
Adaptability of Methods for Processing XML
Data using Relational Databases – the State of

the Art and Open Problems

(Technical Report)

Irena Mlynkova and Jaroslav Pokorny

Charles University
Faculty of Mathematics and Physics
Department of Software Engineering

Malostranske nam. 25
118 00 Prague 1, Czech Republic

Email: {irena.mlynkova,jaroslav.pokorny}@mff.cuni.cz

Abstract. XML technologies have undoubtedly become a standard for
data representation and manipulation and are widely used in various
spheres of human activities. Thus it is inevitable to propose and imple-
ment efficient techniques for managing and processing XML data.
A natural alternative is to exploit tools and functions offered by relational
database systems. Unfortunately this approach has many opposers who
point out especially its inefficiency caused by structural differences be-
tween XML data and relations. On the other hand, relational databases
have long theoretical and practical history and represent a mature and
reliable technology, i.e. they can offer properties that no native XML
database can offer yet. On this account we believe that the database-
based XML processing should be further studied and enhanced.
In this paper we study techniques, which enable to improve XML pro-
cessing based on relational databases, so-called adaptive or flexible map-
ping methods. First of all, we discuss reasons why these techniques are
important and promising. Secondly, we provide an overview of exist-
ing approaches, we classify their main features, and sum up the most
important findings and characteristics. Finally, we discuss possible im-
provements and corresponding key problems.

1 Introduction

Without any doubt the eXtensible Markup Language (XML) [11] is currently
one of the most popular formats for data representation. It is well-defined, easy-
to-use, and involves number of other “side” recommendations such as languages
for structural specification, transformation, querying, updating, etc. The wide
popularity naturally invoked an enormous endeavor to propose faster and more
efficient methods and tools for managing and processing XML data. Soon it
was possible to distinguish several different directions based on various storage
strategies. The four most popular ones are:

– methods which store XML data in a file system,
– methods which store and process XML data using an (object-)relational

database system,
– methods which exploit a pure object-oriented approach, and
– native methods that use special indices and/or data structures proposed

particularly for XML data processing.

Naturally, each of these approaches has both keen supporters and opposers
who emphasize its particular advantages or disadvantages. The situation is not
good especially for file system-based and pure object-oriented methods. The for-
mer ones suffer from inability of querying without any additional preprocessing of
the data, while the latter approach fails especially in finding a corresponding ef-
ficient and comprehensive tool. Expectably, the highest-performance techniques
are the native ones since they are proposed particularly for XML processing and
do not need to adapt existing structures to a new purpose. Nevertheless, the
most practically used ones are undoubtedly methods which exploit features of
(object-) relational databases. The reason is that such databases are still re-
garded as universal and powerful data processing tools and in relation to their
long theoretical and practical history they can guarantee a reasonable level of
reliability and efficiency. Contrary to native methods it is not necessary to start
“from scratch” but we can rely on a mature and verified technology, i.e. proper-
ties that no native XML database can offer yet. On this account we believe that
these methods and especially their possible improvements should be studied and
further enhanced.

Under a closer investigation the database-based1 methods can be further
classified and analyzed [21]. We usually distinguish:

– generic methods, i.e. methods which store XML data regardless its possibly
existing schema (e.g. [12]),

– schema-driven methods, i.e. methods based on structural information from
existing schema of XML documents (e.g. [29]), and

– user-defined methods, i.e. methods which leave all the storage decisions in
hands of future users (e.g. [1]).

Techniques of the first mentioned type usually view an XML document as
a general directed tree with several types of nodes. The fact that they do not
exploit XML schemes can be regarded as both advantage and disadvantage. On
one hand they do not depend on its existence but, on the other hand, they cannot
exploit the additional structural or type information. But together with the
finding that a significant portion of real XML documents (52% [19] of randomly
crawled or 7.4% [22] of semi-automatically collected2) have no schema at all,
they seem to be the most practical choice.
1 In the rest of the paper the term “database” represents an (object-)relational

database.
2 Data collected with interference of a human operator who removes damaged, artifi-

cial, too simple, and/or otherwise useless XML data.

2

By contrast, schema-driven methods have contradictory advantages and dis-
advantages. Considering the disadvantages the situation is even worse for meth-
ods which are based particularly on XML Schema [31] [8] definitions (XSDs)
and focus on their special features [20]. As it is expectable, XSDs are used even
less (only for 0.09% [19] of randomly crawled or 38% [22] of semi-automatically
collected XML documents) and even if they are used, they often (in 85% of cases
[7]) define so-called local tree grammars [24], i.e. languages that can be defined
using DTD as well. The most exploited “non-DTD” features are usually simple
types whose lack in DTD is well-known and crucial but for XML data processing
have only a side optimization effect.

Another problem of purely schema-driven methods is that information XML
schemes provide is not satisfactory. Analysis of both XML documents and XML
schemes together [22] shows that XML schemes are too general in comparison to
their instances. Excessive examples can be recursion or “*” operator which allow
infinitely deep or wide XML documents. Naturally XML schemes also cannot
provide any information about retrieval frequency of an element or attribute.
Thus not only XML schemes but also corresponding XML documents and XML
queries need to be taken into account to get overall notion of the demanded
XML-processing application.

The last mentioned type of approach, i.e. the user-defined one, is a bit differ-
ent. It does not involve methods for automatic database storage but rather tools
for specification of the target database schema and required XML-to-relational
mapping. Though it seems to be a marginal approach, it is commonly offered
by almost all known (object-)relational database systems [2] as a feature that
enables users to define what suits them most instead of being restricted by fea-
tures and especially disadvantages of a particular technique. Nevertheless, the
disadvantage is evident – it assumes that the user is skilled in both database
and XML technologies. And particularly for complex applications the task to
propose a good database schema is not easy.

As we can observe, advantages of all three approaches are closely related
to the particular situation. Thus it seems to be advisable to propose a method
which is able to exploit the current situation and information or at least to
comfort to them. Naturally this idea is not a brand new one. If we analyze
database-based methods more deeply, we can distinguish so-called flexible or
adaptive methods (e.g. [15], [10], [32], [34], [4], [6]). They take into account a
given sample set of XML data, XML queries, and/or other various user-given
information which specify the future usage and adapt the resulting database
schema to them. It is not surprising that such techniques have better performance
results than the fixed ones (e.g. [12], [29], [20]), i.e. methods which use pre-
defined set of mapping rules and heuristics regardless the intended future use.
Nevertheless, the adaptive techniques have also one great disadvantage – the
fact that the target database schema is adapted only once, at the beginning.
Thus if the expected usage strategy changes, the efficiency of such techniques
can be even worse than in case of the corresponding fixed ones. Consequently
the adaptability needs to be dynamic.

3

The idea to adapt a technique to a sample set of data is also closely related
to analyses of typical features and properties of real XML documents [22]. If we
combine these two ideas, we can assume that a method which focuses especially
on these typical XML features will be also more efficient than the general one. A
similar observation is already widely exploited for example in techniques which
represent XML documents as a set of points in multidimensional space [16] [17].
Efficiency of such techniques depends strongly on depth of XML documents
or number of distinct paths – naturally both the values should be as small
as possible. Fortunately XML analyses confirm that real XML documents are
surprisingly shallow – the average depth does not exceed 10 levels [19] [22].

