
XML Schemas: From Design to Exploitation and
Back Again

Martin Nečaský and Irena Mlýnková

Charles University, Faculty of Mathematics and Physics,
Department of Software Engineering,

Malostranské nám. 25, 118 00 Praha 1, Czech Republic
{martin.necasky,irena.mlynkova}@mff.cuni.cz

Abstract. The knowledge of XML schema of XML documents is a cru-
cial aspect to ensure that we work with correct data, as well as a key
optimization approach to XML data processing. In this paper we pro-
vide an overview of research topics related to XML schemas that we
have been dealing with during our work on Information Society Project
(1ET100300419). We briefly describe the current state of the art and
open problems we have encountered in particular areas, the results we
have acquired, as well as remaining open issues and ongoing aims we
have stated.

1 Introduction

Without any doubt the XML [14] is currently a de-facto standard for data rep-
resentation. Its popularity is given by the fact that it is well-defined, easy-to-use
and, at the same time, enough powerful. To enable users to specify own allowed
structure of XML documents, so-called XML schema, the W3C1 proposed two
languages – DTD [14] and XML Schema [64, 11]. The former one is directly a
part of XML specification and due to its simplicity it is one of the most pop-
ular formats for schema specification. The latter language was proposed later,
in reaction to the lack of constructs of DTD. The key emphasis is put on sim-
ple types, object-oriented features (such as user-defined data types, inheritance,
substitutability, etc.) and reusability of parts of a schema or whole schemas.

An XML schema of XML documents is currently exploited mainly for two
purposes – data-exchange and optimization. In general, almost any approach
that deals with XML data can benefit from the knowledge of their structure, i.e.
XML schema. The only question is to what extent. But, on the other hand, sta-
tistical analyses of real-world XML data show that a significant portion of XML
documents (52% [29] of randomly crawled or 7.4% [43] of semi-automatically
collected) still have no schema at all. What is more, XML Schema definitions
(XSDs) are used even less (only for 0.09% [29] of randomly crawled or 38%
[43] of semi-automatically collected XML documents) and even if they are used,
they often (in 85% of cases [9]) define so-called local tree grammars [45], i.e.
1 www.w3.org



languages that can be defined using DTD as well. Consequently, it is necessary
to focus on research dealing with XML schemas and to extend its popularity
and exploitation.

In this paper we provide an overview of research topics that we have been
dealing with during our work on Information Society Project (1ET100300419)
[2]. We briefly describe the current state of the art and open problems we have
encountered in particular areas, the results we have acquired, as well as remaining
open issues and ongoing aims we have stated.

The paper is structured as follows: Section 2 provides a brief introduction
to XML schema languages recommended by the W3C. Section 3 deals with
design of XML schemas and Section 4 with a related topic of their inference.
Section 5 describes selected ways of exploitation of XML schemas. In Section
6 we discuss the problems caused by their evolution. And, finally, Section 7
provides conclusions.

2 XML Schema Languages

The simplest and most popular language for description of the allowed structure
of XML documents is currently the Document Type Definition (DTD) [14]. It
enables one to specify allowed elements, attributes and their mutual relation-
ships, order and number of occurrences of subelements, data types and allowed
occurrences of attributes. A simple example describing a database of employees
is depicted in Figure 1.

Fig. 1. An example of a DTD of employees

At first glance it seems that the specification of the allowed structure is
sufficient. Nevertheless, even in this simple example we can find several problems.
For instance, we are not able to specify the correct structure of an e-mail address.
Similarly, we cannot simply specify that a person can have four e-mail addresses
at maximum. And, as we can see, the fact that the order of elements first and
surname is not significant cannot be expressed simply as well. Therefore, the
W3C proposed a more powerful tool – the XML Schema language [64, 11]. For



example, an XSD equivalent2 to the example of a DTD in Figure 1 is depicted
in Figure 2.

Fig. 2. An example of an XSD of employees

In general, the constructs of XML Schema can be divided into basic, advanced
and auxiliary. The basic constructs involve simple data types (simpleType),
complex data types (complexType), elements (element), attributes (attribute),
groups of elements (group) and groups of attributes (attributeGroup). Simple
data types involve both built-in data types (except for ID, IDREF, IDREFS), such
as, e.g., string, integer, date, etc., as well as user-defined data types derived
from existing simple types using simpleType construct. Complex data types en-
able one to specify both content models of elements and their sets of attributes.
2 Having the same set of document instances.



The content models can involve ordered sequences (sequence), choices (choice),
unordered sequences (all), groups of elements (group) or their allowable com-
binations. Similarly, they enable one to derive new complex types from existing
ones. Elements simply join simple/complex types with respective element names
and, similarly, attributes join simple types with attribute names. And, finally,
groups of elements and attributes enable one to globally mark selected schema
fragments and exploit them repeatedly in various parts using so-called references.
In general, basic constructs are present in almost all XSDs.

The set of advanced constructs involves type substitutability and substitu-
tion groups, identity constraints (unique, key, keyref) as well as related simple
data types (ID, IDREF, IDREFS) and assertions (assert, report). Type substi-
tutability and substitution groups enable one to change data types or allowed
location of elements. Identity constraints enable one to restrict allowed values of
elemets/attributes to unique/key values within a specified area and to specify
references to them. Similarly, assertions specify additional conditions that the
values of elements/attributes need to satisfy, i.e. they can be considered as an
extension of simple types.

The set of auxiliary constructs involves wildcards (any, anyAttribute), ex-
ternal schemas (include, import, redefine), notations (notation) and anno-
tations (annotation).

3 Design of XML Schemas

The first problem related to XML schemas is naturally their design. Designing
XML schemas has been solved intensively in recent research. However, since
XML is applied at different layers of information systems (such as database, data
exchange or presentation layer), it is still a hot topic. There can be various XML
schemas in a particular system and an effective tool for their design would be
really helpful. On the other hand, it is believed that it is easier for data designers
to work firstly at a level abstracted from technical details of a particular logical
data model such as XML.

