. to rely on their long theoretical and practical history. The main concern
of such techniques is the choice of an appropriate XML-to-relational mapping
strategy.
In this paper we focus on enhancing of user-driven techniques which leave the
mapping decisions in hands of users who specify their requirements using schema
annotations. We describe our prototype implementation called UserMap which is
able to exploit the annotations more deeply searching the user-specified “hints” in
the rest of the schema and applies an adaptive method on the remaining schema
fragments. Using a sample set of supported fixed mapping methods we discuss
problems related to query evaluation for storage strategies generated by the sys-
tem, in particular correction of the candidate set of annotations and related query
translation. And finally, we describe the architecture of the whole system.
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1 Introduction

The XML [5] has undoubtedly become a generally acknowledged standard for data
representation. This invoked a boom of implementations of W3C recommendations
based on various storage strategies from traditional file systems to brand-new native
XML storage strategies. But currently the most practically used techniques exploit a less
efficient but verified and mature technology – (object-)relational database management
systems ((O)RDBMS). Although the scientific world has already proven that native
XML strategies perform much better, they still lack one important aspect – a reliable
and robust implementation verified by years of both theoretical and practical effort.



Thus until the native XML methods “grow up”, it is still necessary to improve XML
data management in (O)RDBMS.

Currently there is a plenty of existing works concerning database-based1 XML data
management. Almost all the major database vendors more or less support XML and
even the SQL standard has been extended by a new part SQL/XML [9] which introduces
new XML data type and operations for XML data manipulation. The main concern of
the database-based XML techniques is the choice of the way XML data are stored
into relations, so-called XML-to-relational mapping. On the basis of exploitation or
omitting information from XML schema we can distinguish so-called schema-oblivious
(or generic) [7] and schema-driven [17] methods. From the point of view of the input
data we can distinguish so-called fixed methods [7, 17] which store the data purely
on the basis of their model and adaptive methods [10, 4], where also sample XML
documents and XML queries are taken into account. And there are also techniques
based on user involvement which can be divided to user-defined [2] and user-driven [3,
6], where in the former case a user is expected to define both the relational schema and
the required mapping, whereas in the latter case a user specifies just local changes of a
default mapping.

Both the user-driven and adaptive approaches try to solve the key problem of the
fixed methods – the fact that there is no universally suitable fixed method. An illustrative
issue is updatability of data, where the efficient storage strategies significantly differ if
the feature is required or not. A similar case is exploitation of redundancy which in
general leads to a significant space overhead, but it can have reasonable applications,
where the need of retrieval efficiency exceeds this disadvantage [3]. And there are also
various types of XML data, such as, e.g., data related to Semantic Web, which require
special treatment [18].

In this paper we introduce a prototype implementation called UserMap which ex-
ploits a combination of user-driven and adaptive strategies focusing on two persisting
disadvantages of user-driven methods. Firstly, it is the fact that the default mapping
strategy is (to our knowledge) always a fixed one. Since the corresponding system must
be able to store schema fragments in various ways, an adaptive enhancing of the fixed
method seems to be quite natural and suitable. The second shortcoming is weak ex-
ploitation of the user-given information. The annotations a user provides can not only
be directly applied on particular schema fragments, but can be regarded as “hints” how
to store particular XML patterns. We use this information twice again. Firstly, we search
for similar patterns in the rest of the schema and store the found fragments in a similar
way. And secondly, we exploit the information in the adaptive strategy for not anno-
tated parts of the schema. Hence, UserMap proposes new types of annotations, i.e. new
storage strategies.

Next, we discuss problems related to the resulting storage strategies. We deal with
two key issues – correction of the candidate set of annotations proposed by the system
and related query evaluation. In the former case we identify and discuss situations when
the proposed annotations are either meaningless or a user interaction and/or a default
choice is necessary to choose from multiple possibilities. In the latter case we deal
with the interface between various storage strategies and the way the system should

1 In the rest of the paper the term “database” represents an (O)RDBMS.

2



cope with redundancy. For this purpose we have selected a sample representative set
of annotations using which we illustrate the related issues and open problems. Finally,
we describe and discuss the architecture of experimental implementation of the whole
system.

The paper is structured as follows: Section 2 overviews the existing related works. In
the third section we describe the key ideas of the hybrid user-driven XML-to-relational
mapping strategy. Section 4 deals with the problem of correction of the candidate set
of annotations proposed by the previously described system and Section 5 analyzes and
discusses the key issues related to query evaluation of the resulting relational schema.
Section 6 describes the architecture of the system and, finally, Section 7 provides con-
clusions.

2 Related Work

To our knowledge there are just two representatives of user-driven mapping strategies –
mapping definition framework ShreX [6] and system XCacheDB [3]. As for the annota-
tions both support inlining and outlining of a schema fragment, mapping a fragment to
a BLOB column, renaming target tables or columns, and redefining column data types.
The former approach furthermore supports the Edge mapping [7] strategy and enables
to specify the required capturing of the structure of the whole schema (using keys and
foreign keys, Interval encoding, or Dewey decimal classification). The latter approach
allows a certain degree of redundancy enabling to store the data into both set of tables
and a BLOB column. In both the cases the mapping for not annotated parts is fixed and
the annotations are applied just directly on the annotated schema fragments.

From the point of view of checking correctness of the resulting mapping strategy
and query evaluation paper [6] which introduces system ShreX also proposes defini-
tions of a correct and lossless mapping. In the former case it means that the mapping
produces a valid relational schema in terms of distinct table names, distinct column
names within a table, distinct CLOB names, and existence of at least one key in each
table. In the latter case lossless mapping is a mapping which is correct and maps each
element and attribute of the schema and the sibling order of elements. (Surprisingly, it
does not consider XML IDs and IDREFs.) The system is able to check the correctness
and losslessness of the annotations and complete possible incompleteness of mapping
specifications using default mapping rules. As for the query evaluation ShreX does not
support redundancy and thus the choice of the most efficient storage strategy for a par-
ticular query is pointless. The interface between storage strategies is solved using a
mapping API and a mapping repository which contains information about how each el-
ement and attribute is stored, which mapping is used to capture the document structure,
and which tables are available in the relational schema. Hence the system is able to get
information about storage strategy for any part of the schema and thus both shred the
documents and evaluate queries.

