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Abstract. As XML has undoubtedly become a standard for data rep-
resentation, it is inevitable to propose and implement techniques for
efficient managing of XML data. A natural alternative is to exploit fea-
tures and functions of (object-)relational database systems, i.e. to rely
on their long theoretical and practical history. The main concern of such
techniques is the choice of an appropriate XML-to-relational mapping
strategy.
In this paper we focus on enhancing of user-driven techniques which
leave the mapping decisions in hands of users. We propose an algorithm
which exploits the user-given annotations more deeply searching the
user-specified “hints” in the rest of the schema and applies an adaptive
method on the remaining schema fragments. We describe the proposed
algorithm, the similarity measure designed for this purpose, sample im-
plementation of key features of the proposal called UserMap, and results
of experimental testing on real XML data.

1 Introduction

Without any doubt the eXtensible Markup Language (XML) [9] is currently de-
facto a standard for data representation and manipulation. Its popularity is given
by the fact that the basic W3C recommendations are well-defined, easy-to-learn,
and at the same time still enough powerful. The popularity naturally invoked a
boom of their efficient implementations based on various storage strategies from
the traditional ones such as file systems to brand-new ones proposed particu-
larly for XML structures, so-called native approaches or directly native XML
databases.

Probably the most natural and practically used approach involves techniques
which exploit features of (object-)relational database systems, though they are
not as efficient as the native ones due to the key problem of structural differ-
ences between XML data and relations. The reason for the popularity is that
relational databases are still regarded as universal and powerful data processing



tools and their long theoretical and practical history can guarantee a reasonable
level of reliability and efficiency. Contrary to native methods it is not necessary
to start “from scratch” but we can rely on a mature and verified technology,
i.e. properties that no native XML database can offer yet. On this account we
believe that these methods and their possible improvements should be further
enhanced.

Currently there is a plenty of existing works concerning database-based1

XML data management. Almost all the major database vendors more or less
support XML and even the SQL standard has been extended by a new part
SQL/XML [14] which introduces new XML data type and operations for XML
data manipulation. The main concern of the database-based XML techniques is
the choice of an appropriate XML-to-relational mapping strategy, i.e. the way
the given XML data are stored into relations. We can distinguish the following
three types approaches [3] [19]:

– fixed mapping methods based on predefined set of mapping rules and appro-
priate heuristics (e.g. [12] [25]),

– adaptive methods which adapt the target database schema to the intended
application (e.g. [16] [8]), and

– methods which leave the mapping decisions in hands of users (e.g. [11] [4]).

The first set of methods can be further divided [3] into generic and schema-
driven ones depending on omitting or exploiting the existence of corresponding
XML schema. However, both the types use a straightforward mapping strategy
regardless the intended future usage. On the contrary, adaptive methods auto-
matically adapt the database schema of a fixed method to the given additional
information. The best known representatives, so-called cost-driven methods, usu-
ally search a space of possible XML-to-relational mappings and choose the one
which conforms to the required application, specified using a sample set of XML
data and XML queries, the most, i.e. where the provided queries over the given
data can be evaluated most efficiently. Finally, the last mentioned type of meth-
ods can be also divided into two groups. We distinguish so-called user-defined
and user-driven methods [19] which differentiate in the amount of necessary
user interaction. In the former case a user is expected to define both the target
database schema and the required mapping strategy, i.e. to do all the work “man-
ually”. In the latter case a default mapping strategy is defined but a user can
specify local mapping changes from the predefined set of other allowed mapping
strategies, usually using schema annotations. In other words, the user-driven ap-
proach solves the main disadvantage of the user-defined one – the requirement of
a user skilled in two complex technologies who is, in addition, able to specify an
optimal database schema for a particular application. Note that the user-driven
techniques can be regarded as a type of adaptive methods too [19], since they
also adapt the default target schema to additional information, in particular to
user-specified requirements.

1 In the rest of the paper the term “database” represents an (O)RDBMS.
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In this paper we focus on further enhancing of user-driven techniques, par-
ticularly on their (in our opinion) two main persisting disadvantages. The first
one is the fact that the default mapping strategy is (to our knowledge) always
a fixed one. It is quite a surprising finding since we know that the proposed
systems are able to store schema fragments in various ways. From this point of
view an adaptive enhancing of the fixed method seems to be quite natural and
suitable. The second key shortcoming we are dealing with is weak exploitation of
the user-given information. We believe that the schema annotations a user pro-
vides can not only be directly applied on particular schema fragments, but the
information they carry can be further exploited. The main idea is quite simple –
we regard the annotations as “hints” how a user wants to store particular XML
patterns and we use this information twice again. Firstly, we search for similar
patterns in the rest of the schema and store the found fragments in a similar
way. And secondly, we exploit the information in the adaptive strategy for not
annotated parts of the schema.

To sum up, the main contribution of this paper is a proposal of an algo-
rithm which enhances classical user-driven strategies using the following two
approaches:

– a deeper exploitation of the information carried in user-given schema anno-
tations and

– an adaptive mapping strategy for not annotated parts of the schema.

Firstly, we describe the proposed algorithm theoretically. We discuss the
key ideas and problems, their possible solutions, and reasons for our particular
decisions. Secondly, we describe sample implementation of the proposal called
UserMap which (among others) involves a similarity measure focussing on struc-
tural similarity we have proposed particularly for the purpose of the algorithm.
And finally we show and discuss the results of corresponding experimental test-
ing which illustrate the behavior of the proposed algorithm.

The rest of the paper is structured as follows: Section 2 contains a motivation
for focusing on user-given information. Section 3 overviews the existing related
works in the area of user-driven methods, adaptive methods, and similarity of
XML data. In Section 4 we describe and discuss the proposed algorithm in de-
tail. Section 5 describes the sample implementation and its tuning and discusses
results of experimental tests on real XML data. Finally, Section 6 provides con-
clusions and outlines our future work.

2 Motivation

The key concern of our approach is to exploit the user-given information as
much as possible. We result from the idea of user-driven enhancing of the user-
defined techniques, where a user is expected to help the mapping process, not to
perform it. We want to go even farther. But first of all we discuss why user-given
information is so important to deal with.
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A simple demonstrative example can be a set of XML documents which con-
tain various XHTML [1] fragments. A classical fixed schema-driven mapping
strategy (e.g. [25] [18]) would decompose the fragments into a number of re-
lations. Since we know that the standard XHTML DTD allows, e.g., complete
subgraphs on up to 10 nodes, the reconstruction of such fragments would be
a really expensive operation in terms of the number of join operations. But if
we knew that the real complexity of such fragments is much simpler (and the
analysis of real XML data shows that it is quite probable [21]), e.g. that each of
the fragments can be described as a simple text with tags having the depth of 2
at most, we could choose a much simpler storage strategy including the extreme
one – a CLOB column.

Another example can be the crucial feature of database storage strategies –
updatability of the data. On one hand, we could know that the data will not be
updated too much or at all but we need an effective query evaluation. On the
other hand, there could be a strong demand for effective data updates, whereas
the queries are of marginal importance. And there are of course cases which
require effective processing of both. Naturally, the appropriate storage strate-
gies differ strongly. In case of effective query processing a number of indices and
numbering schemes can be exploited but at the cost of corresponding expensive
updates. Effective updates, conversely, require the simplest information of mu-
tual data relationships. And if both the aspects are required, it is unavoidable
to compromise. And such decision can be again made correctly only if we have
an appropriate information on the required future usage.

Last but not least, let us consider the question of data redundancy. With-
out any additional information the optimal storage strategy is the 4NF schema
decomposition into relations [4] which can be achieved, e.g., using the Hybrid
algorithm [25], a representative of fixed mapping methods. The decomposition
does not involve data redundancy or violation of any normal form, i.e. it results
in a database schema with the lowest number of relations and null attributes.
But, similarly to database design, there can be reasonable real-world cases when
the data should not strictly follow the rules of normal forms and their moderation
can lead to more effective query processing.

Both the cost-driven and user-driven methods are based on the idea of ex-
ploiting additional user-given information and they appropriately adapt the tar-
get database schema. In the former case it is extracted from a sample set of XML
documents and/or XML queries which characterize the typical future usage, in
the latter case it is specified by user-given annotations, i.e. the user directly
specifies the required changes of the default mapping. But although there is a
plenty of existing representatives of the two approaches, there are still numerous
weak points and open issues that should be improved and solved.

The first improvement is searching for identical or similar fragments in the
not annotated schema parts. This approach has two main advantages:

1. The user is not forced to annotate all schema fragments that have to be stored
alternatively, but only those with different structure. Thus the system is not
endangered of unintended omitting of annotating all similar cases.
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2. The system can reveal structural similarities which are not evident “at first
glance” and which could remain hidden to the user.

Thus the first main concern of the proposal is how to identify identical or
similar fragments within the schema.

The second enhancing focuses on the choice of the mapping strategy for
schema fragments which were neither annotated by the user, nor identified as
fragments similar to the annotated ones. In this case we combine the idea of
cost-driven methods with the fact that a user-driven technique should support
various storage strategies too. Hence the second concern is how to find the op-
timal mapping strategy for the remaining schema fragments and, in addition,
with exploitation of the information we already have, i.e. the user-specified an-
notations, as much as possible.