Generally speaking the presumption that an adaptive enhancing of XML-
processing methods focusing on given or typical situations is undoubtedly a
promising type of improvement. In this paper we study these techniques from
various points of view. We provide an overview of existing approaches, we classify
them and their main features, and we sum up the most important findings and
characteristics. Finally, we discuss possible improvements and corresponding key
problems.

The rest of the paper is structured as follows: The second section contains a
brief introduction to formalism used throughout the paper. Section 3 describes
and classifies the existing related works, both practical and theoretical and Sec-
tion 4 sums up their main characteristics. Section 5 discusses possible ways of
improvement of the recent approaches and finally, the sixth section provides
conclusions.

2 Definitions and Formalism

Before we begin to describe and classify adaptive methods, we state several basic
terms used in the rest of the text.

An XML document is usually viewed as a directed labeled tree with several
types of nodes whose edges represent relationships among them. Side structures,
such as entities, comments, CDATA sections, processing instructions, etc., are
without loss of generality omitted.

Definition 1. An XML document is a directed labeled tree T = (V, E, ΣE , ΣA,
Γ, lab, r), where

– V is a finite set of nodes,
– E ⊆ V × V is a set of edges,
– ΣE is a finite set of element names,
– ΣA is a finite set of attribute names,
– Γ is a finite set of text values,
– lab : V → ΣE ∪ΣA ∪Γ is a surjective function which assigns a label to each

v ∈ V , whereas v is an element if lab(v) ∈ ΣE, an attribute if lab(v) ∈ ΣA,
or a text value if lab(v) ∈ Γ , and

– r is the root node of the tree.

4

A schema of an XML document is usually described using DTD or XML
Schema language. Both the languages use a similar approach and describe the
allowed structure of an element using its content model. An XML document is
valid against a schema if each element matches its content model. (We will state
the definitions for DTDs only. For XSDs are often used similar ones involving
non-DTD structures. We omit them for the paper length.)

Definition 2. A content model α over a set of element names Σ′
E is a regular

expression defined as α = ε | pcdata | f | (α1, α2, ..., αn) | (α1|α2|...|αn) | β*
| β+ | β?, where ε denotes the empty content model, pcdata denotes the text
content, f ∈ Σ′

E, “,” and “|” stand for concatenation and union (of content
models α1, α2, ..., αn), and “*”, “+”, and “?” stand for zero or more, one or
more, and optional occurrence(s) (of content model β) respectively.

Definition 3. An XML schema S is a four-tuple (Σ′
E , Σ′

A, ∆, s), where

– Σ′
E is a finite set of element names,

– Σ′
A is a finite set of attribute names,

– ∆ is a finite set of declarations of the form e → α or e → β, where e ∈ Σ′
E,

α is a content model over Σ′
E, and β ⊆ Σ′

A, and
– s ∈ Σ′

E is a start symbol.

Definition 4. An XML document T = (V, E, ΣE , ΣA, Γ, lab, r) is valid against
XML schema S = (Σ′

E , Σ′
A, ∆, s) if lab(r) = s and for ∀ v ∈ V s.t. lab(v) ∈ ΣE:

– lab(v) ∈ Σ′
E,

– the sequence of labels of its child nodes 〈ei;i=1,...,k s.t. ei ∈ ΣE ∪Γ 〉 matches
the content model α, where (lab(v) → α) ∈ ∆ , and

– the set of labels of its child nodes {ai;i=1,...,l s.t. ai ∈ ΣA} ⊆ β, where
(lab(v) → β) ∈ ∆.

To simplify the XML-to-relational mapping process an XML schema is often
transformed into a graph representation. Probably the first occurrence of this
representation, so-called DTD graph, can be found in [29]. There are also various
other types of graph representation of an XML schema, nevertheless the analyzed
techniques use the following or a similar one. If necessary, we mention the slight
differences later in the text.

Definition 5. A schema graph of a schema S = (Σ′
E , Σ′

A, ∆, s) is a directed,
labeled graph G = (V, E, lab′), where

– V is a finite set of nodes,
– E ⊆ V × V is a set of edges,
– lab′ : V → Σ′

E ∪ Σ′
A ∪ {“|”, “*”, “+”, “?”, “,”} ∪ {pcdata} is a surjective

function which assigns a label to ∀ v ∈ V , and
– s is the root node of the graph.

The core idea of XML-to-relational mapping methods is to decompose a given
schema graph into fragments, which are mapped to corresponding relations.

5

Definition 6. A fragment f of a schema graph G is each its connected subgraph.

Definition 7. A decomposition of a schema graph G is a set of its fragments
{f1, ..., fn}, where ∀ v ∈ V is a member of at least one fragment.

3 Existing Approaches and Their Classification

Up to now only a few papers have focused on a proposal of a database-based
XML-processing method which is able to adapt the target database schema to
given information or typical situations. We distinguish two main directions –
cost-driven and user-driven. (We wittingly use the term “user-driven” to distin-
guish the approach from the “user-defined” one.)

Techniques of the former group can choose the most efficient XML-to-relational
storage strategy automatically. They usually evaluate a subset of possible map-
pings and choose the best one according to the given sample of XML data, query
workload, etc. The main advantage is expressed by the adverb “automatically”,
i.e. without necessary or undesirable user interference.

By contrast, techniques of the latter group also support several storage strate-
gies but the final decision is left in hands of users. We distinguish these techniques
from the user-defined ones since their approach is slightly different: By default
they offer a fixed mapping. But users can influence the mapping process by an-
notating fragments of the input XML schema (which should not be mapped by
default) with demanded storage strategies. In other words the user is enabled
to improve the fixed strategy. Similarly to the user-defined techniques this ap-
proach also assumes a skilled user, but, on the other hand, most of the work is
done by the system itself and the user is expected to help the mapping process,
not to perform it.

In the following subsections we briefly describe the found existing methods
of the two approaches and we further classify their features.

3.1 Cost-Driven Techniques

As mentioned above, cost-driven techniques can choose the best storage strategy
for a particular application automatically, without any interference of a user.
In other words the user can influence the mapping process only through the
provided XML schema, set of sample XML documents or data statistics, set of
XML queries and eventually their weights, etc.

Each of the techniques can be characterized by following five features:

– an initial XML schema Sinit,
– a set of XML schema transformations T = {t1, t2, ..., tn}, where ∀ i : ti

transforms a given schema S1 into a schema S2,
– a fixed XML-to-relational mapping function fmap which transforms a given

XML schema S into a relational schema R,
– a set of input sample data Dsample which characterizes the future application,

and

6

– a cost function fcost which evaluates the efficiency of the given relational
schema R with regard to the set Dsample.

The required result is an optimal relational schema Ropt, i.e. a schema, where
fcost(Ropt, Dsample) is minimal.

It is important to mention that though the set of transformations T is always
finite, they often generate a possibly infinite set of XML schemes. It is caused
by the fact that particular transformations usually have various parameters or
can be applied to any subgraph of schema S1.

A naive, but illustrative, cost-driven storage strategy that is based on the
idea of using a “brute force” is depicted by Algorithm 1.