System XCacheDB supports only a single strategy for shredding XML data into
tables which can be modified by inlining / outlining of a fragment, or storing a fragment
to a BLOB column. Hence, the only incorrect combination is concurrent inlining and
outlining that can be detected easily. The information about the structure of the current
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schema is again stored into the database. Contrary to ShreX, the XCacheDB system
allows a kind of redundant annotation intersection enabling to store a schema fragment
to a BLOB column and, at the same time, to shred it into a set of tables which needs
to be treated in a special way. The proposed enhancing of a classical query evaluator
is quite simple but working. It always chooses the query plan with minimal number of
joins.

As it is obvious, in both the cases the set of possible situations is somehow sim-
plified. In both the systems the annotations are just directly applied on the annotated
fragments without any additional exploitation. In the former case the set of annota-
tion intersections is restricted, whereas in the latter case the set of mapping strategies
can be characterized as a set of modifications of a single mapping strategy. But in our
case we consider more types of intersections, more complex combinations of mapping
strategies, and thus new related problems.

3 Hybrid User-Driven XML-to-Relational Mapping

A general idea of fixed schema-driven XML-to-relational mapping methods is to map
the given XML schema S into a set of relations R = {r1, r2, ..., rn} using a mapping
strategy srel. An extreme case is when S is mapped into a single relation resulting in
many null values. Other extreme occurs when for each element e ∈ S a single relation
is created resulting in numerous join operations. In user-driven strategies the mapping
is influenced by user-defined annotations which specify how a particular user wants to
store selected schema fragments F = {f1, f2, ..., fm}. The user usually provides S (i.e.
selected fragments) with annotating attributes from the predefined set of attributes ΩA,
each of which represents a particular fixed mapping strategy, resulting in an annotated
schema S′. A classical user-driven strategy then consists of the following steps:

1. S is annotated using ΩA resulting in S′.
2. Annotated fragments from F are mapped to relations according to appropriate map-

ping methods.
3. Not annotated fragments of S are mapped to relations using a default fixed mapping

strategy sdef .

Our method enhances a classical user-driven strategy combining it with the idea of
adaptive approaches. We simply add the following steps between the step 1 and 2:

a. For ∀ f ∈ F we identify a set Ff = {f ′ ∈ S\{f} : sim(f, f ′) > Tsim}, where
sim(f, f ′) expresses the similarity of fragments f and f ′ and Tsim denotes the
required minimum similarity threshold.

b. For ∀ f ∈ F all fragments in Ff are annotated with annotating attributes of f and
added to F .

c. S\F is annotated using an adaptive strategy and the newly annotated fragments are
added to F .

The whole mapping process is schematically depicted in Figure 1 where the given
schema S with F = {f, g} is mapped to a database schema R. If the proposed enhanc-
ing, i.e. steps 1.a – 1.c, are included, the system gradually identifies and adds into F new
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Fig. 1. Schema of the mapping process

annotated fragments f1, f2, g1, g2, and g3 which are mapped using user-required map-
ping strategies. If the enhancing is not included (i.e. in case of a classical user-driven
strategy), only fragments f and g are annotated using user-required strategies and the
rest of the schema using sdef . Thus, the key advantages of the proposed enhancing are
the following two:

1. The user is not forced to annotate all schema fragments that have to be stored alter-
natively, but only those with different structure.

2. The system can reveal structural similarities which are not evident “at first glance”
and which could remain hidden to the user.

3.1 Exploitation of Annotations in More Detail

Let us view the given XML schema S as a directed graph GS = (VS , ES) whose
nodes correspond to elements, attributes, and operators and edges represent relation-
ships among them. An annotation is a function α : VS → P(ΩA) and a node n ∈ VS is
annotated if α(n) 6= ∅. Each annotated node n uniquely determines an annotated frag-
ment f , i.e. a subgraph of GS consisting of n, all descendants of n, and corresponding
edges. As each annotation α(n) determines the mapping strategy for the whole anno-
tated fragment f , we assume that for each n′ ∈ f : α(n) ⊆ α(n′), i.e. that the α(n)
is “distributed” to all subfragments of f . Hence, f @ f ′ denotes f being a proper
subfragment of f ′ and f v f ′ denotes f @ f ′ ∨ f = f ′.

The main idea of the first enhancing of user-driven techniques remains the same
regardless the chosen similarity measure sim, the threshold Tsim, or the search algo-
rithm. The choice of sim and Tsim influences the precision of the system, whereas the
algorithm influences the efficiency of finding the required fragments. We deal with the
two issues, and especially avoiding the exhaustive search and tuning of the similarity
measure, in [13, 14] in detail and propose a search heuristics called basic annotation
strategy (BAS) which is able to skip processing of schema fragments which are unlikely
to be enough similar.

Conversely, at first glance the user-driven techniques have nothing in common with
the adaptive ones. But under a closer investigation we can see that the user-given an-
notations provide a similar information – they “say” how particular schema fragments
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should be stored to enable efficient data querying and processing. Thus we can reuse
the user-given information. For this purpose we define an operation contraction which
enables to omit those schema fragments where we already know the storage strategy
and focus on the remaining ones.

Definition 1. A contraction of a schema graph GS with annotated fragment set F is an
operation which replaces each fragment f ∈ F , s.t. 6 ∃f ′ ∈ F : f @ f ′, with a single
auxiliary node called a contracted node. The resulting graph is called a contracted
graph Gcon

S .

The basic idea of the adaptive strategy is as follows: Having a contracted graph
Gcon

S we repeat the BAS algorithm and operation contraction until there is no fragment
to annotate. The BAS algorithm is just slightly modified:

– It searches for schema fragments which are not involved in the schema, i.e. it
searches among all nodes of the given graph and returns the (eventually empty)
set of identified fragments.

– For similarity evaluation we do not take into account contracted nodes.
– The annotations of contracted nodes are always overriding in relation to the newly

defined ones.

We denote this modification of BAS as a contraction-aware annotation strategy
(CAS). The resulting annotating strategy is called global annotation strategy (GAS).

Hence at this stage we have an XML schema S and a set of schema annotations F
consisting of two subsets:

– Forig , i.e. annotations provided by a user and
– Fadapt, i.e. annotations denoted by GAS algorithm.