3 Related Work

As we have mentioned, methods which involve a user in the mapping process
can be divided into user-defined and user-driven. Probably due to simple imple-
mentation the former ones are supported in most commercial database systems
[2]. On the other hand, the set of techniques of the latter type is surprisingly
small. To our knowledge there are just two main representatives of the approach
– so-called Mapping Definition Framework (MDF) [11] and XCacheDB System
[4]. Both support inlining and outlining of an element / attribute, mapping an
element / attribute to a CLOB column, renaming target tables / columns, and
redefining column data types. The former approach furthermore supports the
Edge mapping [12] strategy and enables to specify the required capturing of
the structure of the whole schema. The latter one, in addition, allows a certain
degree of redundancy.

In both the cases the mapping for not annotated parts is fixed and the an-
notations are applied just directly on the annotated schema fragments. The two
ideas we want to use for their enhancing are adaptivity [19] and similarity [20].

3.1 Adaptive XML-to-Relational Mapping

Probably the first proposal of an adaptive cost-driven method can be found
in [16]. It is based on the idea of storing well structured parts of XML docu-
ments into relations (using the 4NF decomposition) and semi-structured parts
using an XML data type, which supports path queries and XML-aware full-text
operations. The main concern of the method is to identify the structured and
semi-structured parts. For this purpose a sample set of XML documents and
XML queries is used.

The other existing cost-driven approaches [8] [28] [30] use a different strategy.
They define a set of XML-to-XML transformations (e.g. inlining / outlining of
an element / attribute, splitting / merging of a shared element2, associativity,
2 An element with multiple parent elements in the schema – see [25].
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commutativity, etc.), a fixed XML-to-relational mapping, and a cost function
which evaluates a relational schema against a given sample set of XML data
and/or queries. Using a search algorithm a space of possible relational schemes
is searched and the optimal one is selected. Since it can be proven that even
a simple set of transformations causes the problem to be NP-hard, the corre-
sponding search algorithms in fact search for suboptimal solutions and exploit,
e.g., heuristics, terminal conditions, approximations, etc.

3.2 Similarity of XML Data

Exploitation of similarity of XML data can be found in various XML technolo-
gies, such as, e.g., document validation, query processing, data transformation,
storage strategies based on clustering, data integration systems, dissemination-
based applications, etc. Consequently, the number of existing works is enormous.
We can search for similarity among XML documents, XML schemes, or between
the two groups. Furthermore, we can distinguish several levels of similarity that
can be taken into account during the search process – a structural level (i.e. con-
sidering only the structure of the given XML fragments), a semantic level (i.e.
taking into account also the meaning of element / attribute names), a constraint
level (i.e. taking into account also various text value constraints), etc.

In case of document similarity we distinguish techniques expressing the sim-
ilarity of two documents D1 and D2 by measuring how difficult is to transform
D1 into D2 or vice versa (e.g. [23]) and techniques which specify a simple and
reasonable representation of D1 and D2 that enables their efficient comparison
and similarity evaluation (e.g. [29]). In case of similarity of document D and
schema S there are also two types of strategies – techniques which measure
the number of elements which appear in D but not in S and vice versa (e.g.
[6]) and techniques which measure the closest distance between D and all doc-
uments valid against S (e.g. [22]). Finally, methods for measuring similarity of
two XML schemes S1 and S2 exploit and combine various supplemental informa-
tion and measures such as, e.g., predefined similarity rules, similarity of element
/ attribute names, equivalence of data types and structure, schema instances,
thesauri, previous results, etc. (e.g. [17] [10] [26])

4 Proposed Algorithm

A general idea of fixed schema-driven XML-to-relational mapping methods is
to decompose the given XML schema S into a set of relations R = {r1, r2, ...,
rn} using a mapping strategy srel. An extreme case is when S is decomposed
into a single relation resulting in many null values. Other extreme occurs when
for each element e ∈ S a single relation is created resulting in numerous join
operations. (Note that since fixed mapping methods view an XML document as
general directed tree with several types of nodes, we can speak about schema
decomposition too.)
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In user-driven strategies the decomposition is influenced by user-defined an-
notations which specify how a particular user wants to store selected schema
fragments F = {f1, f2, ..., fm}. The user usually provides S (i.e. selected ele-
ments determining the fragments) with annotating attributes from the predefined
set of attribute names ΩA, each of which represents a particular fixed mapping
strategy, resulting in an annotated schema S′. A classical user-driven strategy
then consist of the following steps:

1. S is annotated using ΩA resulting in S′.
2. Annotated fragments from F are decomposed according to appropriate map-

ping methods.
3. Not annotated fragments of S′ are decomposed using a default fixed mapping

strategy sdef .

The method enhances a classical user-driven strategy combining it with the
idea of adaptive approaches. We simply add the following steps between the step
1 and 2:

a. For ∀ f ∈ F we identify a set Ff of all fragments similar to f occurring in
S\{f}.

b. For ∀ f ∈ F all fragments in Ff are annotated with annotating attributes of
f .

c. S\F is annotated using an adaptive strategy.

The whole mapping process is schematically depicted in Figure 1 where the
given schema S with F = {f, g} is mapped to a database schema R. If the pro-
posed enhancing, i.e. steps 1.a – 1.c, are included, the system gradually identifies
and adds new annotated fragments f1, f2, g1, g2, and g3 which are mapped using
user-required mapping strategies. If the enhancing is not included (i.e. in case
of a classical user-driven strategy), only fragments f and g are annotated using
user-required strategies and the rest of the schema using sdef .

Fig. 1. Schema of the mapping process

As it is obvious, the basic ideas are relatively simple. But if we analyze the
strategies more deeply, several interesting issues and open problems that need
to be solved occur. They are described in the following chapters.
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4.1 Searching for Similar Fragments

As we have mentioned, there are numerous approaches to measuring similarity of
XML data. Nevertheless, most of them cannot be directly used for our case since
our demanded key characteristics differ. In particular, we search for similarity
within the scope of a single schema, the similarity measure should not depend on
similarity of element / attribute names but primarily on complexity of content
models, and the similarity measure cannot obviously depend on the context of
fragments.

Considering the problem in more depth, several fundamental questions arise:

1. How are the annotated fragments defined?
2. What types of annotations, i.e. fixed mapping strategies, are supported?
3. What measure is used for measuring similarity of two schema fragments?
4. Can we optimize the exhaustive search strategy?

The answers for the questions mutually influence each other and specify the
algorithm. Furthermore, the definition of annotated fragments together with the
question of their mutual intersection are closely related to supported mapping
strategies.

Annotated Fragments First of all, for easier processing we define a graph
representation of an XML schema S, no matter if annotated or not. For easier
explanation we assume that the given XML schema S is expressed in DTD3 [9],
nevertheless the algorithm can be applied to schemes expressed using, e.g., XML
Schema [27] [7] language as well.

Definition 1. A schema graph of an XML schema S is a directed, labeled graph
GS = (V, E, ΣE , ΣA, lab), where

– V is a finite set of nodes,
– E ⊆ V × V is a set of edges,
– ΣE is a set of element names in S,
– ΣA is a set of attribute names in S, and
– lab : V → ΣE ∪ ΣA ∪ {“|”, “*”, “+”, “?”, “,”} ∪ {pcdata} is a surjective

function which assigns a label to ∀v ∈ V .

Definition 2. A fragment fe of a schema S is each subgraph of GS consisting
of an element e, all nodes reachable from e, and corresponding edges. A node f
is reachable from e if there exists a directed path from e to f in GS.

Φ is a set of all element fragments of S.

Next, we assume that each annotated fragment f ∈ F is uniquely determined
by the element e which was annotated using an annotating attribute a ∈ ΩA.

Definition 3. An annotated element e of schema S is an element provided with
an annotated attribute from ΩA.
3 We omit supplemental constructs such as entities, CDATA sections, comments, etc.
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Definition 4. An annotated fragment fe of schema S is a fragment of S rooted
at an annotated element e excluding all annotating attributes from ΩA.

As we want to support shared elements and recursion, since both the con-
structs are widely used in real XML data [21], we must naturally allow the
annotated fragments to intersect almost arbitrarily. To simplify the situation,
we define an expanded schema graph which exploits the idea that both the con-
structs purely indicate repeated occurrence of a particular pattern.

Definition 5. An expanded schema graph Gex
S is a result of the following trans-

formations of schema graph GS:

1. Each shared element is duplicated for each sharer using a deep copy opera-
tion, i.e. including all its descendants and corresponding edges.

2. Each recursive element is duplicated for each repeated occurrence using a
shallow copy operation, i.e. only the element node itself is duplicated.

An illustrative example of a schema graph GS and its expanded schema
graph Gex

S is depicted in Figure 2. A shared element is highlighted using a dotted
rectangle, a recursive element is highlighted using a dotted circle.