Algorithm 1 A naive search algorithm
Input: Sinit, T , fmap, Dsample, fcost

Output: Ropt

1: S ← {Sinit}
2: while ∃ t ∈ T, s ∈ S : t(s) 6∈ S do
3: S ← S ∪ {t(s)}
4: end while
5: costopt ←∞
6: for all s ∈ S do
7: Rtmp ← fmap(s)
8: costtmp ← fcost(Rtmp, Dsample)
9: if costtmp < costopt then

10: Ropt ← Rtmp

11: costopt ← costtmp

12: end if
13: end for
14: return Ropt

The naive algorithm first generates a set of possible XML schemes S using
transformations from set T and starting from initial schema Sinit (lines 1 – 4).
Then it searches for schema s ∈ S with minimal cost fcost(fmap(s), Dsample)
(lines 5 – 13) and returns the corresponding optimal relational schema Ropt =
fmap(s). It is obvious that the complexity of such algorithm strongly depends
on the set T . It can be proven that even a simple set of transformations causes
the problem of finding the optimal schema to be NP-hard [32] [34] [18]. Thus
the techniques in fact search for a suboptimal solution using various heuristics,
greedy strategies, approximation algorithms, terminal conditions, etc.

We can also observe that purely fixed methods can be considered as a special
type of cost-driven methods, where T = ∅, Dsample = ∅, and fcost(R, ∅) = const
for ∀ R.

7

Hybrid Object-Relational Mapping One of the first attempts of a cost-
driven adaptive approach is a method called Hybrid object-relational mapping
[14] [15]. It is based on the fact that if XML documents are mostly semi-
structured, a “classical” decomposition of unstructured or semi-structured XML
parts into relations (e.g. [29]) leads to inefficient query processing caused by
plenty of inevitable join operations. The algorithm exploits the idea of storing
well structured parts into relations and semi-structured parts in a more natural
way – using so-called XML data type, which supports path queries and XML-
aware full-text operations. The fixed mapping for structured parts is similar to
the classical Hybrid algorithm [29], whereas in addition it exploits NF 2-relations
using constructs such as set-of, tuple-of, and list-of.

The main concern of the method is to identify the structured and semi-
structured parts. The process consist of the following steps:

1. A schema graph G1 = (V1, E1, lab′1) is built for a given DTD.
2. For ∀ v ∈ V1 a measure of significance ωv (see below) is determined.
3. Each v ∈ V1 which satisfies the following conditions is identified:

(a) v is not a leaf node.
(b) For v and ∀ its descendant vi;1≤i≤k : ωv < ωLOD and ωvi < ωLOD, where

ωLOD is a required level of detail of the resulting schema.
(c) v does not have a parent node which would satisfy the conditions too.

4. Each fragment f ⊆ G1 which consists of a previously identified node v and
its descendants is replaced with an attribute node having the XML data
type, resulting in a schema graph G2.

5. G2 is mapped to a relational schema using a fixed mapping.

The measure of significance ωv of a node v is defined as

ωv =
1
2
ωSv +

1
4
ωDv +

1
4
ωQv (1)

ωDv =
card(Dv)
card(D)

(2)

ωQv =
card(Qv)
card(Q)

(3)

where

– ωSv is derived from the DTD structure as a combination of weights expressing
position of v in the graph and complexity of its content model3,

– D ⊆ Dsample is a set of all given documents,
– Dv ⊆ D is a set of documents containing v,
– Q ⊆ Dsample is a set of all given queries, and
– Qv ⊆ Q is a set of queries containing v.

3 For more details see [14] or [15].

8

As we can see, the algorithm optimizes the naive approach mainly in the
following points:

– The schema graph is preprocessed, i.e. ωv is determined for ∀ v ∈ V1.
– The set of transformations T is a singleton.
– The transformation is performed if the current node satisfies the above men-

tioned conditions a) – c).

As it is obvious, the preprocessing ensures that the complexity of the search
algorithm is given by K1 ∗ card(V1)+K2 ∗ card(E1), where K1,K2 ∈ N . On the
other hand, the optimization is too restrictive in terms of the amount of possible
XML-to-relational mappings.

LegoDB Mapping Another example of adaptive cost-driven methods, was
proposed and implemented for LegoDB system [9] [10] and later enhanced and
extended into FlexMap framework [27] [28]. The algorithm optimizes the naive
approach using a simple greedy strategy as depicted in Algorithm 2.

Algorithm 2 A greedy search algorithm
Input: Sinit, T , fmap, Dsample, fcost

Output: Ropt

1: Sopt ← Sinit

2: Ropt ← fmap(Sopt)
3: costopt ← fcost(Ropt, Dsample)
4: loop
5: costmin ←∞
6: for all t ∈ T do
7: costt ← fcost(fmap(t(Sopt)), Dsample)
8: if costt < costmin then
9: tmin ← t

10: costmin ← costt

11: end if
12: end for
13: if costmin < costopt then
14: Sopt ← tmin(Sopt)
15: Ropt ← fmap(Sopt)
16: costopt ← fcost(Ropt, Dsample)
17: else
18: break;
19: end if
20: end loop
21: return Ropt

The main differences in comparison with the naive approach are the choice
of the least expensive transformation at each iteration (lines 5 – 12) and the

9

termination of searching if there exists no transformation t ∈ T that can reduce
the current (sub)optimum (lines 13 – 19).

The set T of XML-to-XML transformations involves following XSD modifi-
cations:

– Inlining and outlining – mutually inverse operations which enable to store
columns of a subelement or attribute either in a parent table or in a separate
table

– Splitting and merging elements – mutually inverse operations which enable
to store columns of a shared element4 either in a common table or in separate
tables, each for a particular sharer

– Associativity and commutativity – operations which enable to group different
elements into one table

– Union distribution and factorization – mutually inverse operations which
enable to separate out components of a union using equation (a, (b|c)) =
((a, b)|(a, c))

– Splitting and merging repetitions – exploitation of equation (a+) = (a, a∗)
– Simplifying unions – exploitation of equation (a|b) ⊆ (a?, b?)

Note that except for commutativity and simplifying unions the transforma-
tions generate equivalent schema in terms of equivalence of sets of document
instances. Commutativity does not retain the order of the schema, while sim-
plifying unions generates a more general schema, i.e. a schema with larger set
of allowed document instances. (Unfortunately only a subset of the mentioned
transformations – namely inlining and outlining – was implemented and exper-
imentally tested by the FlexMap system.)

The fixed mapping again uses a strategy similar to the Hybrid algorithm
but it is applied locally on each fragment of the schema. The fragments are
specified by the transformation rules stated by the search algorithm. For example
elements determined to be outlined are not inlined though a “traditional” Hybrid
algorithm would do so.

The process of evaluating fcost is significantly optimized. A naive approach
would require:

1. construction of a particular relational schema,
2. loading sample XML data into the relations, and
3. cost analysis of the resulting relational structures.

The LegoDB evaluation exploits an XML Schema-aware statistics framework
StatiX [13] which analyzes the structure of a given XSD and XML documents
and computes their statistical summary. The XML statistics are then “mapped”
to relational statistics regarding the fixed XML-to-relational mapping and to-
gether with sample query workload used as an input for a classical relational
optimizer which estimates the resulting cost. Thus no relational schema has to
be constructed.
4 An element with multiple parent elements in the schema – see [29].

10

Furthermore, as the statistics are respectively updated at each XML-to-XML
transformation, the XML documents need to be processed only once.

