
Overview and Possible Improvements of Techniques for
Processing XML Documents in (O)RDBMS

Irena Mlynkova

Charles University, Faculty of Mathematics and Physics,
Department of Software Engineering,

Malostranske nam. 25, 118 00 Prague 1, Czech Republic
irena.mlynkova@mff.cuni.cz

Abstract. XML is presently considered as one of the best standards for data
representation. But with its growing usage the problem of effective processing
of XML documents arises. A natural idea is to store and manage XML data in
currently existing (O)RDBMS. At present there is a plenty of such techniques,
each of which has its advantages and disadvantages, whereas the strongest
objection against is that the database processing can be in certain cases quite
slow.
This contribution contains an overview of existing techniques for processing
XML documents in (O)RDBMS and corresponding mapping methods, a brief
description of own formerly proposed mapping method and finally a proposal
and a discussion of their possible future improvements and optimalizations.

1 Introduction

In recent years XML is considered as one of the best standards for data
representation. Obviously, the main reason for this trend is that XML includes
powerful tools for definition of the required structure of the data, which considerably
simplifies their exchanging and processing.

On the contrary, the growing usage of XML technologies raises the problem of
effective management of XML documents and querying the data. On one hand there
is a set of powerful XML standards, but on the other hand it is necessary to solve the
problem of their effective implementation.

A natural idea is to store and manage XML data in existing (object-)relational
database systems ((O)RDBMS). This solution results from the way of describing the
structure of XML documents, which resembles (object-)relational features and from
other database features (e.g. query languages, schemes, etc.) XML technologies
involve. What is more, combining these two technologies provides XML with
missing database mechanisms (e.g. transactions, indexes, multi-user access, etc.).

At present, there is a plenty of such techniques, each of which has its advantages
and disadvantages as well as common characteristics according to which they can be
classified. Obviously the strongest objection against this idea is that the database
processing can be in certain cases quite slow. Consequently, there are several

important questions to be considered such as: Is it possible to speed up the processing
of XML documents in (O)RDBMS? Where are the limits and borders of these
improvements? Are the advantages of combining XML and database technologies
worthwhile concerning the idea?

This paper is trying to deal with these points and issues. Section 2 contains an
overview of existing techniques for processing XML documents in (O)RDBMS.
Section 3 contains a classification of existing mapping methods and a brief
description of own formerly proposed method. According to the classification
Section 4 discusses and proposes their possible future optimalizations and poses
another questions and opened issues and Section 5 provides conclusions.

2 Overview and Classification of Existing Techniques

The most general classification of existing techniques for processing XML data
using (O)RDBMS is connected with the basic classification of XML documents into
document-centric and data-centric [2]. Documents from the former group have
generally irregular structure, the order of sibling elements is mainly significant and
they usually contain mixed-content elements, comments, CDATA sections, etc.
Documents from the latter group have in principle contradictory characteristics.

2.1 Techniques for Document-Centric XML Documents

Processing document-centric XML documents requires preserving their structure as
a whole, in many cases including such details like, e.g., white spaces. In other words
we speak about a good level of round tripping [2], i.e. the process of storing an XML
document in a database system and retrieving preferably the same document back.

Document-centric XML documents are usually stored as a whole in one table
column of a LOB data type or in native XML databases (NXDs), eventually in their
special types such as persistent DOMs or content management systems. In the former
case the processing is relatively fast but we loose the possibility to query the stored
data effectively. In the latter case the processing is “native” which means that an
NXD supports “natural” ways for accessing the stored XML data – e.g. XML query
languages, DOM [8] or SAX [5] interfaces, etc. The main disadvantage is that as an
NXD uses a certain strategy for storing and ordering XML data, performance
problems can encounter in case of retrieving the data in any form other than that in
which it is logically stored.

2.2 Techniques for Data-Centric XML Documents

Techniques for data-centric XML documents have one common idea: XML data is
stored and processed in an (O)RDBMS and using a certain method (so-called
mapping method – see Section 3) transferred between relations and XML documents

and vice versa. The level of round tripping can be usually low – it is necessary to
preserve purely the elements, attributes, their hierarchical structure and the data
itself. The transferring process can be provided either by a third party software, so-
called middleware, or by the database itself – in this case we speak about XML-
enabled databases.

A special kind of mapping methods is so-called XML data binding technology. It
is based on the idea of mapping XML data to classes and objects of an object-
oriented programming language (usually Java or C++) and enables applications to
work with XML data using structures, which can be more suitable than, e.g.,
structures of a DOM tree.

In the following text we will focus mainly on data-centric methods and
corresponding mapping algorithms.