(Note that the Fadapt can be empty representing the case of a classical user-driven
strategy.) The annotations from set Fadapt are considered as possible candidates for
annotating, but not all of them should be included in the final storage strategy. Firstly,
not all the candidate combinations can be applied on a schema fragment at the same
time. And secondly, not all the candidate annotations have to be required by the user. A
user can specify final schema fragments, i.e. fragments which should not be influenced
by the GAS algorithm, but despite this feature the system can still propose candidates
unappropriate for particular application. Thus the natural following step is correction of
the set Fadapt.

Whenever the set of annotations is corrected, i.e. the final user-approved storage
strategy is determined, there remains the open problem of query evaluation. Firstly,
the system must cope with the interface between mapping methods, i.e. to be able to
process parts of a single query using different storage strategies. And considering the re-
dundancy, it must efficiently determine which of the available storage strategies should
be used for evaluation of a particular query.
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4 Correction of Candidate Set

The first step related to efficient query evaluation is correction of the candidate set of
annotations Fadapt. Apart from checking correctness and completeness [6] of schema
annotations, we can distinguish three cases corresponding to the following three steps:

1. The system removes cases which are forbidden or meaningless.
2. The system identifies cases where the user can choose from several possibilities.
3. The system accepts further user-specified corrections of proposed annotations which

do not correspond to intended future usage.

In the first two cases the system must be able to correctly identify the situations, the
last case is rather the question of user-friendly interface.

4.1 Missed Annotation Candidates

We can also identify situations when the system could automatically add more annota-
tion candidates. We discuss them in the following examples, where fA, f ′A, fB , f ′B , f ′A,B

denote schema fragments f and f ′ annotated using storage strategies A, B, or both.

Situation A – Unidentified Annotated Subfragment Let us consider the situation de-
picted in Figure 2 where schema S is provided with a set of annotated fragments
Forig = {fA, fB}, where fB @ fA, whereas the GAS algorithm identified a set of
fragments Fadapt = {f ′A} (as depicted by schema S′). The question is whether it is
necessary to add also fragment f ′B , where f ′B @ f ′A (as depicted by schema S′′).

Fig. 2. Unidentified annotated subfragment

If we analyze the situation, the answer is obvious. If sim(fB , f ′B) > Tsim, the
algorithm would add f ′B to Fadapt too. Thus if f ′B is not annotated, its similarity is not
high enough and thus it should not be added to Fadapt.

Situation B – Unidentified Annotated Superfragment The second situation is depicted
in Figure 3. Schema S is again provided with a set of annotated fragments Forig =
{fA, fB}, fB @ fA, but the GAS algorithm identified a set of fragments Fadapt =
{f ′B} (as depicted by schema S′). In this case we do not discuss whether to add also
fragment f ′A, where f ′B @ f ′A, because we can apply the same reason as in case of
Situation A. The question is whether f ′ should be annotated using both A and B, i.e.
Fadapt = {f ′A,B} (as depicted by schema S′′).
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Fig. 3. Unidentified annotated superfragment

In this case we cannot simply state which of the possibilities should be chosen,
because for both we can find good reasons. Thus this is the case for user interaction
and/or a default setting.

4.2 Sample Set of Annotations

For demonstration of further open issues related to correction of candidate set of anno-
tations as well as query evaluation, we have chosen particular types of fixed mapping
methods which represent typical and verified storage strategies. The whole set of sup-
ported annotating attributes, their values, and corresponding mapping strategies is listed
in Table 1.

Attribute Value Function
INOUT inline,

outline
The fragment is inlined or outlined to/from parent table.

GENERIC edge,
attribute,
universal

The fragment is stored using schema-oblivious Edge, Attribute,
or Universal strategy [7].

SCHEMA basic,
shared,
hybrid

The fragment is stored using schema-driven Basic, Shared, or
Hybrid strategy [17].

TOCLOB true The fragment is stored to a CLOB column.
INTERVAL true The fragment is indexed using the Interval encoding [19].

Table 1. Supported schema annotations

Similarly to the existing works we support inlining and outlining of a schema frag-
ment to/from parent table or its storing to a single CLOB column. As for the “classical”
mapping methods we support a set of schema-oblivious storage strategies – the Edge,
Attribute, and Universal mapping [7] – and a set of schema-driven storage strategies
– the Basic, Shared, and Hybrid algorithm [17]. Last but not least, we support a kind
of numbering schema which speeds up processing of particular queries – the Interval
encoding [19].

Naturally, the set of supported mapping strategies could be much wider and involve
more representatives of the existing reasonable mapping strategies. But our aim was to
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choose well-known representatives of particular approaches which enable to illustrate
various situations.

4.3 Annotation Intersection

As the annotated fragments can intersect as well as a single fragment can be annotated
using multiple storage strategies, we have defined three types annotation intersection
assuming that the system is provided with both the set of annotations and types of their
mutual intersection.

Definition 2. Intersecting annotations are redundant if the corresponding mapping strate-
gies are applied on the common schema fragment separately.

Definition 3. Intersecting annotations are overriding if only one of the corresponding
mapping strategies is applied on the common schema fragment.

Definition 4. Intersecting annotations are influencing if the corresponding mapping
strategies are combined resulting in one composite storage strategy applied on the com-
mon schema fragment.

Redundant annotations can be exploited, e.g., when a user wants to store XHTML
fragments both in a single CLOB column (for fast retrieval of the whole fragment) and,
at the same time, into a set of tables (to enable querying particular items). An example
of overriding annotations can occur when a user specifies a general mapping strategy for
the whole schema S and then annotates fragments which should be stored alternatively.
Naturally, in this case the strategy which is applied on the common schema fragment
is always the one specified for its root element. The last mentioned type of annotations
can be used in a situation when a user specifies, e.g., the 4NF decomposition for a
particular schema fragment and, at the same time, an additional numbering schema
which speeds up processing of particular types of queries. In this case the numbering
schema is regarded as a supplemental index over the data stored in relations of 4NF
decomposition, i.e. the data are not stored redundantly as in the first case.