An Adjustable and Adaptable Method (AAM) The following method,
which is also based on the idea of searching a space of possible mappings, is
presented in [32] as an Adjustable and adaptable method (AAM). In this case the
authors adapt the given problem to features of genetic algorithms. This is also
the first paper that mentions that the problem of finding a relational schema R
for a given set of XML documents and queries Dsample, s.t. fcost(R, Dsample) is
minimal, is NP-hard in the size of the data.

The set T of XML-to-XML transformations consists of inlining and outlin-
ing of subelements. For the purpose of the genetic algorithm each transformed
schema is represented using a bit string, where each bit corresponds to an edge
of the schema graph and it is set to

– 1 if the element the edge points to is stored into a separate table, or
– 0 if the element the edge points to is stored into parent table.

The bits set to 1 represent “borders” among fragments, whereas each frag-
ment is stored into one table corresponding to so-called Universal table [12]. The
extreme instances correspond to “one table for the whole schema” (in case of
00...0 bit string) resulting in many null values and “one table per each element”
(in case of 11...1 bit string) resulting in many join operations.

Similarly to the previous strategy the genetic algorithm chooses only the best
possible continuation at each iteration. The algorithm consists of the following
steps:

1. The initial population P0 (i.e. the set of schema bit strings) is generated
randomly.

2. The following steps are repeated until terminating conditions are met:
(a) Each member of the current population Pi is evaluated and only the best

representatives are selected for further production.
(b) The next generation Pi+1 is produced by genetic operators crossover,

mutation, and propagate.

The algorithm terminates either after certain number of transformations or
if a good-enough schema is achieved.

The cost function fcost(R,Dsample) is expressed as:

fcost(R,Dsample) = fM (R, Dsample) + fQ(R,Dsample) (4)

fM (R, Dsample) =
q∑

l=1

Cl ∗Rl (5)

11

fQ(R, Dsample) =
m∑

i=1

Si ∗ PSi
+

n∑

k=1

Jk ∗ PJk
(6)

where

– fM (R, Dsample) is a space-cost function, where Cl is number of columns and
Rl is number of rows in table Tl created for l-th element in the schema,

– q is the number of all elements in the schema,
– fQ(R, Dsample) is a query-cost function, where Si is cost and PSi

is proba-
bility of i-th given select query and Jk is cost and PJk

is probability of k-th
given join query,

– m is the number of select queries in Dsample, and
– n is the number of join queries in Dsample.

In other words fM (R,Dsample) represents the total memory cost of the map-
ping instance, whereas fQ(R, Dsample) represents the total query cost. The prob-
abilities PSi

and PJk
enable to specify which elements will (not) be often re-

trieved and which sets of elements will (not) be often combined to search. Note
that the cost function does not involve a sample set of XML documents at all.

As we can see, this algorithm represents another way of finding a reasonable
suboptimal solution in the theoretically infinite set of possibilities – using (in
this case two) terminal conditions.

A Hill Climbing Algorithm The last but not least cost-driven adaptable
representative can be found in paper [34]. The approach is again based on a
greedy type of algorithm, in this case a Hill climbing strategy that is depicted
by Algorithm 3.

As we can see, the hill climbing strategy differs from the simple greedy strat-
egy depicted in Algorithm 2 in the way it chooses the appropriate transformation
t ∈ T . In the previous case the least expensive transformation that can reduce
the current (sub)optimum is chosen, in this case it is the first such transformation
found.

The schema transformations are based on the idea of vertical (V) or hori-
zontal (H) cutting and merging the given XML schema fragment(s). The set T
consists of the following four types of (pairwise inverse) operations:

– V-Cut(f, (u,v)) – cuts fragment f into fragments f1 and f2, s.t. f1 ∪ f2 = f ,
where (u, v) is an edge from f1 to f2, i.e. u ∈ f1 and v ∈ f2

– V-Merge(f1, f2) – merges fragments f1 and f2 into fragment f = f1 ∪ f2

– H-Cut(f, (u,v)) – splits fragment f into twin fragments f1 and f2 horizontally
from edge (u, v), where u 6∈ f and v ∈ f , s.t. ext(f1) ∪ ext(f2) = ext(f) and
ext(f1) ∩ ext(f2) = ∅ 5 6

5 ext(fi) is the set of all document-instance fragments conforming to the schema frag-
ment fi.

6 Fragments f1 and f2 are called twins if ext(f1) ∩ ext(f2) = ∅ and for each node
u ∈ f1, there is a node v ∈ f2 with the same label and vice versa.

12

Algorithm 3 A hill climbing algorithm
Input: Sinit, T , fmap, Dsample, fcost

Output: Ropt

1: Sopt ← Sinit

2: Ropt ← fmap(Sopt)
3: costopt ← fcost(Ropt, Dsample)
4: Ttmp ← T
5: while Ttmp 6= ∅ do
6: t ← any member of Ttmp

7: Ttmp ← Ttmp\{t}
8: Stmp ← t(Sopt)
9: costtmp ← fcost(fmap(Stmp), Dsample)

10: if costtmp < costopt then
11: Sopt ← Stmp

12: Ropt ← fmap(Stmp)
13: costopt ← costtmp

14: Ttmp ← T
15: end if
16: end while
17: return Ropt

– H-Merge(f1, f2) – merges two twin fragments f1 and f2 into one fragment f
s.t. ext(f1) ∪ ext(f2) = ext(f)

As we can observe, V-Cut and V-Merge operations are similar to outlining
and inlining of the fragment f2 out of or into the fragment f1. On the other
hand, H-Cut operation, which is in practice applied only on shared fragments,
corresponds to splitting of elements mentioned in LegoDB mapping, i.e. duplica-
tion of the shared part. Likewise the H-Merge operation corresponds to inverse
merging of elements.

The fixed XML-to-relational mapping maps each fragment fi which consists
of nodes {v1, v2, ..., vn} to relation

Ri = (id(ri) : int, id(ri.parent) : int, lab(v1) : type(v1), ..., lab(vn) : type(vn))
where ri is root element of fi. Note that such mapping is again similar to locally
applied Universal table.

The cost function fcost(R,Dsample) is expressed as

fcost(R, Dsample) =
n∑

i=1

wi ∗ cost(Qi, R) (7)

where Dsample consists of a sample set of XML documents and a given query
workload {(Qi, wi)i=1,2,...,n}, where Qi is an XML query and wi is its weight. The
cost function cost(Qi, R) for a query Qi which accesses fragment set {fi1, ..., fim}
is expressed as

cost(Qi, R) =
{ |fi1| m = 1∑

j,k (|fij | ∗ Selij + δ ∗ (|Eij |+ |Eik|)/2) m > 1 (8)

13

where fij and fik, j 6= k are two join fragments, |Eij | is the number of elements
in ext(fij), and Selij is the selectivity of the path from the root to fij estimated
using Markov table. In other words the formula simulates the cost for joining
relations corresponding to fragments fij and fik.

The authors further analyze the influence of the choice of initial schema Sinit

on efficiency of the search algorithm. They analyze three types of initial schema
decompositions leading to Attribute [12], Shared, or Hybrid [29] mapping. The
paper concludes with the finding that a good choice of an initial schema is crucial
and can lead to faster searches of the suboptimal mapping.