3 Overview of Mapping Methods

As mentioned before mapping methods are methods for transferring XML data
between XML documents and (object-)relational structures. At present there is a
considerable number of these techniques, each of which has its advantages and
disadvantages and common features according to which they can be classified. The
basic classification includes following three classes:

− generic methods, which do not use any schema of stored XML documents,
− schema-driven methods, which are based on existing schema of stored XML

documents, and
− user-defined methods, which are based on user-defined mapping.

This section contains a brief description and classification of these methods. A more
comprehensive discussion can be found in [7].

3.1 Generic Mapping Methods

Generic mapping methods do not use (possibly) existing XML schema of stored
XML documents. They are usually based on one of these approaches:

− to create a general (object-)relational schema into whose relations any XML
document regardless its structure can be stored, or

− to create a special kind of (object-)relational schema into whose relations only a
certain collection of XML documents having a similar structure can be stored.

The former methods model an XML document as a tree T according to e.g. the OEM
model or the DOM model, while the latter reflect its special “relational” structure.

Generic-Tree Mapping. A typical representative of generic mapping methods is a
group of methods called Generic-tree mapping [3]. An example of an XML
document and its tree T is depicted in Fig. 1.

<person id=1 age=23>
 <name>Irena</name>
 <surname>Mlýnková</surname>
 <address id=2>
 <street>Podlesí 4943</street>
 <city>Zlín</city>
 </address>
</person>
<person id=3 age=30>
 <name>Jim</name>
 <surname>Beam</surname>
</person>
...

person person

1

2

age 3

23 age

30

name

Jim

surname

Beam
address

street city

Podlesí 4943 Zlín

name

surnameIrena

Mlýnková

Fig. 1. An example of a generic-tree

Edge Mapping. This method stores all edges of T in the following table:
Edge(source, ord, name, flag, targ)
The table contains identifiers of nodes connected by the edge (source and

targ), name of the edge (name), a flag that indicates whether the edge is internal
or points to a leaf (flag), and an ordinal number of the edge within sibling edges
(ord).

Attribute Mapping. In this mapping an extra table for each edge name (so-called
attribute) is established. The structure of these tables is similar to the previous case:
Edgename(source, ord, flag, targ)

Universal Mapping. This method stores edges of T in so-called universal table,
which contains columns for all the attribute names described in previous method.
The universal table corresponds to the result of an outer join of all tables from
attribute mapping. If a1,...,ak are all the attribute names in the XML document, the
universal table can have the following structure:
Uni(source, orda1, flaga1, targa1,... ordak, flagak, targak)
Obviously the universal table contains many NULL values.

Normalized Universal Mapping. This method tries to solve the main disadvantage of
universal mapping storing multi-valued attributes in separate overflow tables. An
overflow table is established for each attribute name, while its structure is the same

as in attribute mapping. The universal table then contains only one row per each
attribute name, others are stored in corresponding overflow tables.

Table-Based Mapping. A typical representative of the approach that enables to
store only a certain collection of XML documents having similar structure is called
Table-based mapping [2]. It is based on the assumption, that the stored XML
documents have a regular structure reflecting database, tables, rows, and columns.
The mapping between elements and relations is then exactly defined by the structure
of the XML document.

3.2 Schema-Driven Mapping Methods

Schema-driven mapping methods are based on existing schema S1 of stored XML
documents, which is mapped to a database schema S2. The data from XML
documents valid against S1 are then stored into relations of S2. The purpose of these
methods is to create optimal schema S2, which consists of reasonable amount of
relations and whose structure corresponds to the structure of S1 as much as possible.
All of these methods try to improve the basic mapping idea “to create one relation for
each element composed of its attributes and to map element-subelement relationships
using keys and foreign keys”.

These methods can be further classified either according to the type of the source
schema or the target schema. In the former case we usually distinguish whether the
schema is specified in DTD or XML Schema, in the latter case two possibilities are
considered – relational or object-relational. In both cases the methods are trying to
exploit advantages of the appropriate schemes.

A more interesting classification according to the basic principles of the schema-
driven approaches includes two classes – fixed and flexible methods. Fixed methods
do not use any other information than the source schema itself; their mapping
algorithm is straightforward. On the other hand, flexible methods are methods,
which do use the additional information (usually query statistics, element statistics,
etc.) and focus on creating an optimal schema for a certain application.

XMLSchemaStore Mapping. An example of fixed schema-driven mapping
methods based on mapping XML Schema structures to object-relational schema is
own formerly proposed mapping method called XMLSchemaStore mapping [6]. The
method focuses on object-oriented features and integrity constraints of XML Schema
language and exploitation of object-relational items of SQL standard (e.g. UDTs,
references, typed tables, nesting, etc.).