During past decades, conceptual modeling has proved itself that it could pro-
vide a good level of such abstraction. Motivated by this experience, researchers
have developed various conceptual models for XML data. A common idea of
these approaches is that a designer first designs a conceptual diagram of an
XML schema. The conceptual diagram is then translated to a representation
in an XML schema language automatically. The resulting XML schema can be
further edited if necessary. This provides a sufficient level of abstraction from
technical details of XML schema languages.

There are several existing approaches to conceptual modeling for XML. These
approaches are based on the ER model (such as [17, 28, 58, 60]) or the UML class
model (such as [8, 46, 59]). They extend ER or UML with new constructs for
modeling how the data is represented in XML documents utilizing special fea-
tures of XML such as hierarchical and irregular structure, ordering, and mixing
structured and unstructured data.



However, recent approaches have ignored the fact that XML is applied at
different layers of information systems as we already mentioned. E.g., at the
database layer, we need to store data in XML formats optimized for the storage.
At the data exchange layer, we need to publish data in XML formats suiting the
requirements of our partners. And, not finally, at the presentation layer, we need
to present the data in XML formats suiting the requirements of different groups
of users viewing the data from different perspectives. These typical scenarios
show that there is not a single XML schema in the system, but several XML
schemas describing various XML formats applied in different situations. On the
other hand, these formats usually represent the same data, e.g. data on cus-
tomers, products or purchases. Therefore, the same concept can be represented
in various XML formats in different ways. Current methods for designing XML
schemas are not sufficient in these situations because they require to model each
XML format with a different conceptual diagram that is not related to concep-
tual diagrams modeling other XML formats. Therefore, different representations
of the same concepts in various XML formats are modeled separately. This leads
to repeating information in the conceptual diagrams which brings problems not
only during the design of XML formats but also during their later maintenance.

In our work, we developed a conceptual model that allows to design such XML
formats more easily and effectively. This is because we do not consider XML
formats to be designed in separate conceptual diagrams. Instead, we consider
two layers of abstraction. First, a conceptual diagram that describes the problem
domain (i.e. data) independently of its representations in various XML formats is
designed. A particular XML format is then designed as a separate diagram that
is semi-automatically derived from the conceptual diagram. This diagram uses
the components of the conceptual diagram and specifies how they are represented
in the XML format. This description can then be automatically translated to
a representation in an XML schema language. There can be various diagrams
derived from the same conceptual diagram, each describing a separate XML
format. The designed XML formats represent the same data, modeled by the
conceptual diagram, but in different ways. The conceptual diagram therefore
serves as an interrelation of the XML formats at the conceptual level.

Our results in this area were published in several papers and their summary
forms a Ph.D. thesis [50]. In [47] we provided a complete survey of the area. In
[48], we published a first version of the conceptual model. In [55], we extended the
model for modeling XML keys and in [56] we provided constructs for modeling
IS-A hierarchies.

3.1 Conceptual Model for XML

Our approach to conceptual modeling for XML resembles an approach to data
design (or generally system design) called Model-Driven Architecture (MDA).
MDA considers several models that allow to describe data on different levels
of abstraction. Two of the models are interesting for us: Platform-Independent
Model (PIM) and Platform-Specific Model (PSM). From our point of view, the



Fig. 3. Company PIM diagram

platform is XML. A PIM diagram is a conceptual diagram of the problem do-
main. A PSM diagram describes how a certain portion of the PIM diagram is
represented in a given XML format. In the remainder of this section, we use the
MDA notation for our two abstraction layers. We therefore call them Platform-
Independent Model and Platform-Specific Model, respectively.

As a Platform-Independent Model (PIM), we apply the well-known
UML class model. We consider only its basic modeling constructs, i.e. classes for
modeling concepts and binary associations for modeling relationships between
the concepts. Classes can have attributes that model relevant characteristics of
the concepts.

Example 1. Figure 3 shows a sample PIM diagram modeling the problem do-
main of a business company. For example, there is a class Customer modeling
customers. It has attributes customer-no, name and email modeling relevant cus-
tomer characteristics. An example association is makes. It connects the classes
Customer and Purchase and models that customers make purchases.

The next step is to specify how the concepts and relationships modeled by the
PIM diagram are represented in particular XML formats. For this, we propose
a Platform-Specific Model (PSM) that is also based on the UML class
model but adds some extensions for modeling XML specifics. Each PSM diagram
models one XML format. It specifies what classes and associations from the PIM
diagram are represented in the XML format and how.

Example 2. Figure 4 shows two sample PSM diagrams that model the two XML
formats. The right-hand side diagram models an XML format for purchase re-
quests while the other models an XML format for product catalogs. The PSM
diagrams are derived from the PIM diagram in Figure 3. It can be easily seen that



both formats represent products and related concepts but in different ways that
respect the needs of respective users and situations in which the users process
the data.

Fig. 4. Purchase and Catalogue PSM diagram

Similarly to PIM, PSM diagrams contain classes and binary associations.
However, their formal semantics is different. A PSM class represents a PIM
class and models XML elements that represent instances of the PIM class in
the corresponding XML documents. The name of the XML elements is given
by an element label depicted above the PSM class. The PSM class can have
one or more attributes of the PIM class that are represented as XML attributes
in the XML documents. Each PSM class has a content composed of the PSM
associations going from the class and other components assigned to the class (i.e.
attribute containers, content containers, and content choices described later). A
PSM association represents a path composed of PIM associations in the PIM
diagram. It specifies that an instance of its child is nested in an instance of its
parent if the instances are associated by the path. Therefore, associations model
the required hierarchical structure of the XML format. PSM further offers the
following extending constructs:

– Attribute container modeling that some attributes of a PSM class are rep-
resented as XML elements not XML attributes. It is depicted using a box
containing the attributes.