3.2 User-Driven Techniques

As mentioned above, the most flexible approach is “to leave the whole process in
hands of a user” who defines both the target database schema and the required
mapping. We speak about so-called user-defined mapping techniques. Probably
due to simple implementation they are especially popular and supported in most
commercial database systems7.

At first sight the idea is correct – users can decide what suits them most and
are not restricted by features and especially disadvantages of a particular tech-
nique. The problem is that such approach assumes users skilled in two complex
technologies – (object-)relational databases and XML. Furthermore, for more
complex applications the design of an optimal relational schema is generally not
an easy task.

On this account several new techniques – for the purpose of this paper called
user-driven mapping strategies – were proposed. The main difference is that
the user can influence a default fixed mapping strategy using annotations which
specify the required mapping for particular schema fragments. The set of allowed
mappings is naturally limited but still enough powerful to define various mapping
strategies.

Each of the techniques is characterized by following four features:

– an initial XML schema Sinit,
– a set of allowed fixed XML-to-relational mappings {f i

map}i=1,...,n,
– a set of annotations A, each of which is specified by name, target, allowed

values, and function, and
– a default mapping strategy fdef for not annotated fragments.

MDF Probably the first approach which faces the mentioned issues is proposed
in papers [4] [3] (which extend ideas of papers [2] [5]) as a Mapping definition
framework (MDF). It allows users to specify the required mapping and it is able
to check correctness and completeness of such specifications and to complete
possible incompleteness. The mapping specifications are made by annotating the
input XSD with a predefined set of annotations, i.e. attributes from namespace
called mdf. The set of annotating attributes A is listed in Table 1.
7 An overview and analysis of commercial user-defined approaches can be found in [2].

14

Attribute Target Value Function

outline attribute or ele-
ment

true,
false

If the value is true, a separate table
is created for the attribute / element.
Otherwise it is inlined to parent table.

tablename attribute, ele-
ment, or group

string The string is used as the table name.

columnname attribute, ele-
ment, or simple
type

string The string is used as the column
name.

sqltype attribute, ele-
ment, or simple
type

string The string defines the SQL type of a
column.

structurescheme root element KFO,
Interval,
Dewey

Defines the way of capturing the
structure of the whole schema.

edgemapping element true,
false

If the value is true, the element and
all its subelements are mapped using
Edge mapping.

maptoclob attribute or ele-
ment

true,
false

If the value is true, the element / at-
tribute is mapped to a CLOB column.

Table 1. Annotation attributes for MDF

As we can see from the table, the set of allowed XML-to-relational mappings
{f i

map}i=1,...,n involves inlining and outlining of an element or attribute, Edge
mapping [12] strategy, and mapping an element or attribute to a CLOB column.
Furthermore, it enables to specify the required capturing of the structure of the
whole schema using one of the following three approaches:

– Key, Foreign Key and Ordinal Strategy (KFO) – each node is assigned a
unique ID and a foreign key pointing to parent ID, the sibling order is cap-
tured using an ordinal value

– Interval Encoding – a unique {start,end} interval is assigned to each node
corresponding to preorder and postorder traversal entering time

– Dewey Decimal Classification – each node is assigned a path to the root
node described using concatenation of node IDs along the path

As side effects can be considered attributes for specifying names of tables
or columns and data types of columns. Not annotated parts are stored using
user-predefined rules, whereas such mapping is always a fixed one.

XCacheDB System Paper [6] also proposes a user-driven mapping strategy
which is implemented and experimentally tested as an XCacheDB system. Sim-
ilarly to the previous case a user can provide an annotated XML schema which

15

Attribute Value Function

INLINE ∅ If placed on a node v, the fragment rooted at v is inlined into
parent table.

TABLE ∅ If placed on a node v, a new table is created for the fragment
rooted at v.

STORE BLOB ∅ If placed on a node v, the fragment rooted at v is stored also into
a BLOB column.

BLOB ONLY ∅ If placed on a node v, the fragment rooted at v is stored into a
BLOB column.

RENAME string The value specifies the name of corresponding table or column
created for node v.

DATATYPE string The value specifies the data type of corresponding column created
for node v.

Table 2. Annotation attributes for XCacheDB

contains the demanded mappings for particular schema fragments, otherwise a
default strategy is used. Unfortunately the system considers only unordered and
acyclic XML schemes and omits mixed-content elements.

The set of annotating attributes A that can be assigned to any node v ∈
Sinit is listed in Table 2. As we can see, it enables inlining and outlining of
a node, storing a fragment into a BLOB column, specifying table names or
column names, and specifying column data types. The main difference is in the
data redundancy allowed by attribute STORE BLOB which enables to shred the
data into table(s) and at the same time to store pre-parsed XML fragments into
a BLOB column.

The fixed mapping uses a slightly different strategy: Each element or at-
tribute node is assigned a unique ID. Each fragment f is mapped to a table Tf

which has an attribute avID
of ID data type for each element or attribute node

v ∈ f . If v has is an atomic node8, Tf has also an attribute av of the same data
type as v. For each distinct path that leads to f from a repeatable ancestor v,
Tf has a parent reference column of type ID which points to ID of v. Note that
this mapping strategy is again a fixed one.

For better lucidity we recapitulate the main features of the mentioned cost-driven
and user-driven approaches in Tables 3 and 4 respectively.

3.3 Theoretic Issues

Besides proposals of cost-driven and user-driven techniques there are also pa-
pers which discuss the corresponding open issues of various XML-to-relational
mappings and their efficiency on theoretic level.

8 An attribute node or an element node having no subelements.

16

Method Sinit T fmap Dsample fcost

Hybrid
OR

user-given
DTD

Semi-structured
fragments are
replaced with an
attribute having
an XML data
type

Hybrid algo-
rithm modified
for NF 2-
relations

schema,
docu-
ments,
queries

The measure of sig-
nificance ωv of node
v must be below the
level of detail ωLOD

LegoDB user-given
XSD

inlining / outlin-
ing, splitting /
merging elements,
associativity,
commutativity,
union distribution
/ factorization,
splitting / merg-
ing repetitions,
simplifying unions

Hybrid algo-
rithm applied
locally on each
fragment

schema,
docu-
ments,
queries

Performed by rela-
tional optimizer with
input based on XML
data statistics

AAM randomly
generated set
of schema de-
compositions

inlining / outlin-
ing

Each fragment
is mapped to
one table simi-
lar to the Uni-
versal table

schema,
queries
+
proba-
bilities

The total memory
cost fM (R, Dsample)
+ the total query cost
fQ(R, Dsample)

Hill
Climbing

decomposed
user-given
DTD leading
to Attribute,
Shared,
or Hybrid
mapping

V-Cut / V-Merge,
H-Cut / H-Merge

Each fragment
is mapped to
one table simi-
lar to the Uni-
versal table

schema,
docu-
ments,
queries
+
weights

∑n

i=1
wi ∗ cost(Qi, R),

where cost(Qi, R) is
the cost estimation of
query Qi and wi is its
weight

Table 3. Overview of characteristics of cost-driven methods

17

Method Sinit {f i
map}i=1,...,n A fdef

MDF user-
given
XSD

inlining / outlining,
BLOB, Edge mapping
+ capturing of the
structure using Key,
Foreign Key and Or-
dinal Strategy / Inter-
val Encoding / Dewey
Decimal Classification

outline,
tablename,
columnname,
sqltype,
structurescheme,
edgemapping,
maptoclob

user-predefined rules

XCacheDB user-
given
XSD

inlining / outlining,
BLOB

INLINE, TABLE,
STORE BLOB,
BLOB ONLY,
RENAME, DATATYPE

Each fragment is
mapped to one table
with an ID attribute
for each element /
attribute, data type at-
tribute for each atomic
node, and foreign key
to each repeatable
ancestor

Table 4. Overview of characteristics of user-driven methods

Data Redundancy As mentioned above, the XCacheDB system allows a cer-
tain degree of redundancy to ensure more efficient query processing. The cor-
responding paper [6] discusses the strategy also on theoretic level. There are
two main representatives of the allowed redundancy – BLOB columns and the
violation of BCNF or 3NF condition. On this account the authors define four
classes of XML schema decompositions.