Fig. 2. A schema graph GS and an expanded schema graph Gex
S

As it is obvious, in case of shared elements the expansion is lossless operation.
It simply omits the key advantage of shared elements which allows reusing of
previously defined schema fragments. In addition, the real implementation usu-
ally does not have to perform the duplication of the shared fragments in fact.
The situation is more complicated in case of recursive elements which need to
be treated in a special way henceforth. For this purpose we exploit results of
statistical analysis of real-world recursive elements [21]. We discuss the details
later in the text.

In the following text we assume that a schema graph of an XML schema is
always an expanded schema graph, if not explicitly stated alternatively.

Types of Annotations From Definitions 4 and 5 we can easily prove the
following two statements:

Lemma 1. Each expanded schema graph Gex
S is a tree.
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Lemma 2. Two annotated fragments fx and fy of an expanded schema graph
Gex

S can intersect only if fx ⊆ fy or fy ⊆ fx.

Furthermore, we can observe that the common schema fragment, i.e. the
intersection, contains all descendants of a particular element.

We distinguish three types of the annotation intersection depending on the
way the corresponding mapping strategies influence each other on the common
schema fragment.

Definition 6. Intersecting annotations are redundant if the corresponding map-
ping strategies are applied on the common schema fragment separately.

Definition 7. Intersecting annotations are overriding if only one of the corre-
sponding mapping strategies is applied on the common schema fragment.

Definition 8. Intersecting annotations are influencing if the corresponding map-
ping strategies are combined resulting in one composite storage strategy applied
on the common schema fragment.

Redundant annotations can be exploited, e.g., when a user wants to store
XHTML fragments both in a single CLOB column (for fast retrieval of the
whole fragment) and, at the same time, into a set of tables (to enable querying
particular items). An example of overriding annotations can occur when a user
specifies a general mapping strategy for the whole schema S and then annotates
fragments which should be stored differently. Naturally, in this case the strategy
which is applied on the common schema fragment is always the one specified
for its root element. The last mentioned type of annotations can be used in
a situation when a user specifies, e.g., the 4NF decomposition for a particular
schema fragment and, at the same time, an additional numbering schema which
speeds up processing of particular types of queries. In this case the numbering
schema is regarded as a supplemental index over the data stored in relations of
4NF decomposition, i.e. the data are not stored redundantly as in the first case.

Each subset of supported annotations is assigned a (user-specified) intersec-
tion type for particular orders of their compositions. This can involve plenty of
specifications, but, in fact, the amount of reasonable and thus necessary specifi-
cations is much lower than the theoretically allowed ones.

Note that the existing systems [11] [4] mostly support overriding annotations,
the XCacheDB system [4], in addition, supports a kind of redundant intersection
similar to the above described example.

Search Algorithm The similarity measure, the search algorithm, and its pos-
sible optimization are closely related. However, the main idea of the enhancing
of user-driven techniques remains the same regardless the chosen measure and
algorithm. The choice of the measure influences the precision and scalability of
the system, whereas the algorithm influences the efficiency of finding the required
fragments.

10



Let us suppose that we have a similarity measure sim(fx, fy) ∈ [0, 1] express-
ing similarity of two fragments fx and fy of an expanded graph Gex

S , where 1
represents strong similarity and 0 strong dissimilarity, and a similarity threshold
Tsim ∈ [0, 1]. A naive strategy would exploit an exhaustive search as depicted
by Algorithm 1.

Algorithm 1 Single Annotation Strategy (SAS)
Input: S, F , sim(fx, fy), Tsim

Output: F ∪ newly annotated fragments
{construction of the similarity matrix}

1: F ′ ← F
2: for all f ∈ F do
3: for all element e ∈ S do
4: fe ← subgraph rooted at e
5: if e ∈ S\{f} then
6: sim[f, fe] ← sim(f, fe)
7: else
8: sim[f, fe] ← 0
9: end if

10: end for
11: end for

{annotation strategy}
12: for all element e ∈ S do
13: maxe ← maxf∈F {sim[f, fe]}
14: fmax ← f ∈ F s.t. sim[f, fe] = maxe

15: if maxe > Tsim then
16: fe.annotation ← fmax.annotation
17: F ′ ← F ′ ∪ {fe}
18: end if
19: end for
20: return F ′

The algorithm evaluates similarity of each annotated fragment f ∈ F and
each fragment fe rooted at an element e ∈ S\{f}. We can assume that if the
storage strategy for any fe should not change, the user would mark it as final.
For such fragment either the default strategy sdef or the strategy specified by
corresponding user-defined annotation will be used, regardless the results of the
search or adaptive algorithm. As such this situation is rather the problem of
implementation than a theoretical one and thus we further assume that there
are no such fragments in S. On the other hand, we naturally regard fragments
annotated by a user to be final by default.

The resulting similarity values are stored into so-called similarity matrix
{sim[f, fe]}f∈F, e∈S . An element e is annotated if there exists a fragment fmax ∈
F with the highest similarity value sim(fmax, fe) > Tsim. In Algorithm 1 we
assume that there is always one such candidate at most. Otherwise, the system
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can ask for user intervention when necessary. We call this approach a single
annotation strategy (SAS).

The question is whether this approach is correct actually. From another point
of view it could be more reasonable to annotate an element e using annotations of
all fragments f ∈ F s.t. sim(f, fe) > Tsim. Together with the assumption that for
each pair of annotations the result of their composition is predefined and that the
annotations have priorities according to which they are composed, this approach
seems to be a better choice since it does not omit important information. But,
on the other hand, let us consider the situation depicted in Figure 3, where for
i ∈ {1, 2, 3} sim(f, fi) > Tsim and f is the annotated fragment.

Fig. 3. Similar fragments on the same root path

The problem is whether we can annotate all the three fragments f1, f2, f3

using the annotation of f , especially what will be the result of intersection in
case of f1 and f3 or f2 and f3, i.e. fragments occurring on the same root path4. We
can naturally assume that intersection of two identical annotations is overriding
and as such has no effect. Thus we could annotate only the topmost fragment on
each root path. In case of example in Figure 3 this rule would be applied twice,
resulting in a single annotation of fragment f3. But what if we knew, in addition,
that sim(f, f1) > sim(f, f3) and sim(f, f2) > sim(f, f3)? As it is obvious, in
such case it is seems to be more reasonable and natural to annotate fragments
f1 and f2 rather than whole f3. Or this situation can be again a case for user
intervention, depending on the point of view of it. We will further consider the
former one.

If we generalize the idea, the algorithm annotates an element e using an-
notations of all fragments f ∈ F s.t. sim(f, fe) > Tsim and 6 ∃ element e′ on
any root path traversing e s.t. sim(f, fe′) > sim(f, fe). The resulting algorithm,
so-called multiple annotation strategy (MAS), is depicted by Algorithm 2, where
e.ancestors denotes a set of (direct or undirect) ancestors of element e and
e.descendants denotes a set of (direct or undirect) descendants of e. The pro-
cess of construction of the similarity matrix remains the same as in case of
Algorithm 1.

Using this approach we should consider what will happen in case a user
annotates two structurally identical (or too similar) fragments using different
annotations. We cannot simply rely on predefined type of their intersection and
corresponding priorities, because the situation is a slightly different one. In this

4 A path from the root node to a leaf node.
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Algorithm 2 Multiple Annotation Strategy (MAS)
Input: S, F , sim(fx, fy), Tsim

Output: F ∪ newly annotated fragments
1: F ′ ← F
{construction of the similarity matrix}

2: -//-
{annotation strategy}

3: for all f ∈ F do
4: for all element e ∈ S do
5: if (sim[f, fe] > Tsim) ∧

(6 ∃ ea ∈ e.ancestors : sim[f, fea ] > sim[f, fe]) ∧
(6 ∃ ed ∈ e.descendants : sim[f, fed ] > sim[f, fe])
then

6: fe.annotation ← f .annotation
7: F ′ ← F ′ ∪ {fe}
8: end if
9: end for

10: end for
11: return F ′

case the system should rather ask for user intervention whenever it is not able
to decide. And this is again a problem of the particular implementation.

Similarity Measure and Optimization of the Search Algorithm Now let
us consider the search strategy from the point of view of complexity of the algo-
rithm. Figure 4 depicts an example of processing a single annotated fragment,
in particular the amount of similarity comparisons. Annotated fragments f and
g are highlighted using rectangles, all schema fragments, which are compared
with f are highlighted using dotted ovals.

Fig. 4. Exhaustive search strategy

If we do not know any features of the measure, there are not many ways
how to avoid the exhaustive search. Also the order in which fragments in F are
processed is then unimportant. But although we can assume that card(F ) = m
is small, i.e. that a user annotates several fragments but the number is not large,
the exhaustive search can be expensive due to the size of Gex

S . And even from the
simple example in Figure 4 it is obvious that there are pairs of schema fragments
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which do not have to be compared at all. Another problem is the complexity
of the if condition of Algorithm 2 (line 5) which can in the worst case lead to
multiple searching through the whole Gex

S . So in both the cases we need to avoid
the unnecessary similarity evaluations.