– Content container modeling an XML element enclosing a part of the XML
code modeled by a PSM class. It is depicted using a box containing the name
of the XML element.

– Content choice modeling variants in a content. It is depicted using a circle
containing symbol |.

– Structural representative is a PSM class that inherits the attributes and
content from another PSM class. It is depicted using a dashed box.



Example 3. Figure 4 shows an attribute container assigned to the PSM class
Item. The container contains two attributes, amount and unit-price, and specifies
that the attributes are represented in the XML format as XML elements not
attributes. The figure also shows a content container its assigned to the PSM
class Purchase. It contains a PSM association going to Item and models that
the XML code modeled by the association is enclosed in an XML element its.
Further, the figure shows a content choice assigned to Purchase. It contains two
PSM associations going to Messenger and Van, respectively. It models that an
XML element purchase-request contains an XML element messenger or van
but not both. Finally, the figure shows a structural representative of a PSM class
Category. It models that categories can contain subcategories.

Currently, we are finishing a prototype implementation of a case tool for de-
signing XML schemas using the proposed conceptual model [3]. In our future
work, we will demonstrate the power of the proposed model by modeling se-
lected standardized XML schema languages such as ISO20020 [1]. We are also
dealing with other related problems, as described in the following subsections.
The results published in the Ph.D. thesis will be also published as a book [51].

3.2 Reverse-Engineering of XML Schemas

To be applicable in practice, an approach to conceptual modeling for XML must
be supplemented with so-called reverse engineering capabilities. This is because
in current information systems, several XML formats are already applied. Even
though there usually exists a UML class diagram or an ER diagram that de-
scribes the data at the conceptual level, the XML formats are designed sepa-
rately from this diagram. Data designers usually type them manually directly
in an XML schema language. Therefore, the resulting XML schemas are not ex-
plicitly mapped to the conceptual diagram which makes the maintenance of the
system harder (e.g. data evolution, change impact analysis, etc.). Suppose for
example that we need to make a change in an XML schema, e.g. to add a new
element. This change can cause additional changes in other XML schemas as
well. Today, it is necessary to identify these additional changes manually which
is time-consuming and error-prone. If we had a conceptual diagram and each
XML schema was mapped to the conceptual diagram, we could propagate the
change to the conceptual diagram first. And from here, we could propagate the
change to other XML schemas automatically. This would greatly automatize the
whole evolution process and enable more effective maintenance of all the XML
schemas.

In [52], we proposed a new method for reverse engineering of XML schemas
to conceptual diagrams. In particular, we showed how to map existing XML
schemas to an existing conceptual diagram, i.e. a PIM diagram in the terminol-
ogy adopted in this paper. The result of such a process is that the semantics of
the components of the XML schemas is expressed in terms of the PIM diagram.
In other words, the XML schemas are explicitly interrelated at the conceptual



level. Because manual reverse engineering would be a time-consuming and error-
prone activity, we proposed a semi-automatic reverse engineering method, i.e. a
method that is still performed by a data designer but supported by a computer.

In the proposed solution, we assume a set of existing XML schemas and a
UML class diagram modeling the same information as modeled by the XML
schemas. For a given XML schema, the goal is to construct a PSM diagram that
describes the same XML format as the XML schema but uses the components
of the PIM diagram. We proceed in two steps. In the first step, a first approxi-
mation of the PIM diagram is mechanically derived from the XML schema. In
the second step, the first approximation is refined by mapping its components
to the components of the PIM diagram. While the first step is fully automatic,
the second step must be assisted by a designer. Our algorithm only suggests best
candidates for mapping but the final decision must be done by the designer. For
making suggestions we measure the following similarities between the compo-
nents of the first approximation and the components of the PIM diagram:

1. String similarity of the names of concepts and their attributes.
2. Graph structure similarity of the close neighborhood of concepts.

The result of the reverse-engineering process is a set of PSM diagrams mod-
eling the same XML formats as modeled by the input XML schemas. The PSM
diagrams organize the components of the input PIM diagram into the corre-
sponding XML formats. Therefore, they serve as mappings between the XML
schemas and the PIM diagram. A problem occurs if the PIM diagram does not
cover the whole domain represented in the XML schemas. In that case the PIM
diagram must be complemented by the designer with a new classes, associa-
tions or attributes otherwise it is not possible to map the XML schemas on its
components. An extreme case is when a PIM diagram is missing at all.

3.3 Designing XML Databases

An existence of different XML formats representing the same data but in dif-
ferent ways naturally leads to a question of storing such data into a database.
Storing the data directly in their XML representation would lead to a lot of re-
dundancies in the database which is undesirable. This is because different XML
formats can represent the same data repeatedly in different XML structures.
We therefore need to identify these redundancies and eliminate them before the
storage. Hence, designing an optimal database schema for a set of XML formats
described by XML schemas is a challenging task.

In our work we tried to offer a solution to this problem. We comprehend the
XML schemas as descriptions of different views on the data. Finding an optimal
schema is then divided to two steps: In the first step, we identify possible sources
of redundancies in the given XML schemas and normalize them to remove the
redundancies from the respective XML data. The resulting XML schemas can
be used as a normalized schema of an XML database. If we need to use an
(object-)relational database, the second step must be performed which comprises



of mapping the normalized XML schemas to an (object-)relational database
schema. This second step is covered by another theme of our research described
in Section 5.2. Independently of whether the second step was applied or not, we
further need to reconstruct the original XML formats from the data stored in
the database.