Before we state the definitions we have to note that this approach is based
on a slightly different graph representation of a schema than was defined by
Definition 5. In this case nodes of the graph correspond to elements, attributes,
or pcdata, while edges are labeled with corresponding operators.

Definition 8. A schema decomposition is minimal if all edges connecting nodes
of different fragments are labeled with “*” or “+”.

Definition 9. A schema decomposition is 4NF if all fragments are 4NF frag-
ments. A fragment is 4NF if no two nodes of the fragment are connected by a
“*” or “+” labeled edge.

Definition 10. A schema decomposition is non-MVD if all fragments are non-
MVD fragments. A fragment is non-MVD if all “*” or “+” labeled edges appear
in a single path.

Definition 11. A schema decomposition is inlined if it is non-MVD but it is
not a 4NF decomposition. A fragment is inlined it is non-MVD but it is not a
4NF fragment.

18

According to these definitions fixed mapping strategies (e.g. [29] [20]) nat-
urally consider only 4NF decompositions which are least space-consuming and
seem to be the best choice if we do not consider any other information. Paper [6]
shows that having further information (in this particular case given by a user),
the choice of other type of decomposition can lead to more efficient query pro-
cessing though it requires a certain level of redundancy.

Grouping problem On the other hand, paper [18] is dealing with the idea that
searching a (sub)optimal relational decomposition is not only related to given
XML schema, query workload, and XML data, but it is also highly influenced
by the chosen query translation algorithm9 and the cost model.

For the theoretic purpose a subset of the problem – so-called grouping problem
– is considered. It deals with possible storage strategies for shared subelements,
i.e. either into one common table (so-called fully grouped strategy) or into sepa-
rate tables, one for each sharer (so-called fully partitioned strategy). For analysis
of its complexity the authors further define two simple cost metrics:

– RelCount – the cost of a relational query is the number of relation instances
in the relational algebra expression

– RelSize – the cost of a relational query is the sum of the number of tuples
in relation instances in the relational algebra expression

and three query translation algorithms:

– Naive Translation – performs a join between the relations corresponding to
all the elements appearing in the query, a wild-card query10 is converted into
union of several queries, one for each satisfying wild-card substitution

– Single Scan – a separate relational query is issued for each leaf element and
joins all relations on the path until the least common ancestor of all the leaf
elements is reached

– Multiple Scan – on each relation containing a part of the result is applied
Single Scan algorithm and the resulting query consists of union of the partial
queries

On a simple example the authors show that for a wild-card query Q which
retrieves a shared fragment f with algorithm Naive Translation the fully parti-
tioned strategy performs better, whereas with algorithm Multiple Scan the fully
grouped strategy performs better. Furthermore, they illustrate that reliability
of the chosen cost model is also closely related to query translation strategy. If
a query contains not very selective predicate than the optimizer may choose a
plan that scans corresponding relations and thus RelSize is a good corresponding
metric. On the other hand, in case of highly selective predicate the optimizer
may choose an index lookup plan and thus RelCount is a good metric.
9 An algorithm for translating XML queries into SQL queries

10 A query containing “//” or “/*” operators.

19

Last but not least the authors theoretically prove that various combinations
of the above mentioned cost metrics and translation algorithms can produce
differently complex problems, up to NP-hard ones.

4 Summary

We can sum up the state of the art of adaptability of database-based XML-
processing methods into following natural but important findings:

1. As the storage strategy has a crucial impact on query-processing perfor-
mance, a fixed mapping based on predefined rules and heuristics is not uni-
versally efficient.

2. It is not an easy task to choose an optimal mapping strategy for a particular
application and thus it is not advisable to rely only on user’s experience and
intuition.

3. As the space of possible XML-to-relational mappings is very large (usually
theoretically infinite) and most of the subproblems are even NP-hard, the
exhaustive search is impractical and often even impossible. It is necessary to
define search heuristics, approximation algorithms, and/or reliable terminal
conditions.

4. The choice of an initial schema can strongly influence the efficiency of the
search algorithm. It is reasonable to start with at least “locally good” schema.

5. A strategy of finding a (sub)optimal XML schema should take into account
not only the given schema, query workload, and XML data statistics, but also
consider possible query translations, cost metrics, and their consequences.

6. Cost evaluation of a particular XML-to-relational mapping should not in-
volve time-consuming construction of a particular relational schema, loading
sample XML data and analyzing the resulting relational structures. It can
be optimized using cost estimation of XML queries, XML data statistics,
etc.

7. Despite the previous claim, the user should be allowed to influence the map-
ping strategy. On the other hand, the approach should not demand a full
schema specification but it should be able to efficiently complete the user-
given hints.

8. Even thought a storage strategy is able to adapt to a given sample of schemes,
data, queries, etc., its efficiency is still endangered by later changes of the
expected usage.

5 Open Issues

Although each of the existing approaches brings certain interesting ideas and
optimizations, there is still a space of possible future improvements of the adapt-
able methods. We describe and discuss them in this section starting from (in our
opinion) the least complex ones.

20

5.1 Problem of Missing Input Data

As we already know, the set of input data Dsample for cost-driven adaptive
methods usually consists of:

– an XML schema S,
– a set of XML documents {d1, d2, .., dk} valid against S, and
– a set of XML queries {q1, q2, .., ql} over S, eventually with corresponding

weights {w1, w2, .., wl}, ∀ i : wi ∈ 〈0, 1〉.
The problem of missing input XML schema was already outlined in the intro-

duction in connection with advantages and disadvantages of generic and schema-
driven methods. As we suppose that the adaptability is the ability to adapt to
the given situation, an adaptive method which does not depend on existence
of an XML schema but can exploit the information if being given is probably
a natural first type of improvement. This idea is also strongly related to the
earlier mentioned problem of choice of a locally good initial schema Sinit. The
corresponding main questions are:

– Can be the user-given schema considered as a good candidate for initial
schema Sinit?

– How can we measure this quality?
– How can we (efficiently) find an eventual better candidate?
– Can we find such candidate for schema-less XML documents?

A possible solution can be found in exploitation of methods for automatic
construction of XML schema for the given set of XML documents (e.g. [23] [25]).
These methods are able to derive corresponding content models from a given
sample set of (similar) XML documents. Thus if we assume that documents are
more precise sources of structural information, we can expect that a schema
generated on their bases will have good characteristics.