It seems promising to borrow the idea of clustering, similarly to paper [26],
where the distance between schema fragments is determined by their mutual
similarity, e.g. dist(fx, fy) = 1−sim(fx, fy). An example is depicted in Figure 5
for the sample schema in Figure 4.

Fig. 5. Exploitation of clustering

All schema fragments (depicted using black-filled circles) are divided into
clusters C1, C2,..., Ck (depicted using black circular lines) having their centroids
c1, c2,..., ck and radii r1, r2,..., rk (or one common radius r, depending on the
implementation). Having this information, only those schema fragments have to
be compared with fragment f , whose clusters intersect the cluster with centroid
f and radius Tsim. In case of Figure 5 these are clusters C1 and C2. Obviously,
if the clusters were selected appropriately, the amount of comparisons would
decrease rapidly. Hence the key concern of all clustering algorithms is mainly
the construction of the clusters.

The construction is usually performed using a k-means algorithm or its vari-
ations (e.g. [26]), where the initial clusters are selected randomly and then iter-
atively improved. In the i-th iteration each fragment is compared with centroids
of all clusters and assigned to the closest one. The algorithm terminates if none
of the clusters changes, otherwise new centroids are computed and (i + 1)-th
iteration follows. The complexity of the construction is O(I · |Φ| · k), where I is
the number of iterations. In case of complexity of similarity evaluation the worst
case is when either k = 1 or all k clusters mutually intersect, i.e. when we cannot
avoid any of the similarity comparisons. Hence in the worst case the number of
comparisons is the same as in the exhaustive search strategy and the complexity
can worsen only the pre-processing, i.e. the construction of clusters. And this is
the step we want to remove too.

For further optimization we can exploit characteristics of the chosen similar-
ity measure. The existing algorithms for measuring similarity on schema level
usually exploit various supplemental matchers [24], i.e. functions which evaluate
similarity of a particular feature of the given schema fragments, such as, e.g.,
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similarity of leaf nodes, similarity of root element names, similarity of context,
etc.

Definition 9. A matcher is a function m : Φ2 → [0, 1] which evaluates similar-
ity of a particular feature of two schema fragments fx, fy ∈ Φ.

Definition 10. A partial similarity measure is a function mpart : Φ2 → [0, 1]p

which evaluates similarity of the given schema fragments fx, fy ∈ Φ using match-
ers m1,m2, ..., mp : Φ2 → [0, 1] and returns a p-tuple of their results.

Then the partial results are combined using an appropriate approach into
the resulting composite similarity value. The most common and verified one [10]
is a kind of a weighted sum.

Definition 11. A composite similarity measure is a function mcomp : [0, 1]p →
[0, 1] which aggregates the results of particular matchers and returns the total
similarity value.

We can also state the following axioms:

Axiom 1 m(f, f) = 1; ∀f ∈ Φ

Axiom 2 m(f, f ′) = m(f ′, f);∀f, f ′ ∈ Φ

Axiom 3 mpart(f, f) = [1, ..., 1];∀f ∈ Φ

Axiom 4 mpart(f, f ′) = mpart(f, f ′);∀f, f ′ ∈ Φ

For most of the usually used matchers (such as e.g. similarity of number of
elements, similarity of depths, etc.) the knowledge of actual value of the analyzed
feature for child nodes is necessary for evaluating the value for their parent
node. Thus the existing techniques usually exploit a bottom-up strategy, i.e.
starting from leaf nodes towards the root node, and search for schema fragments
exceeding the threshold Tsim. Together with the previously mentioned problem
of similar intersecting fragments this is why we need to know the behavior of
the similarity measure on particular root paths.

For instance, if we knew that the similarity measure is concave, i.e. that it
has only one global maximum, we could skip processing of all the ancestors on
the current root path whenever we reach the fragment with the extreme value.
A sample situation can be seen in Figure 6 which depicts an example of a graph
of similarity function for an annotated fragment f and fragments f1, f2, ..., fr on
a single root path. From the graph we can see, that only fragments f1, f2, f3, f4

need to be processed (f4 for testing the extremity), then the similarity evaluation
can terminate, skipping fragments f5, f6, ..., fr.

As it is obvious, this way we can decrease the number of unnecessary sim-
ilarity evaluations as well as avoid pre-processing of the schema and expensive
checking of the if condition of Algorithm 2. Naturally, the efficiency of such ap-
proach depends strongly on the position of the extreme on the root path. The
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Fig. 6. Exploitation of behavior of similarity function

key problem is how to define such similarity measure. For our purpose we need
a measure which focuses especially on the structure of the compared fragments,
known equivalences or relations between regular expressions, differences between
simple and complex types, etc., i.e. on features that influence the efficiency of
database processing the most. But it is hard, if not impossible, to propose a
measure with concave behavior which is at the same time enough precise in re-
lation to these requests. Nevertheless, we can exploit a relaxed version of this
idea as a kind of heuristics of the bottom-up strategy.

Although we can hardly ensure that mcomp is concave, we can assume that
at least q of the matchers, where 1 ≤ q ≤ p, have this property. For instance a
trivial matcher with such behavior can compare the number of distinct element or
attribute names, the number of similar operators, the depth of the corresponding
content model, etc. Such information is then used as a heuristics based on the
idea that if at least “sufficient amount” of the q matchers exceed their extreme
value, we can terminate processing of the current root path too.

The whole optimization of the approach, so-called basic annotation strategy
(BAS), is depicted by Algorithm 3, where function terminate returns true if the
search algorithm should terminate in the given node, otherwise it returns false.
Furthermore, we assume that each element of the graph is assigned an auxil-
iary list of candidates consisting of pairs 〈fragment, similarity〉, i.e. references
to fragments (and corresponding similarity values) within its subtree that are
candidates for annotation.

The algorithm processes schema graph starting from leaf nodes. For each
root path the optimal similarity value and the reference to corresponding frag-
ment are propagated until a better candidate is found or the condition of the
heuristics is fulfilled. Then the processing of the current root path is terminated
and current candidates are annotated. The complexity of the algorithm depends
on the heuristics. In the worst case it does not enable to skip processing of any
node that results in the exhaustive search.

In general we could use an arbitrary similarity measure, not exactly the above
defined composite one. It is also possible to use disjoint sets of matchers for the
heuristics and for the composite similarity measure. Nevertheless, we deal with
the above described ones, since it is the typical and verified way for evaluating
similarity among XML schemes.
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Algorithm 3 Basic Annotation Strategy (BAS)
Input: S, F , m1, m2, ..., mq, mq+1, ..., mp, mcomp, Tsim

Output: F ∪ newly annotated fragments
1: F ′ ← F
2: for all f ∈ F do
3: listToProcess ← leaf elements of Gex

S \{f}
4: listOfProcessed ← ∅
5: while listToProcess 6= ∅ do
6: for all e ∈ listToProcess do
7: e.candidates ← ∅
8: fe ← subgraph rooted at e
9: sime ← mcomp(f, fe)

10: for all c ∈ e.subelems do
11: for all 〈f ′, sim〉 ∈ c.candidates do
12: if sim > sime then
13: e.candidates ← e.candidates ∪ {〈f ′, sim〉}
14: end if
15: end for
16: end for
17: if e.candidates = ∅ ∧ sime > Tsim then
18: e.candidates ← e.candidates ∪ {〈fe, sime〉}
19: end if
20: if terminate(f , e, m1, m2, ..., mq, Tsim) then
21: for all 〈f ′, sim〉 ∈ e.candidates do
22: f ′.annotation ← f .annotation
23: F ′ ← F ′ ∪ {f ′}
24: end for
25: else
26: if ∀ s ∈ e.siblings : s ∈ listOfProcessed then
27: listToProcess ← listToProcess ∪ {e.parent}
28: end if
29: end if
30: listToProcess ← listToProcess \ {e}
31: listOfProcessed ← listOfProcessed ∪ {e}
32: end for
33: end while
34: end for
35: return F ′
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Recursive Elements Last but not least, we have to solve the open problem of
expanded recursive elements, since the expansion is not a lossless operation as
in case of shared elements. We exploit the results of analysis of real-world XML
data [21] which shows two important aspects:

1. Despite it is generally believed that recursive elements are of marginal im-
portance, they are used in a significant portion of real XML data.

2. Although the recursive elements can have arbitrarily complex structure, the
most common type of recursion is linear and the average depth of recursion
is low.

If we realize that we need the “lost” information about recursion only at one
stage of the algorithm, the solution is quite obvious. We analyze the structure of
schema fragments when evaluating matchers m1, m2, ..., mp, whereas each of the
matchers describes similarity of a particular feature of the given fragments. In
case the fragments contain recursive elements we will not use the exact measure,
but its approximation with regard to the real complexity of recursive elements.
For instance if the matcher analyzes the maximum depth of fragment containing
a recursive element, the resulting depth is not infinite, but considers the average
depth of real-world recursive elements.

The question is whether it is necessary to involve a matcher which analyzes
the amount of recursive elements in schema fragments. On one hand, it can
increase the precision of the composite measure. But from another point of view
the approximation transforms the recursive element to a “classical” element and
hence such matcher can be misleading.