Apart from the allowed types of intersection, there are also cases when a particular
combination of annotations is senseless. For instance consider the situation depicted in
Figure 4, where schema S contains two annotated fragments fTOCLOB and fSCHEMA,
whereas fSCHEMA @ fTOCLOB and the TOCLOB annotation overrides all the previ-
ously specified strategies. As it is obvious, such combination of annotations is useless,
since there is no point in shredding a part of a schema fragment stored in a CLOB
column into a set of tables. The situation also depicts that the order of composition of
annotations is important. Obviously, the opposite order, i.e. if fTOCLOB @ fSCHEMA,
is reasonable and can result in both redundant and overriding intersection.

Another question is for which subsets of the supported schema annotations the in-
tersection type should be specified. Consider the situation depicted in Figure 5, where
schema S contains two annotated fragments fA and fB,C , whereas fB,C v fA. At this
situation we naturally need to know the result of intersection of all the three annotations
together. And with the above finding, it can also differ depending on the order of their
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Fig. 4. Forbidden
intersection of
annotations

Fig. 5. Intersection
of multiple annota-
tions I.

Fig. 6. Intersection
of multiple annota-
tions II.

mutual composition. Therefore, we should theoretically specify the result of intersec-
tion of all possible subsets of ΩA and all respective orders. But, in fact, as there are
pairs of annotations or their orders which are forbidden, the number of such specifica-
tions significantly decreases. And, in addition, such specifications need to be stated for
the whole system only once, not for each mapping task separately.

We demonstrate both the situations for the sample set of annotations in the following
sections.

Intersections of Pairs of Annotations The specification of allowed types of intersec-
tions for pairs of annotations is relatively simple. Four our sample set of annotations
they are listed in Tables 2 and 3, where ∅ represents no effect of intersection, × rep-
resents forbidden intersection, and Xrepresents allowed intersection. Each field of the
table represents the result of applying the mapping strategy in the row on the mapping
strategy in the column.

I
N
O
U
T

G
E
N
E
R
I
C

S
C
H
E
M
A

T
O
C
L
O
B

I
N
T
E
R
V
A
L

INOUT ∅ × × × ×
GENERIC × ∅ X × ×
SCHEMA × X ∅ × ×
TOCLOB × X X ∅ ×
INTERVAL × × × × ∅

Table 2. Overriding and redundant intersection

I
N
O
U
T

G
E
N
E
R
I
C

S
C
H
E
M
A

T
O
C
L
O
B

I
N
T
E
R
V
A
L

INOUT ∅ X X × ×
GENERIC × ∅ × × ×
SCHEMA × × ∅ × ×
TOCLOB × × × ∅ ×
INTERVAL × X X × ∅

Table 3. Influencing intersection

As can be seen from the tables, the amount of reasonable and thus allowed combina-
tions of mapping methods is relatively low in comparison with the theoretically possible
options. Firstly, we assume that the combination of two identical annotations results in
an empty operation, i.e. it has no effect as depicted at diagonals. And, in addition, in our
case the results for overriding and redundant annotations are identical and thus listed in
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one common table. Another two obvious cases are INOUT and INTERVAL annotations
which are supposed to influence any other method. Therefore, they can occur only in
case of influencing intersections and only in one particular order of composition. Natu-
rally, they can be applied only on methods which shred a schema fragment into a set of
tables. Considering the TOCLOB annotation, it can be also applied on a method which
shreds a schema fragment into one or more tables, since the whole fragment is then
viewed as a single attribute. As for the composition orders, as depicted in Figure 4, the
TOCLOB annotation can be applied only on a mapping strategy, but not vice versa. Note
that from another point of view the TOCLOB annotation can be regarded as influencing,
rather than overriding. Similarly to the INOUT annotation it influences the given stor-
age strategy treating a schema fragment as a single attribute. But it is only a question of
semantics.

Last but not least, note that if the order of composition of mapping strategies is not
obvious (e.g. if a single fragment is annotated using multiple strategies), we take as the
result union of both the possible orders.

Intersections of Multiple Annotations As for the intersection of multiple annotations
together we need to distinguish several cases. We demonstrate them using the example
depicted in Figure 6, where schema S contains three annotated fragments fA, fB , and
fC , whereas fC @ fB @ fA. The question is what will be the result of annotation for
their intersection.

As for the first situation let us assume that the intersection of fA and fB is over-
riding. Then the situation transforms to the case of intersection of two methods (i.e.
fB and fC) as defined in the previous section. The second situation occurs when the
intersection of fA and fB is redundant, meaning that the common schema fragment is
stored using both the strategies A and B. Then the situation of intersection with strat-
egy C transforms to union of separate intersections of two pairs of methods (i.e. fA, fC

and fB , fC). Or, also in this case the user can specify on which of the two strategies A
and B should strategy C be applied. The third situation involves the last case when the
intersection of fA and fB is influencing. In this case the resulting intersection must be
defined for all the possible cases. For our sample set of annotations, the solution again
corresponds to union of separate intersections of two pairs of methods (whereas one of
them always results in forbidden intersection). But, in general, the result can lead to a
brand new one method and therefore a new set of rules for intersecting.

Note that also in this case if the order of composition of mapping strategies is not
evident, we again take as the result union of all the possible orders. And similar discus-
sion can be done for larger sets of annotations as well.

4.4 Examples of Schema Annotations

The annotations supported by system UserMap (see Table 1) are expressed using at-
tributes from a name space called usermap and can be associated with element defini-
tions of XSDs. Similarly to the paper [6] they could be associated also with attributes,
attribute groups, element groups, etc. But we restrain to elements for simplicity.
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Example 1 – Exploitation of CLOBs The exploitation of CLOBs enables to speed up
reconstruction of schema fragments. It is useful especially in cases when the user knows
that particular schema fragment is rather document-oriented and will be retrieved as a
whole. Consider the example in Figure 7 where a fragment of XSD of the Internet Movie
Database (IMDb)2 contains information about actors. Each actor has name consisting
of the first name and the last name and filmography, i.e. a list of movies each consisting
of a title and a year. For better lucidity the element names are underlined and schema
annotations are in boldface.

Fig. 7. Exploitation of CLOBs – XML schema

According to the annotations, the whole fragment, i.e. element Actor, should be
stored using the Hybrid algorithm, as specified by the SCHEMA="hybrid" annota-
tion, its subelement Name should be stored into a CLOB column (TOCLOB="true"),
and subelement Title should be outlined to a separate table (INOUT="outline").