The mapping algorithm is based on traversing a directed graph called DOM
graph, whose ordered edges determine the “order” in which the UDTs and
corresponding typed tables should be created to follow reference properties. The
DOM graph results from the structure of a DOM tree of the given XML Schema file.
It can be created the following way:

− The original edges of the DOM tree are directed to express the “direction” of
element-subelement or element-attribute relationship.

− New edges expressing the “direction” of the usage of globally defined items (e.g.
elements, complex types, etc.) are added.

An example of an XML Schema file and corresponding DOM graph is depicted in
Figure 2. The solid lines correspond to original edges of the DOM tree; dash-and-dot
lines are the additional ones.

schema

element

type
name

simpleType

restriction

name

base
length

value

complexType

sequence

element

ref

type
name

attribute

<schema>
 <complexType name="T1">
 <sequence>
 <element ref="E1"/>
 </sequence>
 <attribute name="A1" type="T2"/>
 </complexType>
 <element name="E1" type="string">
 <simpleType name="T2">
 <restriction base="string">
 <length value="5"/>
 </restriction>
 </simpleType>
</schema>

name

Fig. 2. An example of a DOM graph

3.3 User-Defined Mapping Methods

User-defined mapping methods are most often used in commercial systems. This
approach requires that the user first defines target schema S2 and then expresses
required mapping using a system-dependent mechanism. At present, most of existing
systems support some kind of user-defined mapping.

Obviously, this approach is the most flexible one. On the other hand, it requires
large development effort and moreover mastering of two distinct technologies (XML
and DBMS).

4 Possible Improvements

The main aim of this paper is to propose and discuss possible improvements and
optimalizations of existing methods.

The first possibility is indicated by the above-mentioned flexible methods.
Currently there are two most interesting and relatively different approaches – so-
called LegoDB mapping [1] and Hybrid object-relational mapping [4]. The former

approach is based on the idea to explore a space of possible XML-to-relational
mappings and to select the best one according to given statistics including
information about a sample set of XML documents and queries. The latter approach
tries to improve the straightforward mapping of all elements and attributes in a DTD
to relations, which can lead to large database schemes, by storing structured parts of
the DTD in relations and semistructured parts in so-called XML data type, which
supports path queries and fulltext operations on XML fragments. The main and
obvious disadvantage of these methods is that the improvements are suitable only for
the given application. Thus the opened problem is a solution of the situation when
the set of typical queries and data changes.

Another possible improvement could focus on a combination of generic and
schema-driven methods. The idea is based on exploitation of algorithms for
generating XML schemes for a given set of “similar” XML documents. But since
this idea brings an important question whether it is possible to generate “better”
schemes automatically, it would be essential to define suitable metrics for XML
schemes (such as, e.g., normal forms for relations). Moreover, such metrics would
enable establishing algorithms for improving XML schemes.

Last but not least there is a problem of implementation of all axes of XPath that
can be considered as a reasonable minimal requirement for XML querying. In case
of schema-driven methods this would probably require storing some more
information, which then will have to be searched through. Thus the most important
opened issue is to what extent and how effectively it is possible to implement XML
query languages using (O)RDBMS and schema-driven methods.

5 Conclusion

This paper was trying to give an overview of existing techniques for processing XML
documents in (O)RDBMS and to propose and discuss their possible future
optimalizations. All the mentioned ideas raise another considerable questions and
opened problems. The most considerable one is whether and to what extent the
exploitation of (O)RDBMS in the above-described way and its further improvements
are worth the effort.

References

1. Bohannon P., Freire J., Roy P., Siméon J. From XML Schema to Relations: a Cost-Based
Approach to XML Storage. Proceedings of the XVIII. International Conference on Data
Engineering ICDE 2002. San Jose, California, 2002.

2. Bourret R. www.rpbourret.com, XML Programming, Writing, and Research.
3. Florescu D., Kossmann D. Storing and Querying XML Data Using an RDBMS. IEEE

Data Engineering Bulletin, Vol. 22, No 3. 1999.

4. Klettke M., Meyer H. XML and Object-Relational Database Systems – Enhancing
Structural Mappings Based on Statistics. Proceedings of the III. International Workshop
WebDB 2000. Springer-Verlag, London, UK, 2001. ISBN 3-540-41826-1.

5. Megginson D. www.saxproject.org.
6. Mlynkova I., Pokorny J. From XML Schema to Object-Relational Database – an XML

Schema-Driven Mapping Algorithm. Proceedings of IADIS International Conference
WWW/Internet 2004. Madrid, Spain, October 2004. ISBN 972-99353-0-0.

7. Mlynkova I., Pokorny J. XML in the World of (Object-)Relational Database Systems.
Proceedings of the XIII. International Conference ISD 2004. To appear in Kluwer.

8. Wood L., Apparao V., Byrne S. et al. www.w3.org/TR/REC-DOM-Level-1/, Document
Object Model (Core) Level 1.