In our work, we proposed how to perform the first step at the conceptual
level. In [49] we introduced an algorithm that has a PIM diagram and a set of
PSM diagrams modeling the XML formats as an input and produces a set of
normalized PSM diagrams as an output. From these normalized PSM diagrams,
a set of normalized XML schemas is then derived automatically. In [53] we
complemented this solution with a method for reconstructing the original XML
formats from the normalized data. The proposed algorithm generates an XQuery
expression for each non-normalized PSM diagram. The expression operates over
the normalized data stored in the database.

In our future work we will concentrate on designing XML databases in con-
junction with XML data evolution. This is a hot research topic today, since XML
data can evolve dynamically and changes in XML data and their schemas there-
fore have to be somehow propagated to the underlying database. Since XML
data evolution is an interesting problem on its own we dedicate it a separate
Section 6.

3.4 Designing Semantic Web Services

Another area where we applied the proposed conceptual model is designing web
services and describing their semantics. We published the results in [57]. Tech-
nologies of web services complemented with a layer describing semantics of web
services is called Semantic Web Services (SWS). The basic idea is that a syntac-
tical description of a SWS (usually in WSDL [15]) is mapped to an ontology that
provides a semantical description of the SWS. In practice there are usually vari-
ous web services in the system. Each has a different syntactical description since
the web services receive and send data in different XML formats. On the other
hand, they share the same problem domain with the same conceptualization,
i.e. ontology. Therefore, the syntactical descriptions of the web services must be
mapped to the ontology. However, the mapping must be created manually. In
our approach, we comprehend a PIM diagram as a simplified ontology and a set
of PSM diagrams as syntactical descriptions of the data exchanged among the
web services. Therefore, we are able to automatically derive the mappings of the
syntactical descriptions to the ontology and save time to designers.

In our future work in this area, we will mainly concentrate on data evolu-
tion since the interfaces of web services can evolve significantly in time or even
replaced at all.

4 Inference of XML Schemas

The problem of inference of XML schemas can be viewed as a subproblem of
their design. In particular, we are interested in automatic inference of an XML



schema from a given sample set of XML documents. Such automatically inferred
schema can be then used as a candidate schema further improved by a user
using an appropriate editor. From another point of view, we need to infer an
XML schema whenever we are provided with a schema-less document collection,
whereas its existence is crucial for further processing.

The existing solutions to the problem of automatic inference of an XML
schema can be classified [32] according to several criteria. Probably the most
interesting one is the type of the result (i.e. DTD or XSD) and the way it is
constructed, where we can distinguish heuristic methods and methods based on
inferring of a grammar.

Heuristic approaches [44, 67, 22] are based on experience with manual con-
struction of schemas. Their result does not belong to any special class of gram-
mars and, hence, we cannot say anything about its features. They are based on
generalization of a trivial schema using a set of predefined heuristic rules, such
as, e.g., “if there are more than three occurrences of an element, it is probable
that it can occur arbitrary times”. On the other hand, methods based on in-
ferring of a grammar [4, 10] output a particular class of languages with specific
characteristics. Although grammars accepting XML documents are context-free,
the problem can be reduced to inferring of a set of regular expressions, each for
a single element. But, since according to Gold’s theorem [23] regular languages
are not identifiable in the limit only from positive examples (i.e. sample XML
documents which should conform to the resulting schema), the existing methods
exploit restriction to an identifiable subclass of regular languages.

In our research we focussed on the following open issues [32]:

1. Most of the existing works infer a DTD or an XSD whose expressive power
does not get beyond expressive power of DTD.

2. Only a few approaches enable one to infer integrity constraints such as keys
and foreign keys.

3. Most of the existing approaches do not exploit additional available informa-
tion.

In the first case we proposed two improvements: Paper [65] describes an ap-
proach that enables one to infer two purely XSD constructs – elements having
the same name but different structure and unordered sequences of elements. For
this purpose it utilizes several verified approaches, such as ACO heuristics [18],
s,k-string [67] or k,h-context [4]. On the other hand, paper [37] deals with a
different aspect of XML Schema – plenty of “syntactic sugar”, i.e. the ability
to express equivalent XSDs using distinct constructs. To determine the optimal
syntax we exploit semantics of element/attribute names and statistical analysis
on the input XML data. This way we are able to output schemas that carry ad-
ditional information of the data, such as shared contents or more precise content
models.

In the second case we proposed an approach [54] that enables one to infer
identity constraints, i.e. keys and foreign keys. What is more, since the approach
is based on the analysis of XML queries, it is much more efficient than approaches



analyzing the input data. We propose a set of rules that enable one to determine
whether a selected value certainly is or certainly is not an identity constraint.
In addition, due to its nature, the approach can be used an an extension of any
existing XML schema inference method.

As for the exploitation of additional input information we focussed on two
aspects – exploitation of possibly existing XML queries [54] and exploitation of
existing but already obsolete XML schema [36]. The former approach has already
been described. In the latter case we exploit an observation that an XML schema
is often [43] considered as a kind of documentation. Hence, if the data evolve, the
respective schema is not adapted to the changes. In the proposed approach we
exploit the information from such obsolete schema assuming that it still carries
several valid information. In case there is no useful information, the inference
complexity is the same as in existing works. However, in case there are usable
fragments, we do not need to infer them again.

Our current and future work in this area focuses mainly on integrating of
user interaction which is the key aspect in case multiple solutions are available
and the searching is made only using heuristics. In fact, there seems to be no
work, that would deal with this topic in detail, taking into account reasonable
requirements for user’s skills and amount of decisions to be made. Next, we
will deal with inference of further XSD specific features, in particular integrity
constraints. And, finally, since for further processing of the respective XML data
also constraints that cannot be expressed in XSD may be useful, we will try to
get also beyond its expressive power.