4.2 Adaptive Mapping Strategy

At this stage of the algorithm we have a schema S and a set of annotated frag-
ments F which involve the user-defined fragments and fragments identified by
BAS algorithm. As the second enhancing we apply an adaptive mapping strategy
on the remaining parts of the schema. At first glance the user-driven techniques
have nothing in common with the adaptive ones. But under a closer investiga-
tion we can see that the user-given annotations provide a similar information –
they “say” how particular schema fragments should be stored to enable efficient
data querying and processing. Thus we can reuse the user-given information.
For this purpose we define an operation contraction which enables to omit those
schema fragments where we already know the storage strategy and focus on the
remaining ones.

Definition 12. A contraction of a schema graph GS with annotated fragment
set F is an operation which replaces each fragment f ∈ F with a single auxiliary
node called a contracted node. The resulting graph is called a contracted graph
Gcon

S .

The basic idea of the adaptive strategy is as follows: Having a contracted
graph Gcon

S we repeat the BAS algorithm and operation contraction until there
is no fragment to annotate. The BAS algorithm is just slightly modified:
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– It searches for schema fragments which are not involved in the schema, i.e.
it searches among all nodes of the given graph and returns the (eventually
empty) set of found fragments.

– For similarity evaluation we naturally do not take into account contracted
nodes.

– The annotations of contracted nodes are always overriding in relation to the
newly defined ones.

We denote this modification of BAS as a contraction-aware annotation strat-
egy (CAS). The resulting annotating strategy, so called global annotation strategy
(GAS), is depicted by Algorithm 4, where function contract applies operation
contraction on graph of the given schema S and set of fragments F and function
expand expands all the contracted nodes of the given schema to the original
ones.

Algorithm 4 Global Annotation Strategy (GAS)
Input: S, F , m1, m2, ..., mp, mcomp, Tsim

Output: F ∪ newly annotated fragments
1: F ′ ← BAS(S, F , m1, m2, ..., mp, mcomp, Tsim)
2: F tmp ← F ′

3: while F tmp 6= ∅ do
4: contract(S, F tmp)
5: F tmp ← CAS(S, F , m1, m2, ..., mp, mcomp, Tsim)
6: F ′ ← F ′ ∪ F tmp

7: end while
8: expand(S, F ′)
9: return F ′

The resulting complexity of the algorithm depends on the number of it-
erations of the cycle (lines 3 – 7). In the worst case each iteration results in
annotating of a single element, i.e. the search algorithm repeats (|Φ| − |F | + 1)
times.

4.3 Open Issues

Despite the detailed description of the algorithm, possible solutions and their
consequences, there are still several open issues. We distinguish two main cate-
gories:

1. features of the particular implementation and
2. behavior of the algorithm on real XML data.

As for the former case the key implementation decisions are especially:

1. matchers m1, m2, ..., mq, mq+1, ..., mp,
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2. the composite similarity measure mcomp,
3. threshold Tsim, and
4. the set of supported schema annotations and types of their mutual intersec-

tion (or forbiddance).

The key problem lies especially in tuning of weights of the composite simi-
larity measure, since they influence the precision of the system strongly. The re-
maining characteristics are related rather to its usefulness and versatility. There
are also marginal questions such as, e.g., whether the system will support final
elements or user intervention if there are more candidates for a particular situa-
tion. But these features do not have the key influence on the proposed approach
itself.

The latter category of open issues is quite unpredictable, despite the exist-
ing statistics of real XML data [21]. It is caused mainly by two facts. Firstly,
although we know the usual characteristics of the real data, we cannot predict
especially the behavior of more complex similarity measures due to the above
mentioned tuning of the system. And secondly, we cannot predict the behav-
ior of the proposed adaptive strategy, since we have no information about the
structure of contracted graphs of real data. Furthermore, the choice of particular
schema fragments will be strongly related to the type of the tested data and thus
the efficiency of the resulting storage strategy can vary remarkably.

As it is obvious, both the categories are also related significantly. And though
some particular features can be estimated or preset according to the existing
user-driven systems and statistical analysis of data, most of them still require a
series of experimental tests.

5 Experimental Implementation

For testing and evaluation of key features of the proposed algorithm we have
implemented an experimental system called UserMap and performed various
tests on real XML data. In the following sections we first describe the particular
implementation decisions and then the corresponding results of the tests.

5.1 Similarity Evaluation

As we have mentioned, the similarity measure used for the algorithm should
focus mainly on structural aspects of the given schema fragments and especially
constructs which influence the database processing. Thus it should not rely, e.g.,
on semantic of element or attribute names, as it is usual in existing similarity
evaluation algorithms [20]. Furthermore, since the algorithm assumes that a
user can annotate any kind of a schema fragment and such fragment can be
detected by the search algorithm anywhere in the schema (except for final schema
fragments), it should not rely also on context of the evaluated fragments. An last
but not least, the similarity evaluation strategies have to cope with the problem
of setting various parameters, such as, e.g., weights of particular matchers within
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the composite measure. The setting process is usually omitted in the descriptions
(i.e. the weights are set straightforwardly without any argumentation), or a kind
of a machine-learning technique is exploited.

With regard to these observations we have decided to exploit the knowledge
and results of statistical analysis of real XML data collections in [21], in particu-
lar the part considering XML schemes. The data parameters that were analyzed
describe a given schema fragment (in case of the analysis the whole schema)
quite precisely and at the same time the results over a representative sample of
real XML schemes can be used for tuning parameters of the similarity measure.

Data Characteristics Before we describe the matchers and the composite
similarity measure we repeat several definitions of XML data characteristics
(or their slight modifications) used in [21] whose knowledge is necessary for
understanding the following text.

In most of the existing works DTDs (or XSDs, i.e. XML Schema definitions)
are viewed as sets of regular expressions over element names. Attributes are often
omitted for simplicity, since they form unordered sets of values having only a
simple type. Thus the key characteristic of a schema fragment is a content model
and its complexity.

Definition 13. A content model α over a set of element names Σ′
E is a regular

expression defined as α = ε | pcdata | f | (α1, α2, ..., αn) | (α1|α2|...|αn) | β* | β+
| β?, where ε denotes an empty content model, pcdata denotes a text content
model, f ∈ Σ′

E, “,” and “|” stand for concatenation and union (of content
models α1, α2, ..., αn), and “*”, “+”, and “?” stand for zero or more, one or
more, and optional occurrence(s) (of content model β) respectively.

A content model α s.t. α 6= ε ∧ α 6= pcdata is called an element content
model.

The complexity of a content model can be viewed from various points of view.
The basic characteristics simply distinguish empty, text, and element content of
an element, more complex ones involve the depth and width of a schema fragment
(characterized by various types of fan-out).

Definition 14. A depth of a content model α is inductively defined as follows:
depth(ε) = 0;
depth(pcdata) = depth(f) = 1;
depth(α1, α2, ..., αn) = depth(α1|α2|...|αn) = max(depth(αi)) + 1, where i =

1, 2, ..., n;
depth(β*) = depth(β+) = depth(β?) = depth(β) + 1.

Definition 15. An element fan-out of an element e is the number of distinct
elements in content model α, where e → α.

An attribute fan-out of an element e is the cardinality of set β, where e → β.

Definition 16. A minimum element fan-out of element e is the minimum num-
ber of elements allowed by its content model α.
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A maximum element fan-out of element e is the maximum number of ele-
ments allowed by content model α.

An unbounded element fan-out is a maximum element fan-out of ∞.

Even more complex characteristics describe special types of content model,
their features, and variations, such as trivial, unordered, recursive, or mixed
content of an element, or so-called relational and DNA patterns.

Definition 17. An element is trivial if it has an arbitrary amount of attributes
and its content model α = ε | pcdata.

A mixed-content element is simple if each of its subelements is trivial. A
mixed-content element that is not simple is called complex.

A simple element fan-out of an element e is the number of distinct trivial
elements in its content model α.

Definition 18. An element e is recursive if e is reachable from e.
An element e is trivially recursive if it is recursive and e is the only element

reachable from e and neither of its occurrences is enclosed by “*” or “+”.
An element e is linearly recursive if it is recursive and e is the only recursive

element reachable from e and neither of its occurrences is enclosed by “*” or
“+”.

An element e is purely recursive if it is recursive and e is the only recursive
element reachable from e.

An element that is recursive but not purely recursive is called a generally
recursive element.

Definition 19. A content model α is mixed, if α = (α1|...|αn| pcdata)∗ | (α1|...|
αn|pcdata)+ where n ≥ 1 and for i = 1, 2, ..., n content model αi 6= ε ∧ αi 6=
pcdata.

An element e is called mixed-content element if content model α, where e →
α, is mixed.

Definition 20. A nonrecursive element e is called a relational pattern if it has
an arbitrary amount of attributes and its content model α = (e1, e2, ..., en)∗ |
(e1, e2, ..., en)+ | (e1|e2|...|en)∗ | (e1|e2|...|en)+, where e1, e2, ..., en are trivial
elements.