As depicted in Tables 2 and 3 the intersection of SCHEMA and TOCLOB annotations
can be either overriding or redundant. Firstly, let us consider the overriding case. The
resulting relational schema is depicted in Figure 8 (b).

As it is expectable the resulting relational schema corresponds to the result of classi-
cal Hybrid algorithm (depicted in Figure 8 (a)) except for two cases. Firstly, the element
Name is treated as an element having a text content and stored into a single CLOB col-
umn. And secondly, the element Title is stored into a separate table, although the
classical Hybrid algorithm would inline it to table Movie too.

Example 2 – Redundant Mapping Strategies Let us again consider the XSD exam-
ple in Figure 7, but this time assuming that the intersection of SCHEMA and TOCLOB
annotations is redundant. The resulting relational schema is depicted in Figure 8 (c).
In this case the element Name is stored twice, using both the strategies, i.e. into two

2 http://www.imdb.com/
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Fig. 8. Exploitation of CLOBs – relational schemes

columns corresponding to classical Hybrid algorithm and, at the same time, into one
CLOB column.

Note that a similar type of storage strategy can be defined also using the system
XCacheDB [3] which enables both redundant and overriding mapping to a CLOB col-
umn. The main difference is that the system supports only one particular type of shred-
ding into a set of tables (which can be modified by inlining and outlining).

Example 3 – Influencing Mapping Strategies Last but not least, consider an example of
influencing intersection of mapping strategies. In example depicted in Figure 9 we use
the same fragment of IMDb XSD, but with different annotations. This time the element
Actor should be stored using schema-oblivious Edge mapping (GENERIC="edge"),
whereas queries over its subelement Filmography are enhanced using the Interval
encoding (INTERVAL="true").

Fig. 9. Influencing mapping strategies – XML schema
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Figure 10 depicts both the classical Edge mapping (a) and the result of the strategy
specified by the annotations (b). In the former case all the edges are stored into a single
table Edge. In the latter case edges of subelement Filmography are stored into a
separate table EdgeFilmography having additional columns (intervalStart
and intervalEnd) for storing values of Interval encoding. Note that the influencing
enables to skip the column order, since the Interval encoding involves total ordering.

Fig. 10. Influencing mapping strategies – relational schemes

The closest example can be found in case of system ShreX [6] which supports an-
notation structurescheme specifying how the structure of the whole schema is
captured, i.e. using keys and foreign keys, Interval encoding, or Dewey decimal classi-
fication. This feature can be considered as a special type of influencing mapping, though
its purpose is slightly different.

Auxiliary Columns As the above described examples of relational schemes are illus-
trative, they only represent the characteristics of the mapping strategies. In fact, when
the schemes are generated automatically, we cannot use directly, e.g., the element and
attribute names for table and column names of the schema. In addition, each of the data
tables contains also auxiliary information. The most important ones are a unique ID of
the respective XML document (docID) and a unique ID of each record (recordID).
The former one enables to distinguish where the data originate from, but it is in the
following examples omitted for simplicity. The latter one is exploited in two cases for
similar reason. Since each of the storage strategies can have structurally different tables
we use this uniform ID to enable their joining, as well as for uniform resulting value of
the SQL query. We illustrate its usage in the following text.

5 Query Evaluation

The basic idea of XML query evaluation in (O)RDBMS-based storage strategies is rel-
atively simple. An XML query posed over the data stored in the database is translated
to a set of SQL queries (which is usually a singleton) and the resulting set of tuples is
transformed to an XML document. We speak about reconstruction of XML fragments.
As it is analyzed in detail in [12], the amount of works which focus on efficient XML-
to-SQL query translation is enormous (the analysis considers about 40 papers), can be
classified according to various purposes, and focus on various aspects of the problem.
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Two key metrics for query evaluation are functionality, i.e. the variety of types of sup-
ported XML queries, and performance, i.e. the efficiency of evaluation of the query.

The main idea of our proposed system is to enable a user to create a hybrid XML-
to-relational storage strategy, i.e. a relational schema which consists of multiple sub-
schemes having different structure. Assuming that each of the subschemes can (and
usually does) require a different XML-to-SQL query translation algorithm, we focus
on the problem of interface between the storage strategies, i.e. the problem of evalua-
tion of parts of a single XML query using various storage strategies. Second issue is
related to redundancy that can occur in case of intersection of annotations, in particular
redundant and influencing ones, where a single schema fragment is stored using two or
more strategies. Therefore a natural assumption is that the system can estimate the cost
of query evaluation using all possible strategies and choose the optimal one. For this
purpose we again exploit our sample set of annotations (see Table 1) and using simple
examples we illustrate the related issues.

5.1 Interface between Schema Annotations

Let us consider the three types of annotation intersections separately and discuss their
difference from the point of view of query evaluation. In case of overriding intersection
of strategies A and B, the interface must allow joining (one or more) tables of strategy
A with (one or more) tables of strategy B. In case of redundant intersection of strategies
A and B the situation is similar but, in addition, the interface must enable to use any of
the strategies. The influencing annotation intersection requires a brief discussion: Under
a closer investigation we can see that there are two types of annotations, i.e. mapping
strategies, that can influence another one. Each of them is represented by one of the
annotations of the sample set. The INOUT annotation enables to modify the structure
of the resulting storage strategy, i.e. the amount of tables and/or columns. Therefore it
is processed before the schema is mapped to relations and having the information about
the structure it does not need to be taken into account later. We call these annotations
early binding. (Note that the TOBLOB annotation can be viewed as a kind of early
binding annotation as well.) On the other hand, the INTERVAL annotation enhances a
given storage strategy with additional information which is exploited as late as a query
is evaluated. We call these annotations late binding.

Structural Tables Since the resulting storage strategy is not fixed and can be influ-
enced by many factors, we need to store the information about the structure of each
mapped XML schema. Similarly to papers [6] [3] we store the information into supple-
mental tables. This simple idea enables to parse the schema annotations only once and
not every time a document is shredded into relations or a query is posed, as well as it
enables to make the processing to be independent on the way the mapping is specified.