5 Exploitation of XML Schemas

Currently there are two key purposes of XML schemas. Firstly, an XML schema
is considered as a set of rules the input XML documents must fulfill to be
processed correctly. In other words, they ensure validity of the input XML data.
Secondly, the information XML schemas bear is exploited in various approaches
for optimization purposes.

In general, one of the classical optimization strategies is exploitation of simi-
larity of data. In case of XML data we can analyze similarity of XML documents,
XML schemas or between the two groups. We focussed mainly the second ap-
proach, i.e. similarity of XML schemas, which we exploit in our next research
topic XML-to-relational mapping strategies. In particular, having the input data
expressed in XML, a natural requirement of any application is to store and pro-
cess them efficiently. One of the most reliable approaches is to map the XML data
into relations, i.e. to exploit verified and robust relational database management
systems (RDBMSs).

5.1 Similarity of XML Schemas

The existing methods for measuring similarity of XML schemas [40] combine var-
ious supplemental information and auxiliary similarity measures such as, e.g.,



predefined similarity rules, similarity of element/attribute names, equality of
data types, similarity of schema instances or previous results, etc. [16, 27] But,
in general, the approaches focus mostly on semantic aspects, whereas structural
ones are of marginal importance. And, what is more, most of the existing works
consider only DTD constructs, whereas if the XML Schema language is sup-
ported, the constructs beyond DTD expressive power are often ignored.

In our research we focussed on the following open issues:

1. Deeper involvement of structural information of the compared schema frag-
ments.

2. Similarity of complex XML Schema constructs.

3. Reasonable tuning of weights of the similarity measure.

In the former case we proposed an approach [66] that analyzes the structure
of input DTD fragments in detail. For this purpose we exploit and modify a well-
known and verified strategy – tree-edit distance. However, at the same time, we
enable one to involve also the semantics of element/attribute names and, hence,
to provide more precise information on similarity of the input. Next, on the basis
of this preliminary approach, we further proposed its extension to XSD [33, 34].
Firstly, we defined equivalence classes of XML Schema constructs in terms of
both structure and semantics. Then, we modified the original approach so that
it considers or omits the equivalencies depending on user requirements. And, in
addition, we included also the analysis of specific intervals of occurrences and
various simple data types supported by XML Schema.

Last but not least, we focussed on the problem of tuning of weights of the
similarity measure. As we have mentioned, each of the XML schema similarity
measures consist of several specific functions expressing similarity of particular
aspect of the analyzed data. These partial results are then combined into a
single result, usually using a weighted sum. The question is how to set these
weights realistically. For this purpose we proposed a similarity measure [41] that
exploits characteristics and results of statistical analysis of real-world XML data
[43], i.e. an information based on observations of reality and not a setting based
on “author’s experience” commonly used in existing works.

Our future work in the area of XML similarity will focus mainly on further
exploitation of similarity of XML schemas in various areas, as well as optimiza-
tion strategies of similarity evaluation. In the former case we intent to deal with
the problem of data integration and related issue of similarity of XML docu-
ments and XML schemas. In the latter case we are dealing with the problem
of setting the weights of similarity measure as well as similarity threshold using
reasonable user interaction. In general, most of the exiting works consider the
ability to set these parameters according to requirements of a specific application
as an advantage. However, it is not an easy task to find the reasonable setting.



5.2 XML-to-Relational Mapping Strategies

At present, there exists a plenty of works concerning database-based3 XML data
management [38]. All major database vendors support XML and even the SQL
standard was extended with a new part (SQL/XML) which introduces operations
on XML data. The main concern of the techniques is the choice of the way XML
data are stored into relations – so-called XML-to-relational mapping. On the
basis of exploitation of information from XML schema we distinguish schema-
oblivious (e.g. [21]) and schema-driven (e.g. [61]) methods. From the point of
view of the input data we distinguish fixed methods (e.g. [21, 61]) which store
the data on the basis of their model and adaptive methods (e.g. [26, 12, 69,
68]), where also additional information on the future application are taken into
account. And there are also techniques based on user involvement which can be
divided to user-defined (see [6]) and user-driven (e.g. [7, 19, 31]), where in the
former case a user defines both the relational schema and the required mapping,
whereas in the latter case a user specifies just local mapping changes of a default
storage strategy.

Currently the most efficient XML-to-relational storage strategies are the
adaptive methods [39]. The reason is that they evaluate several fixed mapping
strategies for particular XML schema fragments and choose the combination
which suits the target application (specified using a sample set of XML queries
and XML documents) the most. The user-driven methods can be viewed as a
special type of adaptive methods too. The difference is that the mapping strate-
gies are for selected schema fragments specified by a user.

In our recent research we proposed several improvements of adaptive meth-
ods. In papers [42, 30] we propose an approach which extends user-driven strate-
gies with exploitation of similarity of XML schema fragments (as described be-
fore). It is based on a simple observation that it is highly probable that struc-
turally and/or semantically similar schema fragments should be stored in a sim-
ilar way. The approach focuses on the way of finding such similar fragments and
their combination to the resulting mapping.

On the other hand, in paper [35] we further improve the classical adaptive
strategies, in particular the process of searching the optimal strategy using the
ACO heuristics [18]. It enables one to find the optimum more efficiently than
simple heuristics used in the existing papers and without getting stuck in local
optimums. In addition, we describe the way classical adaptive strategies can be
combined with user-driven methods. We result from the idea that for selected
schema fragments a user may specify directly the mapping strategy, while for
others it is much convenient to specify the set of expected queries. We propose
an approach that enables to exploit both these information to find the optimal
mapping strategy.

3 In the rest of the paper the term “database” represents a RDBMS.



6 XML Data Evolution

Another problem related to XML is XML data evolution. Since most of the
applications using XML are usually dynamic, sooner or later the structure of
the XML data needs to be changed. At the same time, we still need to be able
to work with the old as well as new data without any loss. In relation to this
topic, we usually speak about so-called schema evolution, i.e. a situation that
a schema of the data is updated and we need to apply these updates on the
respective data to revalidate them against the evolving schema.