On the other hand, the problem of missing input XML documents can be at
least partly solved using reasonable default settings based on general analysis
of real XML data (e.g. [19] [22]). Furthermore, the surveys show that real XML
data is surprisingly simple thus the default mapping strategy does not have to
be complex too. It should rather focus on efficient processing of frequently used
XML patterns.

On the other hand, the presence of sample query workload is crucial since
(to our knowledge) there are no analyses on real XML queries, i.e. no source
of information for default settings. The reason is that the way how to collect
such real representatives is not as straightforward as in case of XML documents,
which can be easily crawled from the Internet. The best source of XML queries
are currently XML benchmarking projects (e.g. [26] [33]) but as the data and
especially queries are supposed to be used for rating the performance of a system
in various situations, they cannot be considered as an example of a real workload.

Naturally the query statistics can be gathered by the system itself and the
relational schema can be adapted continuously. But this is already the problem
of dynamic adaptability discussed later in section 5.5.

21

5.2 Efficient Solution of Subproblems

A surprising fact we have encountered are numerous simplifications of the chosen
solutions. At it was mentioned, some of the techniques omit e.g. ordering of ele-
ments, mixed contents, or recursion. This is a bit confusing finding regarding the
fact that there are proposals of efficient processing of these XML constructs (e.g.
[30]) and that adaptive methods should be able to cope with various situations.

A similar observation can be done for user-driven methods. Though the pro-
posed systems are able to store schema fragments in various ways, the default
mapping strategy for not annotated parts of a given schema is again a fixed one.
It seems to be an interesting optimization to join the ideas of cost-driven and
user-driven approaches and to search the (sub)optimal mapping for not anno-
tated parts using a cost-driven method.

5.3 Deeper Exploitation of User-Given Information

Another open issue is the problem of possible deeper exploitation of the infor-
mation given by the user. We can identify two main questions:

1. How can be the user-given information better exploited?
2. Are there any other information a user can provide to increase the efficiency?

A possible answer at least for the first question can be found in the idea of
pattern matching. The idea is to use user-given schema annotations as “hints”
how to store particular XML patterns which can be further exploited in searching
an efficient mapping for not annotated parts. We can naturally predict that
structurally similar fragments should be stored similarly and thus to focus on
finding these fragments in the rest of the schema. The main problem of this
idea is how to identify the structurally similar fragments. If we consider the
variety of XML-to-XML transformations, two structurally same fragments can be
expressed using “at first glance” different regular expressions. Thus it is necessary
to propose particular levels of equality of XML schema fragments and algorithms
how to determine them.

5.4 Theoretical Analysis of the Problem

As we can see from the overview of the existing methods, there are various
types of XML-to-XML transformations, while the mentioned ones certainly do
not cover the whole set of possibilities. Unfortunately there seems to be no
theoretic study of these transformations, their key characteristics, and possible
classifications. The study can, among others, focus on equivalent and generalizing
transformations and as such serve as a good basis for the pattern matching
strategy.

Especially interesting will be the question of NP-hardness in connection with
the set of allowed transformations and its complexity (similarly to paper [18]
which analyzes theoretical complexity of combinations of cost metrics and query
translation algorithms). Such survey will provide useful information especially
for optimizations of the search algorithm.

22

5.5 Dynamic Adaptability

The last but not least mentioned open issue is naturally connected with the most
striking disadvantage of adaptive methods – the problem of possible changes of
both XML queries and XML data that can lead to crucial worsening of their
efficiency. As it was already mentioned, it is also related to the problem of missing
input XML queries and ways how to gather them. Furthermore, the question of
changes of XML data opens another wide research area of updatability of the
stored data – a feature that is often omitted in current approaches although its
importance is crucial.

The solution to these issues – i.e. a system that is able to adapt dynamically
– is obvious and challenging but it is not an easy task. It should especially avoid
total reconstructions of the whole relational schema and corresponding necessary
reinserting of all the stored data, or such operation should be done only in very
special cases and not often.

On the other hand, this “brute-force” approach can serve as a good inspira-
tion. It is possible to suppose that changes especially in case of XML queries will
not be radical but will have a gradual progress. Thus the changes of the relational
schema will be mostly local and we can apply the expensive reconstruction just
locally. Furthermore, we can again exploit the idea of pattern matching and try
to find the XML pattern defined by the modified schema fragment in the rest of
the schema.

Another question is how often should be the relational schema reconstructed.
The natural idea is of course “not too often”. But, on the other hand, a research
can be done on the idea of performing gradual minor changes. It is probable
that such approach will lead to less expensive (in terms of reconstruction) and
at the same time more efficient (in terms of query processing) system. The former
hypothesis should be verified, the latter one can be almost certainly expected.
The key issue is how to find a reasonable compromise.

6 Conclusion

The main goal of this paper was to describe and discuss the current state of the
art and open issues of adaptability in database-based XML-processing methods.
First of all, we have stated the reasons why this topic should be ever studied.
Then we have provided an overview and classification of the existing approaches
and their features and summed up the key findings. Finally, we have discussed
the corresponding open issues and their possible solutions.

Our aim was to show that the idea of processing XML data using relational
databases is still up to date and should be further developed. From the overview
of the state of the art we can see that even though there are interesting and
inspiring approaches, there is still a variety of open problems which can further
improve the database-based XML processing.

Our future work will naturally follow the open issues stated at the end of
this paper and especially survey into the possible solutions we have mentioned.

23

Firstly, we will focus on the idea of improving the user-driven techniques using
adaptive algorithm for not annotated parts of the schema together with deeper
exploitation of the user-given hints using pattern-matching methods – i.e. a
hybrid user-driven cost-based system. Secondly, we will deal with the problem
of missing theoretic study of schema transformations, their classification, and
particularly influence on the complexity of the search algorithm. Finally, on
the basis of the theoretical study and the hybrid system we will study and
experimentally analyze the dynamic enhancing of the system.

It is important to mention that though all the open issues can be studied
from various points of view, they are still closely related and influence each other.
Thus it is always important to consider the given problem globally and do not
omit important consequences.

Acknowledgement

This work was supported in part by Czech Science Foundation (GACR), grant
number 201/06/0756.

References

1. Oracle Database 10g. Oracle Corporation. http://www.oracle.com/database/.
2. S. Amer-Yahia. Storage Techniques and Mapping Schemas for XML. Technical

Report TD-5P4L7B, AT&T Labs-Research, 2003.
3. S. Amer-Yahia, F. Du, and J. Freire. A Comprehensive Solution to the XML-to-

Relational Mapping Problem. In WIDM’04: Proceedings of the 6th Annual ACM
International Workshop on Web Information and Data Management, pages 31–38,
New York, NY, USA, 2004. ACM Press.

4. S. Amer-Yahia, F. Du, and J. Freire. A Generic and Flexible Framework for
Mapping XML Documents into Relations. In VLDB’04: Proceedings of 30th In-
ternational Conference on Very Large Data Bases, Toronto, ON, Canada, 2004.
Morgan Kaufmann Publishers Inc.

5. S. Amer-Yahia and D. Srivastava. A Mapping Schema and Interface for XML
Stores. In WIDM ’02: Proceedings of the 4th International Workshop on Web
Information and Data Management, pages 23–30, McLean, Virginia, USA, 2002.
ACM Press.