In particular for the sample set of annotation strategies we use the following tables:

xmlSchemaTable(uri,schemaID)

contains information about XML schemes for which there exists a mapping in the repos-
itory, i.e. URI of the XML schema (uri) and ID of the schema (schemaID) unique
within all the stored schemes.
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xmlDocTable(schemaID,url,docID)

that contains information about XML documents stored in a database schema created
for particular XML schemes, i.e. URL of the XML document (url) and ID of the doc-
ument (docID) unique within all the documents valid against a schema (schemaID)
stored in the repository.

xmlAttrTable(schemaID,attrID,mapID,xmlName,paramID)

contains information about storage strategies for particular attributes in the schema, i.e.
ID of the attribute (attrID) unique within a schema (schemaID), ID of the storage
strategy for the attribute (mapID), name of the attribute (xmlName), and ID of addi-
tional parameters (paramID) corresponding to the respective storage strategy, or null
if there is no such information needed.

Note that the attributes could be treated similarly to elements with text content, i.e.
different storage strategies could be defined for an element and for its attributes. But
for simplicity the experimental implementation assumes that the storage strategy for
attributes is always denoted by the storage strategy for corresponding element.

xmlElemTable(schemaID,elemID,mapID,xmlName,paramID)

contains information about storage strategies for particular elements in the schema, i.e.
ID of the element (elemID) unique within a schema (schemaID), ID of the storage
strategy for the element (mapID), name of the element (xmlName), and ID of addi-
tional parameters (paramID) corresponding to the respective storage strategy, or null
if there is no such information needed.

xmlElemAttrTable(schemaID,elemID,attrID)

contains information about relationship between an element (elemID) and its attribute
(attrID) in a schema (schemaID).

Note that this information could be stored into the xmlAttrTable as well, but
assuming that XSDs enable to specify global attributes and attribute groups which can
be referenced from several elements, the relationship can be in general M:N.

xmlElemElemTable(schemaID,elemID,subElemID)

contains information about M:N relationship between an element (elemID) and its
subelements (subElemID) in a schema (schemaID).

Last but not least, there remains the structure of tables containing the additional
parameters necessary for particular mapping strategies. Since each of the strategies can
require different information we have outlined the parameters from tables describing
elements and attributes and we store it separately, though the relationship between the
tables is 1:1.

If we consider the sample set of annotations, we obviously do not need any other
information for the TOCLOB and INOUT annotations themselves, since both of them
are early binding annotations which influence the amount of tables of another strategy.
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As for the GENERIC annotation, in case of pure Edge and Universal mapping the
target schema is fixed regardless the source data. But in case of Attribute mapping which
requires a separate table for each distinct element or attribute name in the schema, or
when inlining or outlining is applied on any of the three cases, we need to know the
name of table where the element / attribute is stored.

In case of SCHEMA annotation the situation is particularly complicated since the
resulting relational schema is given by the structure of the source XML schema. And, in
addition, TOCLOB or INOUT annotations can be applied on any of the three algorithms
and influence the structure as well. Therefore, for each element and attribute we need
to store the information where and how it is stored. For this purpose we use table

xmlBSHTable(mapID,mapType,tableName,columnName)

that contains mapping type (mapType) of the element / attribute, where n denotes
numeric data type, s denotes string data type, and e denotes element content (of an
element), name of table for storing the element / attribute (tableName), and name of
column for storing the element / attribute (columnName).

Last but not least, there remains the late binding INTERVAL annotation. As we
have mentioned it is considered as an additional index that can speed up processing of
particular approaches. Hence for element and attributes enhanced with this index we
need to know the names of columns where the corresponding values are stored.

An example of content of structural tables for the three relational schemes (a), (b),
(c) in Figure 8 is depicted in Figure 11. Since there are no attributes in the sample
schema, we only deal with structural tables related to elements. The processing of at-
tributes would be very similar. (We do not use particular IDs of the 1:1 relationship for
simplicity; the related tables are mentioned in separate rows.)

As it is obvious, the tables contain all the information necessary for both document
shredding and query evaluation. For each element of the sample schema we know its
storage strategy and related details, i.e. the way it is stored and the target table and/or
column. Note the way we treat redundant intersection of annotations. In this case we
create two instances of the redundant fragment, each having its own ID and type of
storage strategy.

5.2 Document Shredding

Having the information from structural tables, the process of document shredding is
relatively simple. For instance, if we consider the relational schemes in Figure 8, for
storing an element we generally need two information – ID of its parent element and
constructors of its subelements that are mapped to the same table. Therefore the pro-
cess can be described as a recursive creation of constructor for the current element from
constructors of its subelements (and attributes). During the top-down progress the ID of
the current element e is propagated to be stored in parentID columns of its subele-
ments e1, e2, ..., ek mapped to tables. During the bottom-up return from the recursion
its subelements ek+1, ek+2, ..., en mapped to simple types hand over their constructors
and column names. Then element e creates its own constructor.
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Fig. 11. Exploitation of CLOBs – structural tables

For instance, consider the element Movie in relational schema (b) in Figure 8.
Being provided with parent ID, the shredding process first identifies that the element
Movie has element content. Therefore it generates its ID and recursively processes
its subelements. The subelement Title stores itself to own table, but the subelement
Year returns the constructor of the integer value and name of the corresponding col-
umn. Hence the constructor of the Movie element consists of three items – ID, Year,
and parentID.

5.3 Query Translation

Similarly to the process of document shredding, with the information from structural
tables the query evaluation is quite straightforward. Using the following examples we
illustrate the related key ideas. Assuming that wild-card queries are usually converted
into union of several simple path queries with predicates, one for each satisfying wild-
card substitution [11], we consider only examples of simple-path queries.

Example 1 – Early Binding Annotations Let us consider the example of query

/Actor/Filmography/Movie[Year=2007]/Title

and relational schema depicted in Figure 8 (b). Firstly, the table where element Actor
is stored, is added to the FROM clause. Seeing that element Filmography is mapped
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to the same table, this step has no effect. Then, since the element Movie is mapped to
its own table, the table Movie is added to the WHERE clause and joined using IDs. The
processing of predicate Year=2007 first requires analysis of the query on the left-hand
side. Since element Year is mapped to column of the Movie table, it does not cause
new joins, but only adding the condition to the WHERE clause. The Title element
is again detected to be stored in a separate table resulting in another join. Finally, the
SELECT clause is provided with the reference to its record ID, resulting in the following
query:

SELECT t.recordID
FROM Actor a, Movie m, Title t
WHERE m.parentID = a.ID AND

m.Year = 2000 AND
t.parentID = m.ID

(Note that using the knowledge of semantics of the XML schema, i.e. on the basis
of analysis of structural tables, this query could be further optimized, in particular, table
Actor can be omitted.)