A nonrecursive element e is called a shallow relational pattern if it has an
arbitrary amount of attributes and its content model α = f∗ | f+, where f is a
trivial element.

Definition 21. A nonrecursive element e is called a DNA pattern if it is not
mixed and its content model α consists of a nonzero amount of trivial elements
and one nontrivial and nonrecursive element whose occurrence is not enclosed
by “*” or “+”. The nontrivial subelement is called a degenerated branch.

A depth of a DNA pattern e is the maximum depth of its degenerated branch.
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Matchers and Composite Measure For definition of matchers m1, m2, ...,
mp we exploit most of the XML data characteristics evaluated in the analysis
[21], as defined in previous section. Since we want to describe the structure
of the schema fragments as precisely as possible, the amount of characteristics
is nontrivial. On the other hand, at this stage the versatility of the approach
becomes evident, since in general any kind of matchers can be used depending
on the purpose and requirements of corresponding application.

According to the scope the used characteristics can be divided into the fol-
lowing groups:

– root – characteristics of root node of the fragment:
• type of content (empty, text, element, mixed, trivial, or unordered),
• fan-outs (element, attribute, simple, minimum, and maximum),
• type of the node (DNA pattern or relational pattern), and
• type of the recursion (trivial, linear, pure, or general).

– subtree – characteristics of the whole fragment:
• basic (number of elements, number of attributes, number of mixed con-

tents, number of empty contents, maximum and average depth, minimum
and maximum element fan-out),

• XML Schema-like (number of unordered contents, default values, fixed
values, wildcards, ID types, IDREF(S) types, unique, key, and keyref
nodes),

• recursive (number of recursive elements, number of particular types of
recursion),

• depths (minimum, maximum, average, and unbounded),
• fan-outs (element, simple, minimum, and maximum),
• mixed contents (depths, fan-outs, simple fan-outs),
• DNA patterns (depths, fan-outs, simple fan-outs), and
• relational patterns (fan-outs, simple fan-outs).

– level – characteristics of each level of the fragment: number of elements, at-
tributes, text nodes, mixed contents, DNA patterns, and relational patterns,
fan-outs and simple fan-outs.

Since each matcher should evaluate similarity of particular characteristic of
the given schema fragments fx and fy, we need to transform the resulting values
(e.g. types of the root nodes, numbers of elements, etc.) to interval [0, 1]. In case
of root characteristics we distinguish two cases – feature matchers and single-
value matchers. Feature matchers express the (in)equality of the value of i-th
feature feai (e.g. type of the node, content, or recursion):

mfea
i (fx, fy) =

{
1 feai(fx) = feai(fy)
0 otherwise

(1)

They are combined using a weighted sum into a composite feature matcher :

mfea(fx, fy) =
n∑

i=1

mfea
i (fx, fy) · wfea

i (2)
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where weights wfea
i ∈ [0, 1],

∑n
i=1 wfea

i = 1, and n is the number of feature
matchers.

Single-value matchers express the difference between the value of j-th single-
value characteristic valuej (e.g. element or attribute fan-out):

msingle
j (fx, fy) =

1
|valuej(fx)− valuej(fy)|+ 1

(3)

As for the subtree characteristics we distinguish two cases too. In case of
single-valued characteristics (i.e. basic, XML Schema-like, and recursive) we also
use the single-value matchers (3) which are within the subsets composed into
composite single-value matchers msingle, again using a weighted sum. The sit-
uation in case of multi-valued characteristics (e.g. list of allowed depths of the
fragment) is a bit complicated – it requires similarity evaluation of two lists of
values of arbitrary, distinct lengths. Therefore we first supply the shorter list
with zero values and sort the lists in decreasing order. Then we use so-called
multi-valued matchers which express the similarity of a j-th sorted sequence sj :

mmulti
j (fx, fy) =

∑m
k=1

1
|sj(fx)[k]−sj(fy)[k]|+1

m
(4)

where m is the length of the sequences and seqj(.)[k] expresses the k-th member
of the sequence.

For level characteristics (e.g. minimum fan-out per level) we use so-called
level matchers which compose the results of single-valued (3) or multi-valued
(4) matchers at particular levels and decrease their weight with the growing
level:

mlev
j (fx, fy) =

l∑

k=1

m
single/multi
j (fx, fy) · (1

2
)k (5)

where l is the maximum of number of levels of fx and fy (assuming that the
shallower one is again supplied with zero values).

Finally, the resulting composite function mcomp is expressed as a weighted
sum of all the matchers.

As it is obvious, the resulting composite similarity expresses the similarity of
the given schema fragments with regard to the selected matchers, each having its
particular weight. Thus there remains the problem of tuning the weights which
highly influences the precision of the similarity measure.

Tuning of the System In existing works we can distinguish two approaches
– the parameters are set either without any argumentation (or on the basis
of authors experience whose more detailed description is usually omitted) or
a machine-learning strategy is exploited. In the latter case the corresponding
system is usually provided with a set of sample situations (e.g. pairs of data
fragments and their similarity) and the system than exploits this knowledge in
the evaluation process.
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In our approach we use the “golden mean” – we exploit the results from
the analysis of real-world XML schemes [21] and we set the parameters on the
basis of the results. The basic idea is relatively simple: We use the same 98 real-
world XML schemes divided into database (dat), document (doc), exchange
(ex), report (rep), and research (res) category. Their basic characteristics can
be seen in Table 1. The first two categories are similar to classical data-centric
and document-centric ones, the other three are introduced in [21] to enable finer
division.

Characteristic dat doc ex rep res

Number of schemes 31 18 38 4 7

Number of elements
Minimum 7 5 5 109 28
Maximum 76 377 523 3,213 250

Number of paths
Minimum 5 1 3 97 26
Maximum 115 11,994 1,665 3,137 568

Depth
Minimum 2 4 2 3 5
Maximum 12 81 79 5 15

Table 1. Characteristics of XML schemes

We prepare sample patterns of real schema fragments, such as data-centric
fragments, document-centric fragments, unordered elements, relational patterns,
recursive elements (of all the four types), DNA patterns, etc., whose representa-
tion is in the particular categories known. Using a search algorithm we compute
the number of occurrences of similar fragments within the schema categories and
tune the parameters of the similarity measure so that the results correspond to
the results of analysis of the real-world data.

Note that this is the second stage where the algorithm can be modified to any
purpose. It general it is possible to use any relevant information, i.e. knowledge
of characteristics of any sample set of data. We have used the results of our
analysis since the real-world sample is nontrivial and the data were collected so
that they cover many possible areas where XML data are exploited.

Theoretical View of the Tuning Problem In general the tuning problem
and its proposed solution can be described as follows: Let c1, c2, ..., cK denote
the categories of schemes, p1, p2, ..., pP the sample patterns, and (Mrep

i,j )K×P the
representation matrix which contains real-world representation of pattern pj in
category ci, i.e. results of the statistics. Next let us have a search algorithm
with parameters par1, par2, ..., parR, where ∀i : pari ∈ [0, 1] and some subsets
of the parameters have to fulfill particular constraints, such as, e.g., the sum
of subset of parameters which correspond to weights of a single weighted sum
must be equal to 1. With the given setting of parameters the algorithm returns
calculated representation repi,j of pattern pj in category ci. The aim is to find
the optimal setting of parameters par1, par2, ..., parR, i.e. the setting where the
sum of deviations of calculated and real-world representations
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∆ =
K∑

i=1

P∑

j=1

|Mrep[i, j]− repi,j | (6)

is minimal. This task is obviously a kind of a classical constraints optimization
problem (COP) [5] – a problem of finding a solution in a feasible region (i.e. a
set of all possible solutions), where the value of objective function (i.e. a function
which determines the quality of a solution) is optimal and the solution satisfies
the given criteria. In our case:

– the feasible region contains all possible settings of parameters par1, par2, ...,
parR corresponding to weights of weighted sums,

– the objective function evaluates ∆, and
– the criteria of the solution are the above described constraints.

The problem is that since the parameters par1, par2, ..., parR are in general
real values from [0, 1], the feasible region is theoretically infinite.

Under a closer investigation we can see that the real-world case is much
simpler than the theoretical problem. Firstly, we can restrict possible values of
parameters par1, par2, ..., parR to a certain precision, i.e. the infinite feasible
region can be reduced to a reasonable size. Furthermore, for our purpose we do
not need the optimal solution, but a reasonably good suboptimum, since the al-
gorithm is expected to search for similar schema fragments, not exactly the given
ones. And, last but not least, as the evaluation of the objective function requires
similarity evaluation of all the patterns p1, p2, ..., pP and all schema fragments
in categories c1, c2, ..., cK , we need to minimize the amount of evaluations.

For searching the suboptimum we exploit and compare a slight modification
of two approaches for searching a suboptimal solution of an optimization problem
– global search heuristics called genetic algorithms and simulated annealing.
They enable to find a reasonable setting following the given requirements and,
at the same time, influence the number of expensive evaluations.