6. A. Balmin and Y. Papakonstantinou. Storing and Querying XML Data Using
Denormalized Relational Databases. The VLDB Journal, 14(1):30–49, 2005.

7. G. J. Bex, F. Neven, and J. Van den Bussche. DTDs versus XML Schema: a
Practical Study. In WebDB’04: Proceedings of the 7th International Workshop on
the Web and Databases, pages 79–84, New York, NY, USA, 2004. ACM Press.

8. P. V. Biron and A. Malhotra. XML Schema Part 2: Datatypes (Second Edition).
W3C Recommendation, October 2004. www.w3.org/TR/xmlschema-2/.

9. P. Bohannon, J. Freire, P. Roy, and J. Simeon. From XML Schema to Relations: A
Cost-based Approach to XML Storage. Technical report, Bell Laboratories, 2001.

10. P. Bohannon, J. Freire, P. Roy, and J. Simeon. From XML Schema to Relations:
A Cost-based Approach to XML Storage. In ICDE ’02: Proceedings of the 18th
International Conference on Data Engineering, page 64, Washington, DC, USA,
2002. IEEE Computer Society.

24

11. T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensible
Markup Language (XML) 1.0 (Third Edition). W3C Recommendation, February
2004. http://www.w3.org/TR/REC-xml/.

12. D. Florescu and D. Kossmann. A Performance Evaluation of Alternative Mapping
Schemes for Storing XML Data in a Relational Database. Technical Report 3684,
INRIA, France, March 1999.

13. J. Freire, J. R. Haritsa, M. Ramanath, P. Roy, and J. Simeon. StatiX: Making XML
Count. In ACM SIGMOD 2002: Proceedings of the 21st International Conference
on Management of Data, pages 181–192, Madison, Wisconsin, USA, 2002. ACM.

14. M. Klettke and H. Meyer. Managing XML Documents in Object-Relational
Databases. Rostocker Informatik Fachberichte, 24, 1999.

15. M. Klettke and H. Meyer. XML and Object-Relational Database Systems – En-
hancing Structural Mappings Based on Statistics. In Lecture Notes in Computer
Science, volume 1997, pages 151–170, 2000.

16. M. Kratky, J. Pokorny, and V. Snasel. Indexing XML Data with UB-trees. In
ADBIS’02: Proceedings of International Conference on the Advances in Databases
and Information Systems, pages 155–164, Bratislava, Slovakia, 2002.

17. M. Kratky, J. Pokorny, and V. Snasel. Implementation of XPath Axes in the Multi-
dimensional Approach to Indexing XML Data. In Proceedings of Current Trends
in Database Technology - EDBT 2004 Workshops, pages 46–60, Heraklion, Crete,
Greece, 2004. Springer.

18. R. Krishnamurthy, V. Chakaravarthy, and J. Naughton. On the Difficulty of Find-
ing Optimal Relational Decompositions for XML Workloads: A Complexity Theo-
retic Perspective. In ICDT 2003: Proceedings of the 9th International Conference
on Database Theory, pages 270–284, Siena, Italy, 2003. Springer.

19. L. Mignet, D. Barbosa, and P. Veltri. The XML Web: a First Study. In WWW’03:
Proceedings of the 12th international conference on World Wide Web, Volume 2,
pages 500–510, New York, NY, USA, 2003. ACM Press.

20. I. Mlynkova and J. Pokorny. From XML Schema to Object-Relational Database
– an XML Schema-Driven Mapping Algorithm. In Proceedings of IADIS Interna-
tional Conference WWW/Internet 2004, pages 115–122, Madrid, Spain, 2004.

21. I. Mlynkova and J. Pokorny. XML in the World of (Object-) Relational Database
Systems. In Proceedings of the XIII. International Conference ISD 2004, pages
63–76, Vilnius, Lithuania, 2004.

22. I. Mlynkova, K. Toman, and J. Pokorny. Statistical Analysis of Real XML Data
Collections. In Proceedings of the 13th International Conference on Management
of Data COMAD 2006 (to appear), Delhi, India, December 2006.

23. C.-H. Moh, E.-P. Lim, and W. K. Ng. DTD-Miner: A Tool for Mining DTD from
XML Documents. In WECWIS’00: Proceedings of the 2nd International Workshop
on Advanced Issues of E-Commerce and Web-Based Information Systems, pages
144–151, Milpitas, CA, USA, 2000. IEEE.

24. M. Murata, D. Lee, and M. Mani. Taxonomy of XML Schema Languages using
Formal Language Theory. In Extreme Markup Languages, Montreal, Canada, 2001.

25. S. Nestorov, S. Abiteboul, and R. Motwani. Extracting Schema from Semistruc-
tured Data. In SIGMOD’98: Proceedings of the ACM International Conference On
Management of Data, pages 295–306, Seattle, Washington, DC, USA, 1998. ACM
Press.

26. E. Rahm and T. Bohme. XMach-1: A Benchmark for XML Data Management.
Database Group Leipzig, 2006. http://dbs.uni-leipzig.de/en/projekte/XML/

XmlBenchmarking.html.

25

27. M. Ramanath, J. Freire, J. Haritsa, and P. Roy. Searching for Efficient XML-to-
Relational Mappings. In XSym 2003: Proceedings of the 1st International XML
Database Symposium, volume 2824, pages 19–36, Berlin, Germany, 2003. Springer.

28. M. Ramanath, J. Freire, J. Haritsa, and P. Roy. Searching for Efficient XML-to-
Relational Mappings. Technical Report TR-2003-01, DSL/SERC, Indian Institute
of Science, 2003.

29. J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt, and J. F.
Naughton. Relational Databases for Querying XML Documents: Limitations and
Opportunities. In VLDB’99: Proceedings of 25th International Conference on Very
Large Data Bases, pages 302–314, San Francisco, CA, USA, 1999. Morgan Kauf-
mann Publishers Inc.

30. I. Tatarinov, S. D. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita, and
C. Zhang. Storing and Querying Ordered XML Using a Relational Database Sys-
tem. In SIGMOD’02: Proceedings of 21st International Conference on Management
of Data, pages 204–215, Madison, Wisconsin, USA, 2002. ACM Press.

31. H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema Part
1: Structures (Second Edition). W3C Recommendation, October 2004. www.w3.

org/TR/xmlschema-1/.
32. W. Xiao-ling, L. Jin-feng, and D. Yi-sheng. An Adaptable and Adjustable Mapping

from XML Data to Tables in RDB. In Proceedings of the VLDB 2002 Workshop
EEXTT and CAiSE 2002 Workshop DTWeb, pages 117–130, London, UK, 2003.
Springer-Verlag.

33. B. B. Yao and M. T. Ozsu. XBench – A Family of Benchmarks for XML DBMSs.
University of Waterloo, School of Computer Science, Database Research Group,
2002. http://se.uwaterloo.ca/~ddbms/projects/xbench/Workload.html.

34. S. Zheng, J. Wen, and H. Lu. Cost-Driven Storage Schema Selection for XML. In
DASFAA 2003: Proceedings of the 8th International Conference on Database Sys-
tems for Advanced Applications, pages 337–344, Kyoto, Japan, 2003. IEEE Com-
puter Society.

26