Currently there exist several works dealing with this topic, however most
of them focus on separate aspects such as evolution of XML schemas [5, 24,
62, 63], XML data [13], or conceptual diagrams [20, 25]. In our recent work, we
concentrate on this problem from a more general perspective. An important point
is that it is necessary to consider various XML formats in a system that represent
the same data in different XML structures. Therefore, a change in one XML
format (i.e. its XML schema) can cause additional changes in the others. With
this on mind, we show that schema evolution has several different levels that
are highly related and influence each other. In particular we deal with five levels
– extensional, operational, logical, platform-specific and platform-independent.
The overall picture of the proposed XML data evolution architecture is depicted
in Figure 5.

Fig. 5. 5-level XML Evolution Approach

The topmost level contains a PIM diagram of the problem domain and it
is therefore called platform-independent level. It describes the domain indepen-
dently of various representations of the domain in XML formats. The next level
is called platform-specific level and contains a PSM diagram for each consid-
ered XML format. The level beneath the platform-specific level is called logical
level and contains for each considered type of XML documents an XML schema
that specifies the logical structure of the XML documents. Its components are
mapped to the PIM diagram via the corresponding PSM diagram from the upper



level. The lowest level is called extensional level and contains XML documents.
It contains a set of XML documents for each considered type. The level between
the extensional and logical level is called operational level and contains XML
queries over the XML documents. For each type of XML documents we consider
several queries.

The architecture allows a designer to make a change at any level (except
the query level). The locations of possible changes are depicted in a bold line. It
further ensures a propagation of the change to the other levels as depicted by the
arrows. In particular, if a change in a given XML format is made, the architecture
ensures an automatic propagation of the change to the other XML schemas. For
this automatic propagation, we define a set of atomic edit operations for each
evolution level as well as mappings between the operations at each two subsidiary
levels.

A natural question is how we can build the proposed architecture. In the
worst case, only raw XML data and queries over the XML data are present.
Therefore, there are neither XML schemas, nor PSM and/or PIM diagrams.
In that case we can utilize our results presented in the previous sections. In
particular, we are able to infer XML schemas of the XML documents using the
methods presented in Section 4 and reverse engineer these XML schemas to a
PIM diagram as we showed in Section 5.2.

This research topic is mainly a matter of our future work even thought some
results are ready to be published. The most important problem to solve is to
define a consistent set of edit operations and their mappings between the levels.
An important issue is also extending our prototype case tool [3] with the pro-
posed evolution approach. This would allow to evaluate our evolution approach
experimentally.

7 Conclusion

The knowledge of the structure of XML data, i.e. their XML schema is a crucial
aspect not only to ensure that we work with correct data, but, in particular,
as a key optimization approach to XML data processing. In this paper we have
described the topics related to XML schema we have been dealing with during
our recent research, as well as the respective results and achievements. In partic-
ular, this includes designing and inferring XML schemas, measuring similarity
of XML schemas, storing XML data in relational databases and XML data evo-
lution. We have also described the remaining open issues or challenges we are
currently dealing with to optimize the process of creating XML schemas, as well
as the ways they can be exploited.

Acknowledgement

This work was supported in part by the National Programme of Research (In-
formation Society Project 1ET100300419).



References

1. Universal Financial Industry Message Scheme (ISO 20022). http://www.

iso20022.org/.
2. SemWeb – Intelligent Models, Algorithms, Methods and Tools for the Seman-

tic Web Realisation. 2004–2008. http://www.cs.cas.cz/semweb/index.php?

content=homepage&lang=en.
3. XCase – A Tool for XML Data Modeling. 2008. http://kocour.ms.mff.cuni.cz/

~necasky/xcase/.
4. H. Ahonen. Generating Grammars for Structured Documents Using Grammatical

Inference Methods. Report A-1996-4, Dept. of Computer Science, University of
Helsinki, 1996.

5. L. Al-Jadir and F. El-Moukaddem. Once Upon a Time a DTD Evolved into An-
other DTD... In OOIS’03, pages 3–17, Berlin, Heidelberg, 2003. Springer-Verlag.

6. S. Amer-Yahia. Storage Techniques and Mapping Schemas for XML. Report TD-
5P4L7B, AT&T Labs-Research, 2003.

7. A. Balmin and Y. Papakonstantinou. Storing and Querying XML Data Using
Denormalized Relational Databases. The VLDB Journal, 14(1):30–49, 2005.

8. M. Bernauer, G. Kappel, and G. Kramler. Representing XML Schema in UML
- An UML Profile for XML Schema. Technical report, Department of Computer
Science, National University of Singapore, 2003.

9. G. J. Bex, F. Neven, and J. Van den Bussche. DTDs versus XML Schema: a
Practical Study. In WebDB’04, pages 79–84, New York, NY, USA, 2004. ACM
Press.

10. G. J. Bex, F. Neven, and S. Vansummeren. Inferring XML Schema Definitions from
XML Data. In VLDB’07, pages 998–1009, Vienna, Austria, 2007. ACM Press.

11. P. V. Biron and A. Malhotra. XML Schema Part 2: Datatypes (Second Edition).
W3C, 2004. http://www.w3.org/TR/xmlschema-2/.

12. P. Bohannon, J. Freire, P. Roy, and J. Simeon. From XML Schema to Relations:
A Cost-based Approach to XML Storage. In ICDE’02, pages 64–75, Washington,
DC, USA, 2002. IEEE Computer Society.

13. B. Bouchou, D. Duarte, M. Halfeld Ferrari Alves, D. Laurent, and M. A. Musicante.
Schema Evolution for XML: A Consistency-Preserving Approach. In MFCS’04,
pages 876–888, Prague, Czech Republic, 2004. Springer-Verlag.