From the point of view of evaluation of a single query using several storage strate-
gies, the described example of query evaluation copes with an early binding influencing
annotation INOUT applied on annotation SCHEMA. Thus the translation approach is
similar to classical Hybrid algorithm, except for slightly different structure which is
captured using the structural tables. A similar effect would occur in case of overriding
annotation TOCLOB.

Example 2 – Structurally Different Tables Now, let us consider the same query but a
situation, where element Actor is associated with annotation SCHEMA="hybrid"
and element Movie with annotation GENERIC="edge" as depicted in Figure 12,
whereas the intersection is overriding.

Fig. 12. Join of structurally different tables – XML schema
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Hence, we need to join structurally different tables whose IDs have quite differ-
ent meaning. As for the first part of the query /Actor/Filmography the transla-
tion remains the same as in the previous example. As for the second part of the query
/Movie[Year=2007]/Title, we need to join the Edge table three times, i.e. for
Movie and Title elements and for the predicate Year=2007 resulting in a query:

SELECT t.recordID
FROM Edge m, Edge y, Edge t
WHERE m.toID = y.fromId AND

y.value = 2000 AND
m.toID = t.fromId

Finally, for the purpose of joining the two tables, i.e. Actor and Edge, we need
to specify the interface between them. In our particular case we exploit the auxiliary
recordID column of both the tables and information from structural table

xmlInterTable(anotID,parentID)

which contains pairs of parent-child relationships between recordID of an annotated
element (anotID) and recordID of its parent element (parentID). Then the re-
sulting query translation is as follows:

SELECT t.recordID
FROM Actor a, xmlInterTable i,

Edge m, Edge y, Edge t
WHERE a.recordID = i.parentID AND m.recordID = i.anotID AND

m.toID = y.fromId AND
y.value = 2000 AND
m.toID = t.fromId

The example depicts that a join with xmlInterTable is added every time the
query “passes borders” of two mapping strategies. The obvious exception is the case
of early binding influencing annotations. Naturally, more complex mapping strategies
could require another information about their mutual interface, but for our particular
sample set this information is sufficient.

5.4 Exploitation of Redundancy

The above described algorithm of query evaluation assumes that there is always one
possible way it can be performed. Naturally each SQL query can have multiple query
plans, each having its cost depending on the order tables are joined, selectivity of
WHERE conditions, usage of ORDER BY clauses, etc. But in this section we deal with
the set of distinct mapping strategies that “cover” the query.

Consider again the same sample query and the annotated schema in Figure 12,
where element Actor is associated with annotation SCHEMA="hybrid" and ele-
ment Movie with annotation GENERIC="edge", whereas the intersection is now
redundant. Then we have two possibilities how to evaluate the query – either using
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purely the Hybrid mapping or using both the Hybrid and Edge mapping and their in-
terface. In the former case the query would require joining of two tables – Actor and
Movie (the classical Hybrid algorithm inlines the element Title). The query trans-
lation of the later case was discussed above and involves joining of five tables – table
Actor of the Hybrid mapping, three Edge tables from the Edge mapping, and table
xmlInterTable carrying the interface information between the two strategies. If we
use a simple cost metric which considers purely the amount of join operations necessary
for query evaluation, the former translation strategy is naturally better choice.

In general, there can exist a plenty of possibilities how to evaluate a query Q. For
this purpose we first analyze the structural tables and search for all the possible se-
quences of strategies using which Q can be evaluated and we build and auxiliary eval-
uation graph Geval. Consider the sample situation in Figure 13.

Fig. 13. Example of evaluation graph Geval

The figure schematically depicts that query Q is divided into fourth parts Q1, Q2,
Q3, and Q4, determined by four annotations, i.e. mapping strategies it “traverses”. Part
Q1 can be evaluated only using strategy A1. Part Q2 can be evaluated either using
strategy A2 or A3 meaning that the intersection of the two annotations is redundant
(denoted by the union sign), but they override annotation A1. As for the part Q3, the
respective strategy is again only A4 which overrides the previous two strategies A2 and
A3. And finally, part Q4 can be evaluated using both A4 or influencing intersection of
A4 and A5 (denoted by the plus sign).

On the right-hand side of the figure is depicted corresponding evaluation graph
Geval whose edges correspond to storage strategies and nodes to interfaces among
them. The graph also contains two auxiliary nodes 0 and 1 which represent the be-
ginning and end of the query and respective auxiliary edges.

The construction of Geval is relatively simple:

1. The auxiliary node 0 is created.
2. Starting with the set of storage strategies A = {A1, A2, ..., Ak} for the root element

of query Q, respective k outgoing edges of node 0 are created.
3. Each edge and corresponding storage strategy Ai is processed recursively: Travers-

ing the query Q and structural tables we search for each interface of Ai and Aj , s.t.
Ai 6= Aj .
(a) In case of redundant intersection of Ai and Aj , for both Ai and Aj new outgo-

ing edges are created.
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(b) In case of late binding influencing intersection of Ai and Aj , for both Ai and
Ai + Aj new outgoing edges are created.

(c) In case of overriding intersection of Ai and Aj , a new outgoing edge for Aj is
created.

4. The auxiliary node 1 and respective edges connecting all leaves of the graph with
node 1 are created.

For the purpose of searching for the best evaluation sequence of storage strategies,
each edge e ∈ Geval is assigned its length which expresses the cost costeval(Qi, Aj) of
evaluating of a query part Qi using a strategy Aj and cost costinter(Aprev, Aj) of the
interface between strategy Aprev used for evaluation of Qi−1 and current strategy Aj .

Definition 5. Length of edge e = 〈vx, vy〉 of evaluation graph Geval is defined as
follows:

length(e) =





costeval(Qi, Aj) vx = 0
costeval(Qi, Aj)+
costinter(Aprev, Aj) vx 6= 0
0 vy = 1

Now, having a graph Geval and corresponding lengths of its edges, the problem
of finding the optimal evaluation sequence of strategies transforms to the shortest path
problem, i.e. searching the shortest path from node 0 to 1, which can be solved, e.g.,
using the classical Dijkstra’s algorithm.