Genetic Algorithms Genetic algorithms (GA) [13] are a part of evolutionary
algorithms which are inspired by observations of evolution biology. Their idea is
based on iterative improving of (usually) randomly generated initial population
P0 of individuals using two key operations, simulations of natural processes –
crossover and mutation.

As depicted by Algorithm 5, at i-th iteration the fitness ffit, i.e. the quality,
of every individual of population Pi is evaluated, multiple individuals are selected
on the basis of their fitness, and modified, i.e. crossed over and mutated to form
a new population Pi+1. Operation crossover creates a new offspring crossing over
two individuals by exchanging their portions. Operation mutation creates a new
individual by changing attributes of an existing one. Both the operations are
performed with a given probability Pcross and Pmut which influence the speed
of convergence to the suboptimal solution. The algorithm terminates either if
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Algorithm 5 Genetic Algorithm (GA)
Input: ffit(Ix), Fmin, N
Output: individual with the maximum fitness
1: i ← 0
2: Pi ← initial population
3: evaluate individuals in Pi using ffit

4: while i ≤ N ∧ Fmin is not reached in Pi do
5: i ← i + 1
6: Pi ← best individuals from Pi−1

7: crossover(Pi)
8: mutate(Pi)
9: evaluate individuals in Pi using ffit

10: end while
11: return I ∈ Pi s.t. ffit(I) is maximum

satisfactory fitness level Fmin has been reached in population Pi or after N
iterations.

In our case a single individual of a population corresponds to a single possible
setting of parameters par1, par2, ..., parR and the fitness function evaluates the
inverse value of ∆. The initial population is generated randomly or a set of
reasonable settings can be used. And finally, operations crossover and mutation
are slightly modified to ensure that the subsets of parameters corresponding to
a single weighted sum still fulfill the previously described conditions.

Simulated Annealing The idea of simulated annealing (SA) [15] is also in-
spired by natural processes, in this case the way a metal cools and freezes into
crystalline structure, where controlled cooling increases size of the crystals and
thus reduces defects. SA algorithm is also iterative and based on exploitation of
randomly generated solutions.

As depicted by Algorithm 6, the SA algorithm starts with the initial state
s0 which is iteratively improved. The quality of a state sx is evaluated using its
energy E(sx) which needs to be minimized. At i-th iteration the current state si

is replaced with a random “nearby” state si+1 whose choice depends on a global
parameter T called temperature which is gradually decreased (usually by fixed
factor α < 1) during the process. The probability Pmov of moving from state si

to si+1 is expressed as a function of T , E(si), and E(si+1):

Pmov =
{

1 E(si) > E(si+1)
exp(E(si)−E(si+1)

T ) otherwise
(7)

The algorithm terminates either after a certain number of iterations N or if
a state with satisfactory energy Emin is reached.

The main advantage of SA in comparison with GA is its ability to avoid trap-
ping at local optimum. The reason is that SA does not accept only states which
improve the current optimum, but also some of those which can (temporarily)
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Algorithm 6 Simulated Annealing (SA)
Input: E, Emin, N
Output: state with minimum energy E
1: i ← 0
2: s0 ← initial state
3: sopt ← s0

4: while i ≤ N ∧ Emin < E(sopt) do
5: i ← i + 1
6: si ← a random neighbor of si−1

7: if E(si) < E(sopt) then
8: sopt ← si

9: end if
10: if ¬ move (E(si−1), E(si), T ) then
11: si ← si−1

12: end if
13: decrease(T )
14: end while
15: return sopt

worsen it. The probability Pmov and temperature T ensure that at the beginning
the state changes almost arbitrarily (within the adjacent states) but the changes
decrease as T goes to zero.

In our case each state represents a single setting of parameters par1, par2, ...,
parR and the energy E evaluates ∆. For the initial state can be again used either
a randomly generated setting or any known reasonable setting. The neighboring
states are defined by a modification of mutation of GA, where only a single pa-
rameter is randomly changed (and the others are recomputed to fulfill conditions
of weighted sums).

Experimental Tests For experimental testing of GA and SA algorithms we
first need to tune the key parameters of both the algorithms.

As for the GA algorithm, we need to tune the probabilities Pcross and Pmut

which influence the speed of convergence to the suboptimum. With fixed value of
Pmut and maximum number of iterations N = 30 we have performed number of
tests for setting the value of Pcross. The results are depicted by Figures 7 and 8
containing average, median, and minimum values for values of Pcross ∈ [0.1, 0.9].
Figure 7 depicts at which iteration the suboptimal value was reached, Figure
8 depicts the resulting suboptimal value of ∆. As we can see, since both the
average and median iteration for reaching the suboptimum occur mostly between
15 and 20, the maximum number of iterations does not need to be much higher.
Considering only the reached values (Figure 8) the best candidates for Pcross

are 0.1, 0.4, 0.5, 0.7 and 0.9. But together with the results from Figure 7 we can
say that the optimal value of Pcross occurs between 0.4 and 0.5.

Similarly, with fixed value of Pcross = 0.5 and the same maximum number
of iterations N = 30 the process of tuning of parameter Pmut is depicted in
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Fig. 7. Tuning of parameter Pcross – number of iterations for reaching the suboptimum

Fig. 8. Tuning of parameter Pcross – values of ∆ for the suboptimum

Figures 9 and 10 containing values with the same meaning. Unfortunately, these
results are more ambiguous than in the previous case. Thus we have analyzed
the particular results and from the possible candidates we have selected 0.16 as
the best compromise value of Pmut.

As for the SA algorithm, we need to perform the same tuning for parame-
ter T and the threshold of Pmov. The setting of T requires quite a lot of user
involvement since the value must conform to numerous requirements to achieve
a reasonable value [15]. Mainly, it should correspond to the estimated deviation
of E(si) and E(si+1), it must ensure that the algorithm moves to a state si+1

even if E(si+1) > E(si) (but the probability Pmov is high enough), the declina-
tion of T should be reasonable enough to exploit the main idea of the approach,
etc. Thus this parameter was set rather semiautomatically with regard to bal-
anced conformation to the requirements. With fixed value of T and maximum
number of iterations N = 80 the value of Pmov seems to be the best around
0.7 considering the number of iterations and between 0.4 and 0.5 considering
the resulting values, as depicted by Figures 11 and 12 respectively. After more
detailed analysis of the results, we have set Pmov to 0.7.

With the current setting of both the algorithms we can now analyze their
behavior. Firstly, we are interested in the quality of the achieved suboptimum,
in particular in comparison with the typical reasonable setting of weights so
that the composite measure returns the average similarity. Table 2 overviews
the quality of the suboptimums expressed using the result of ∆ for both the SA
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Fig. 9. Tuning of parameter Pmut – number of iterations for reaching the suboptimum

Fig. 10. Tuning of parameter Pmut – values of ∆ for the suboptimum

and GA algorithms which were evaluated either starting with random population
P0/state s0 or with setting to the average-producing weights (denoted as avg).
As we can see in both the cases the results are much better when we start
with a reasonable, verified setting than with a random one. And, in addition,
if we compare the quality of avg with the achieved suboptimums, we can see
that using both the algorithms can found much better candidates for setting the
weights.

Comparing the two algorithms together we are interested in the amount of
expensive evaluations of fitness/energy, in particular their efficiency and the
quality of the reached suboptimum. As for the quality we can again refer to
Table 2, where we can see that though the values of the two algorithms do not
differ too much, the GA algorithm performs better in all the cases.

The analysis of number of iterations firstly requires a small discussion: In
case of GA the number of evaluations of ∆ seems to be given by the product of
number of iterations and number of individuals in a population. In case of SA it
is given by the number of iterations, since at each iteration only a single state
is evaluated. But due to the properties of GA all the individuals of a population
can be evaluated concurrently avoiding repetitions of expensive preprocessing of
the graph and supplemental calculations (e.g. number of nodes, depths, types
of nodes, etc.). Thus in fact also in this case the number of evaluations rather
corresponds to number of iterations of the algorithm.
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Fig. 11. Tuning of parameter Pmov – number of iterations for reaching the suboptimum

Fig. 12. Tuning of parameter Pmov – values of ∆ for the suboptimum

The resulting numbers of iterations necessary for reaching the suboptimums
from Table 2 are depicted in Table 3. As can be seen not only has the GA al-
gorithm undoubtedly better results than SA, but also the number of iterations
is lower due to its ability to evaluate a population of candidates at each itera-
tion instead of a single one. It is quite probable that with a higher number of
iterations the SA algorithm would perform better, but the duration of such eval-
uation would be unacceptable as it cannot be performed concurrently for more
candidates. Thus though the SA algorithm is able to cope with local optimums
[15], for our purpose seems to be better to use an approach which is able to
reach the optimum as soon as possible, as it is in case of GA assured using a
population of candidates.