14. T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensible
Markup Language (XML) 1.0 (Fourth Edition). W3C, 2006. http://www.w3.org/
TR/REC-xml/.

15. C. K. Liu D. Booth. Web Services Description Language (WSDL) Version 2.0
Part 0: Primer. W3C, June 2007. http://www.w3.org/TR/wsdl20-primer/.

16. H. H. Do and E. Rahm. COMA – A System for Flexible Combination of Schema
Matching Approaches. In VLDB’02, pages 610–621, Hong Kong, China, 2002.
Morgan Kaufmann.

17. G. Dobbie, W. Xiaoying, T.W. Ling, and M.L. Lee. ORA-SS: An Object-
Relationship-Attribute Model for Semi-Structured Data. Technical report, De-
partment of Computer Science, National University of Singapore, Singapore, 2000.

18. M. Dorigo, M. Birattari, and T. Stutzle. Ant Colony Optimization – Artificial
Ants as a Computational Intelligence Technique. Report TR/IRIDIA/2006-023,
IRIDIA, Bruxelles, Belgium, 2006.

19. F. Du, S. Amer-Yahia, and J. Freire. ShreX: Managing XML Documents in Re-
lational Databases. In VLDB’04, pages 1297–1300, Toronto, ON, Canada, 2004.
Morgan Kaufmann.



20. G. Fiedler and B. Thalheim. An Approach to Conceptual Schema Evolution.
Technical Report 0701, Institut fur Informatik der Christian-Albrechts-Universitat,
Kiel, 2007.

21. D. Florescu and D. Kossmann. Storing and Querying XML Data Using an RDMBS.
IEEE Data Eng. Bull., 22(3):27–34, 1999.

22. M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and K. Shim. XTRACT: a
System for Extracting Document Type Descriptors from XML Documents. In
SIGMOD’00, pages 165–176, New York, NY, USA, 2000. ACM Press.

23. E. M. Gold. Language Identification in the Limit. Information and Control,
10(5):447–474, 1967.

24. G. Guerrini, M. Mesiti, and D. Rossi. Impact of XML Schema Evolution on Valid
Documents. In WIDM’05, pages 39–44, New York, NY, USA, 2005. ACM Press.

25. M. Klettke. Conceptual XML Schema Evolution - the CoDEX Approach for Design
and Redesign. In BTW Workshops, pages 53–63. Verlagshaus Mainz, Aachen, 2007.

26. M. Klettke and H. Meyer. XML and Object-Relational Database Systems – En-
hancing Structural Mappings Based on Statistics. In WebDB’00 Workshop, pages
151–170, London, UK, 2001. Springer-Verlag.

27. M. L. Lee, L. H. Yang, W. Hsu, and X. Yang. XClust: Clustering XML Schemas
for Effective Integration. In CIKM’02, pages 292–299, New York, NY, USA, 2002.
ACM Press.

28. M. Mani. Semantic Data Modeling Using XML Schemas. In ER’01, pages 149–163,
Yokohama, Japan, 2001. Springer-Verlag.

29. L. Mignet, D. Barbosa, and P. Veltri. The XML Web: a First Study. In WWW’03,
pages 500–510, New York, NY, USA, 2003. ACM Press.

30. I. Mlynkova. A Journey towards More Efficient Processing of XML Data in
(O)RDBMS. In CIT’07, pages 23–28, Aizu-Wakamatsu City, Fukushima, Japan,
2007. IEEE Computer Society.

31. I. Mlynkova. UserMap – an Enhancing of User-Driven XML-to-Relational Mapping
Strategies. Report 2007/3. Charles University, Prague, Czech Republic, 2007.

32. I. Mlynkova. An Analysis of Approaches to XML Schema Inference. In SITIS’08
(to appear), Bali, Indonesia, 2008. IEEE Computer Society.

33. I. Mlynkova. Equivalence of XSD Constructs and its Exploitation in Similarity
Evaluation. In ODBASE’08, volume 5332 of LNCS, pages 1253–1270, Monterrey,
Mexico, 2008. Springer-Verlag.

34. I. Mlynkova. Similarity of XML Schema Definitions. In DocEng’08, pages 187–190,
Sao Paulo, Brazil, 2008. ACM Press.

35. I. Mlynkova. Standing on the Shoulders of Ants: Towards More Efficient XML-to-
Relational Mapping Strategies. In XANTEC workshop of DEXA’08, pages 279–
283, Turin, Italy, 2008. IEEE Computer Society.

36. I. Mlynkova. On Inference of XML Schema with the Knowledge of an Obsolete
One. In ADC’09 (to appear), volume 92 of CRPIT, Wellington, New Zealand,
2009. Australian Computer Society.

37. I. Mlynkova and M. Necasky. Towards Inference of More Realistic XSDs. In SAC’09
(to appear), Honolulu, Hawaii, USA, 2009. ACM Press.

38. I. Mlynkova and J. Pokorny. XML in the World of (Object-)Relational Database
Systems. In ISD’04, pages 63–76, Vilnius, Lithuania, 2004. Springer-Verlag.

39. I. Mlynkova and J. Pokorny. Adaptability of Methods for Processing XML Data
using Relational Databases – the State of the Art and Open Problems. In
RCIS’07, pages 183–194, Ouarzazate, Morocco, 2007. Ecole Marocaine des Sci-
ences de l’Ingnieur.



40. I. Mlynkova and J. Pokorny. Similarity and XML Technologies. In ICWI’07, pages
277–287, Vila Real, Portugal, 2007. IADIS.

41. I. Mlynkova and J. Pokorny. Similarity of XML Schema Fragments Based on
XML Data Statistics. In Innovations’07, pages 243–247, Al Ain, UAE, 2007. IEEE
Computer Society.