Reconstruction of XML Fragments Similarly to query evaluation also in case of
reconstruction of resulting XML fragments there can occur multiple ways of retrieval
of the relevant data. Consider the situation depicted in Figure 9, where element Actor
is associated with annotation GENERIC="edge" and element Filmography with
late binding influencing annotation INTERVAL="true", and query

/Actor/Filmography/Movie[Year=2007]

whose SQL translation returns a set R = {r1, r2, ..., rk} of values of recordID col-
umn of records from table EdgeFilmography which fulfill the query. The required
XML result is a set of elements Movie, each containing subelements Title and Year
with corresponding values. With regard to the specified annotations we have two pos-
sibilities how to retrieve corresponding information – the Edge mapping or the Interval
encoding.

In the former case we process each recordID ri ∈ R; i = 1, 2, ..., k separately:
Firstly, we create a new Movie node of DOM tree TDOM of the XML result. Then
we select the set of all its subelements (and attributes) from the EdgeFilmography
table. Subelements having a text content are added to the result, i.e. for each element a
corresponding node in TDOM is created. Subelements having element content are pro-
cessed recursively. In general, for the purpose of the reconstruction we need to perform
O(k · n) select queries from the EdgeFilmography table, where n is the maximum
number of non-leaf nodes of XML fragments rooted at element Movie.
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In the latter case, i.e. when exploiting the Interval encoding, the retrieval of the
relevant information is much easier and faster. The Interval encoding enables to retrieve
information of the whole XML fragment at once and totally ordered. Having the set
R = {r1, r2, ..., rk} we need a single query which contains a single join of two tables
EdgeFilmography:

SELECT *
FROM EdgeFilmography m, EdgeFilmography e
WHERE m.recordID IN (r1, r2, ..., rk) AND

m.intervalStart <= e.intervalStart AND
e.IntervalEnd <= m.intervalEnd

ORDER BY e.intervalStart

Thus, also in case of document reconstruction we need to choose the most efficient
way of retrieval of the data. For this purpose we can use the same approach as in case
of query evaluation. The only difference is, that the costs of the strategies can differ.
As for our sample set of annotations the most striking example is the TOCLOB storage
strategy, where in case of query evaluation it has a high cost assuming that it requires
preprocessing of the CLOB content, whereas in case of reconstruction its cost is low.

6 Architecture of System UserMap

As depicted in Figure 14 the architecture of experimental system UserMap consists of
several modules which can be divided according to phases of processing they belong to.
The particular modularity is given not only by logical partitioning of the system, but it
is also influenced by the needs of experiments and corresponding ability to omit various
modules [13].

Phase I. Preparation Being given an annotated XSD schema S the system first checks
its validity using the Xerces Java parser [16] and builds its DOM tree TS [1]. Then, for
easier processing, the DOM tree is transformed into a DOM graph GS [15], i.e. a graph
representation of XSD schema similar to classical DTD graph [17] extended for XML
Schema constructs. For the same purpose the graph builder extracts the set of annotated
fragments Forig .

Phase II. Searching for Annotation Candidates At this phase of the processing the
BAS module performs the BAS algorithm and then the GAS module performs the GAS
algorithm being given the schema S and the set of user-specified annotations Forig . The
former module identifies the set of annotation candidates FBAS , the latter one the set
of annotation candidates FGAS . The system enables to skip any of the approaches, to
compare their results, and thus to compare the resulting storage strategies. The resulting
set of annotation candidates Fadapt = FBAS ∪ FGAS . Since the similarity evaluator is
a separate module evaluating similarity of two given schema fragments f and g, it can
be easily replaced with any other method.
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Fig. 14. Architecture of the system

Phase III. Correction of Candidate Set At this phase the candidate set of annotations
Fadapt needs to be corrected. As described in Section 4 there are two types of correc-
tion – automatic and user-specified – resulting in set of corrected annotations F ′adapt.
In the former case the annotation analyzer automatically searches and removes the for-
bidden annotations, in the latter case a user interaction is required. In the experimental
implementation of the system the user interaction is omitted and a default possibility is
always applied. But as mentioned in the Conclusion, the very next enhancement of the
system will focus on user interaction, user-friendliness, and appropriate GUI. Then also
the incorrect situations can be identified and solved using the user interaction as well.

Phase IV. XML-to-Relational Mapping At this phase the annotation processor parses
the set of corrected annotations and maps the corresponding schema fragments into
the data repository using the respective approaches. As described in Section 5.1, at the
same time the system stores the information about schema mapping into supplemental
structural tables in the mapping repository.
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Phase V. Document Shredding and Query Evaluation At this phase the system is ready
for the intended application. It involves two operations:

– shredding a document D valid against XML schema S into corresponding tables
and

– evaluation of query Q posed over the schema S which returns document DQ con-
taining corresponding results.

The document shredder reads the XML document using a SAX parser and on the
basis of the information from mapping repository generates an SQL script for storing
appropriate tuples into the data repository. The query evaluator firstly identifies the
most efficient evaluation sequence (as described in Section 5.4) and then, also using
information from mapping repository, translates the XML query into an SQL query.
Similarly, the resulting tuples are then transformed to corresponding XML fragments
using the most efficient reconstruction sequence.

7 Conclusion

As can be seen, there are several interesting issues related to the relatively simple idea of
hybrid user-driven mapping strategy. We have outlined the key components of the whole
system and using simple examples illustrated the related problems. As it is obvious,
most of the approaches (such as, e.g., efficient query translation, cost estimation of the
queries, etc.) can be significantly optimized, since a detailed research has already been
done in these areas.

The very next step of our future work is an elaborate implementation of the proposed
system with the emphasis on all the “side” aspects of the proposal including the omitted
user-friendly interface which is definitely and important requirement for a system based
on user interaction. During the research experimental and prototype implementations of
the most important modules of the system were created for the purpose of evaluation
or verification of important algorithms. But at this stage we intend to implement the
system as a complete and robust application. And this plan is also closely related to the
mentioned open issue of optimization of the query evaluator. Similarly to paper [8] we
intend to exploit a cost evaluator which is able to dynamically adapt the statistics to
the newly coming data and, at the same time, to conform to the assumption of multiple
storage strategies used within a single schema.
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