At this stage we have a similarity measure whose parameters are tuned ac-
cording to the knowledge of structure of real-world data. But the question is
how good such tuning is. As we have mentioned the existing works rather focus
on semantic similarity of XML schema fragments and thus comparison of our
approach with any of them would be misleading. On the other hand, we can
compare the tuning with the usually used reasonable setting to the average-
producing weights. From Table 2 we can see that in terms of the value of ∆ the
reached settings are much better than in the average-producing case. But such
results are not very convincing in general. Thus for the purpose of evaluation
of quality of the two similarity measures (which we further denote as SimTuned
and SimAvg) we use the approach introduced in [10]. It is based on the idea
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Characteristic
Result of ∆

Minimum Average Median Maximum

P0 (GA)
Random 0,013 1,176 0,673 3,959
avg 0,001 0,652 0,463 3,441

s0 (SA)
Random 0,082 17,318 11,764 55,719
avg 0,061 9,412 6,595 40,519

Arithmetic mean 482,113
Table 2. Quality of the achieved suboptimums

Characteristic
Number of iterations

Minimum Average Median Maximum

P0 (GA)
Random 1 17,2 19 30
avg 5 20,9 22,5 30

s0 (SA)
Random 8 39,8 38 80
avg 2 38.7 37 80

Table 3. Efficiency of achieving the suboptimum

of comparing results of an algorithm with results of manual processing assum-
ing that the manually achieved results form the optimum. Let R be the set of
manually determined matches, i.e. in our case schema fragments similar to the
given schema pattern, and P the set of matches determined by the algorithm.
Then I denotes the set of true positives, i.e. matches correctly identified by the
algorithm, F = P\I denotes false matches, i.e. matches incorrectly identified by
the algorithm, and M = R\I denotes false negatives, i.e. matches not identi-
fied by the algorithm. On the basis of these characteristics, the following quality
measures can be computed:

– Precision = |I|
|P | = |I|

|I|+|F | estimates the reliability of the similarity measure,

– Recall = |I|
|R| specifies the share of real matches that is found, and

– Overall = 1 − |F |+|M |
|R| = |I|−|F |

|R| represents a combined measure which
represents the post-match effort necessary to remove false and add missed
matches.

In the ideal case I = P = R, F = M = ∅, and the measures reach their
highest values Precision = Recall = Overall = 1. On the other hand, the lower
the values are (whereas the Overall can have even negative values), the least
precise the similarity measure is.

For the purpose of the evaluation we have selected 5 XML schemes represent-
ing each of the 5 schema categories and prepared a sample set of 10 data-centric
and 10 document-centric schema patterns. For each of the schema representatives
we have manually identified the set R of data-centric and document-centric frag-
ments. Then we have performed searching for fragments similar to the schema
patterns using both SimAvg and SimTuned, i.e. we have performed 5× (10 + 10)
experiments for each of them, and determined the sets P and I. Finally, within
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the categories we have computed average values of the results (i.e. average |P |
and |I|) and then the resulting values of Precision, Recall, and Overall.

As can be seen from Figure 13 the SimAvg approach is apparently much
worse similarity measure than SimTuned within all the categories. Secondly, it
is evident (and natural) that the quality of both the measures is correlated with
the number of source schemes within the categories, i.e. the amount of source
information we had for tuning the weights. The best results can be found for
categories dat, doc, and ex since the amount of corresponding schemes highly
exceeds the amount in the other two – see Table 1.

Fig. 13. Precision, Recall, and Overall for SimAvg and SimTuned

If we consider the Precision and Recall parameters together (since they influ-
ence each other and thus cannot be evaluated separately, otherwise the results
can be misleading [10]), we can see that in the first three categories the reli-
ability as well as the share of real matchers found exceeded 60%. It is not as
good result as in case of [10], where for the best identified similarity measures
the values often exceeded 75%, but none of the evaluated similarity measures
focussed on structural similarity as precisely as in our case and, of course, the
match tasks were quite different.

Considering the Overall parameter the worst results are again in case of rep
and res categories, whereas in case of SimAvg and rep category the value is even
negative. This denotes that the number of false positives exceeds the number of
true positives and such measure is almost useless, since the post-match effort is
too high.

In general the experiments show that with the proper tuning of weights
based on reliable information on representative sample data, the correspond-
ing similarity measure has much better characteristics than the commonly used
average-producing ones. In addition, the idea can be used for any type similarity
measure (i.e. measure focussing not only on structural similarity) and any type
of relevant tuning data.
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5.2 Behavior of GAS

Considering the above described tuning we can assume that the similarity search
algorithm is precise enough. But we cannot estimate its behavior on a contracted
graph, e.g. the number of iterations of GAS or the structure of the resulting
database schema. Thus in the following experiments we focus especially on the
adaptive strategy. Since the approach is proposed to enable a user to assign a
particular mapping to a chosen schema fragment which is suitable for the actual
application, though it can be highly inefficient in the general case, we do not
analyze the efficiency of the resulting relational schema. It depends highly on
the user requirements and thus such experiments would be rather useless.

For testing the behavior of the proposed algorithm we have again used the
98 real-world XML schemes divided into the 5 categories (see Table 1). In ex-
periments we use a slight modification of GAS (Algorithm 4) which enables
to compare its behavior within the categories, where the annotated fragments
are represented using a separate testing set of schema fragments consisting of
5 data-centric, 5 document-centric, 3 relational, and 3 DNA real-world schema
fragments. Table 4 shows results of characteristics of the algorithm applied on
all the sample fragments per each category.

Characteristic dat doc ex rep res

Average number of iterations 2.7 3.9 2.9 4.1 4.3

Average % of not annotated nodes 2.1 53.4 13.5 25.6 31.1

% of fully contracted schemes 93.7 22.2 81.1 0.0 28.6
Table 4. General characteristics per category

As we can see, the algorithm has quite reasonable behavior. Firstly, the num-
ber of iterations is not an extreme one – the algorithm is able to perform more
than one contraction (i.e. not only the BAS algorithm is applied) and, on the
other hand, there are no extreme values with regard to usual depth or number
of elements in the schemes (see Table 1). From the other two characteristics it is
obvious that the schemes are not usually fully contracted (although it depends
highly on the particular category), i.e. the storage strategies are not determined
for the whole schema. This indicates that the default mapping strategy sdef

should be still specified. If we compare the average number of iterations with
the percentage of fully contracted schemes, it is surprising that schemes with
the lower amount of contractions are fully contracted more often. It is proba-
bly caused by the fact, that the two categories, i.e. dat and ex, usually contain
schemes with much simpler structure than, e.g., the doc one, or much regular
than, e.g., the res one.

Next set of performed tests analyzed the behavior of the algorithm in partic-
ular iterations, especially the percentage of annotated nodes at each iteration, as
depicted by graphs in Figure 14. As we can observe, the percentage of annotated
nodes is usually highest in the first iteration, i.e. using the BAS algorithm, and
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then, with the decreasing number of nodes, rapidly decreases too. The only ex-
ceptions are the rep category, where the percentage grows up to third iteration
and the res category, where it later slowly grows up to seventh iteration. It is
probably caused by less regular structure than in the other three cases as well
as previously mentioned lower number of sample XML schemes and thus less
precise of tuning of the similarity measure.

Fig. 14. Average percentage of annotated nodes at each iteration

The last set of performed tests analyzed the relation between the types of
schema fragments and the iterations. The finding is that various types of schema
fragments appear “randomly”, regardless the iteration. This indicates that the
algorithm does not provide degenerated schemes, such as, e.g., a schema where
all the annotations correspond to a single schema fragment.
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The results of the experiments show that the proposed approach is able
to exploit the user-given information more deeply and find more appropriate
mapping strategy for not annotated schema parts than sdef . When applied on
real-world XML schemes and schema fragments, the algorithm behaves quite
reasonably, though it is not usually able to annotate the given schema fully.
This indicates that the default mapping strategy sdef is still important.

6 Conclusion

The main aim of this paper was to illustrate that since the idea of database-
based XML processing methods is still up-to-date, the techniques should and
can be further enhanced. On this account we have proposed a user-driven map-
ping algorithm which is able to exploit the user given information, i.e. schema
annotations, more deeply and, at the same time, to find the mapping strategy
for the not annotated parts more efficiently – using an adaptive approach. Using
an experimental implementation we have shown that the approach has promis-
ing results. As a “side effect” can be considered a proposal and experimental
evaluation of a similarity measure and its tuning.

A possible further improvement can be an exploitation of the semantic of
element and/or attribute names. The similarity can be searched not only on
structural level, but using a kind of thesaurus or appropriate user-given infor-
mation. Although our proposal focuses mainly on structural similarities related
to efficiency of database processing, it is at least worth testing whether the
semantic of the names carries additional important information useful for this
purpose too. Next interesting task could be also a combination of our approach
with a cost-driven one, i.e. an exploitation of both user-given annotations and
a sample set of XML data and XML queries together. As we have already men-
tioned, the key disadvantage is in the amount of required input data. But, on
the other hand, the combination of the two approaches could bring interesting
results and ensure full annotation of the schema. And, last but not least, the key
enhancing lies in dynamic adaptability of the system [19]. This challenging but
non-trivial task would solve the remaining disadvantage of the adaptive methods
– the fact that the schema is adapted only once, at the beginning, but not in
case the application changes.
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