42. I. Mlynkova and J. Pokorny. UserMap – an Adaptive Enhancing of User-Driven
XML-to-Relational Mapping Strategies. In ADC’08, volume 75 of CRPIT, pages
165–174, Wollongong, New South Wales, Australia, 2008. Australian Computer
Society.

43. I. Mlynkova, K. Toman, and J. Pokorny. Statistical Analysis of Real XML Data
Collections. In COMAD’06, pages 20–31, New Delhi, India, 2006. Tata McGraw-
Hill.

44. C.-H. Moh, E.-P. Lim, and W.-K. Ng. Re-engineering Structures from Web Doc-
uments. In DL’00, pages 67–76, New York, NY, USA, 2000. ACM Press.

45. M. Murata, D. Lee, and M. Mani. Taxonomy of XML Schema Languages Using
Formal Language Theory. ACM Trans. Inter. Tech., 5(4):660–704, 2005.

46. K. Narayanan and S. Ramaswamy. Specifications for Mapping UML Models to
XML. In WiSME’05, page 10, Montego Bay, Jamaica, 2005.

47. M. Necasky. Conceptual Modeling for XML: A Survey. Technical Report TR
2006-3, Department of Software Engineering, Faculty of Mathematics and Physics,
Charles University, 2006. http://www.necasky.net/papers/tr2006.pdf.

48. M. Necasky. XSEM – A Conceptual Model for XML. In APCCM’07, volume 67
of CRPIT, pages 37–48. Australian Computer Society, 2007.

49. M. Necasky. Conceptual Model Based Normalization of XML Views. In Dateso’08,
pages 13–24. CEUR-WS, Vol. 330, 2008.

50. M. Necasky. Conceptual Modeling for XML. PhD thesis, Charles University, 2008.
http://kocour.ms.mff.cuni.cz/~necasky/dw/thesis.pdf.

51. M. Necasky. Conceptual Modeling for XML (In press), volume 99 of Dissertations
in Database and Information Systems. IOS Press, Amsterdam, Netherlands, 2009.

52. M. Necasky. Reverse Engineering of XML Schemas to Conceptual Diagrams. In
APCCM’09 (to appear), volume 96 of CRPIT. Australian Computer Society, 2009.

53. M. Necasky and T. Knap. Reconstruction of Normalized XML Documents. In
Innovations’08 (to appear), Al Ain, UAE, 2008. IEEE Computer Society.

54. M. Necasky and I. Mlynkova. Enhancing XML Schema Inference with Keys and
Foreign Keys. In SAC’09 (to appear), Honolulu, Hawaii, USA, 2009. ACM Press.

55. M. Necasky and J. Pokorny. Extending ER for Modeling XML Keys. In ICDIM’07,
pages 236–241, Lyon, France, 2007. IEEE Computer Society.

56. M. Necasky and J. Pokorny. Conceptual Modeling of IS-A Hierarchies for XML.
In EJC’08, Tsukuba, Japan, 2008.

57. M. Necasky and J. Pokorny. Design and Management of Semantic Web Services
using Conceptual Model. In SAC’08, pages 2243–2247, Fortaleza, Caerá, Brazil,
2008. ACM Press.

58. G. Psaila. ERX: A Conceptual Model for XML Documents. In SAC’00, pages
898–903, Como, Italy, 2000. ACM Press.

59. N. Routledge, L. Bird, and A. Goodchild. UML and XML Schema. In ADC’02,
volume 5 of CRPIT, Melbourne, Australia, 2002. Australian Computer Society.

60. A. Sengupta, S. Mohan, and R. Doshi. XER - Extensible Entity Relationship
Modeling. In XML’03, pages 140–154, Philadelphia, USA, 2003.

61. J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt, and J. F.
Naughton. Relational Databases for Querying XML Documents: Limitations and



Opportunities. In VLDB’99, pages 302–314, San Francisco, CA, USA, 1999. Mor-
gan Kaufmann.

62. H. Su, D. K. Kramer, and E. A. Rundensteiner. XEM: XML Evolution Man-
agement. Technical Report WPI-CS-TR-02-09, Computer Science Department,
Worcester Polytechnnic Institute, Worcester, Massachusetts, 2002.

63. M. Tan and A. Goh. Keeping Pace with Evolving XML-Based Specifications. In
EDBT ’04 Workshops, pages 280–288, Berlin, Heidelberg, 2005. Springer-Verlag.

64. H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema Part 1:
Structures (Second Edition). W3C, 2004. http://www.w3.org/TR/xmlschema-1/.

65. O. Vosta, I. Mlynkova, and J. Pokorny. Even an Ant Can Create an XSD. In
DASFAA’08, LNCS, pages 35–50. Springer-Verlag, 2008.

66. A. Wojnar, I. Mlynkova, and J. Dokulil. Similarity of DTDs Based on Edit Distance
and Semantics. In IDC’08, volume 162 of Studies in Computational Intelligence,
pages 207–216, Catania, Italy, 2008. Springer-Verlag.

67. R. K. Wong and J. Sankey. On Structural Inference for XML Data. Report UNSW-
CSE-TR-0313, School of Computer Science, The University of New South Wales,
2003.

68. W. Xiao-ling, L. Jin-feng, and D. Yi-sheng. An Adaptable and Adjustable Mapping
from XML Data to Tables in RDB. In VLDB’02 Workshop EEXTT and CAiSE’02
Workshop DTWeb, pages 117–130, London, UK, 2003. Springer-Verlag.

69. S. Zheng, J. Wen, and H. Lu. Cost-Driven Storage Schema Selection for XML. In
DASFAA’03, pages 337–344, Kyoto, Japan, 2003. IEEE Computer Society.


