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Abstract— XML technologies have undoubtedly become a stan-
dard for data representation and manipulation and are widely
used in various spheres of human activities. Thus it is inevitable
to propose and implement efficient techniques for managing and
processing XML data.

A natural alternative is to exploit tools and functions offered
by relational database systems. Unfortunately this approach has
many objectors who point out especially its inefficiency caused
by structural differences between XML data and relations. On
the other hand, relational databases have long theoretical and
practical history and represent a mature and reliable technology,
i.e. they can offer properties that no native XML database can
offer yet. On this account we believe that the database-based
XML processing should be further studied and enhanced.

In this paper we study techniques which enable to improve
XML processing based on relational databases, so-called adaptive
or flexible mapping methods. First of all, we discuss reasons
why these techniques are important and promising. Secondly,
we provide an overview of existing approaches, we classify their
main features, and sum up the most important findings and
characteristics. Finally, we discuss possible improvements and
corresponding key problems.

Index Terms— XML-to-relational mapping, state of the art,
adaptability, relational databases.

I. INTRODUCTION

ITHOUT any doubt the eXtensible Markup Language
W (XML) [1] is currently one of the most popular formats
for data representation. It is well-defined, easy-to-use, and
involves various recommendations such as languages for struc-
tural specification, transformation, querying, updating, etc.
The wide popularity naturally invoked an enormous endeavor
to propose faster and more efficient methods and tools for
managing and processing XML data. Soon it was possible
to distinguish several different directions based on various
storage strategies. The four most popular ones are:

o methods which store XML data in a file system,

o methods which store and process XML data using an
(object-)relational database system,

« methods which exploit a pure object-oriented approach,
and

o native methods that use special indices, numbering
schemes [2], and/or data structures [3] proposed or suit-
able particularly for tree structure of XML data.

Naturally, each of these approaches has both keen advocates
and objectors who emphasize its particular advantages or
disadvantages. The situation is not good especially for file
system-based and pure object-oriented methods. The former
ones suffer from inability of querying without any additional
preprocessing of the data, whereas the latter approach fails
especially in finding a corresponding efficient and compre-
hensive tool. Expectably, the highest-performance techniques
are the native ones since they are proposed particularly for
XML processing and do not need to artificially adapt existing
structures to a new purpose. Nevertheless, the most practically
used ones are undoubtedly methods which exploit features of
(object-) relational databases. The reason is that such databases
are still regarded as universal and powerful data processing
tools and in relation to their long theoretical and practical
history they can guarantee a reasonable level of reliability and
efficiency. Contrary to native methods it is not necessary to
start “from scratch” but we can rely on a mature and verified
technology, i.e. properties that no native XML database can
offer yet. On this account we believe that these methods and
especially their possible improvements should be studied and
further enhanced.

Under a closer investigation the database-based' methods
can be further classified and analyzed [4] [5]. We usually
distinguish:

o generic methods, i.e. methods which store XML data
regardless the existence of corresponding XML schema
(e.g. [6] [7] [8D),

o schema-driven methods, i.e. methods based on structural
information from existing schema of XML documents
(e.g. [9] [10]), and

o user-defined methods, i.e. methods which leave all the
storage decisions in hands of future users (e.g. [11] [12]).

'In the rest of the paper the term “database” represents an (object-)relational
database.



Techniques of the first mentioned type usually view an XML
document as a general directed tree with several types of
nodes. We can further distinguish generic techniques which
purely store components of the tree and their mutual relation-
ship [6] [7] and techniques which store additional structural
information, usually using a kind of a numbering schema [8].
The schema enables to speed up certain types of queries but
usually at the cost of inefficient data updates.

The fact that generic techniques do not exploit possibly
existing XML schemes can be regarded as both advantage
and disadvantage. On one hand they do not depend on its
existence but, on the other hand, they cannot exploit the
additional structural or type information. But together with the
finding that a significant portion of real XML documents (52%
[13] of randomly crawled or 7.4% [14] of semi-automatically
collected?) have no schema at all, they seem to be the most
practical choice.

By contrast, schema-driven methods have contradictory
advantages and disadvantages. Considering the disadvantages
the situation is even worse for methods which are based
particularly on XML Schema [15] [16] definitions (XSDs) and
focus on their special features [10]. As it is expectable, XSDs
are used even less (only for 0.09% [13] of randomly crawled
or 38% [14] of semi-automatically collected XML documents)
and even if they are used, they often (in 85% of cases [17])
define so-called local tree grammars [18], i.e. languages that
can be defined using Document Type Definition (DTD) [1]
language as well. The most exploited “non-DTD” features are
usually simple types [17] whose lack in DTD is well-known
and crucial but for XML data processing have only a side
optimization effect.

Another problem of purely schema-driven methods is that
information XML schemes provide is not satisfactory. Anal-
ysis of both XML documents and XML schemes together
[14] shows that XML schemes are too general in comparison
to their instances. Excessive examples can be recursion or
“*” operator which allow theoretically infinitely deep or wide
XML documents, i.e. the information they carry is from this
point of view useless. Naturally XML schemes also cannot
provide any information about, e.g., retrieval frequency of an
element or an attribute or the way they are retrieved. Thus not
only XML schemes but also corresponding XML documents
and XML queries need to be taken into account to get overall
notion of the demanded XML-processing application.

The last mentioned type of approach, i.e. the user-defined
one, is a bit different. It does not involve methods for au-
tomatic database storage but rather tools for specification of
the target database schema and required XML-to-relational
mapping. Though it seems to be a marginal approach, it is
commonly offered by almost all known (object-)relational
database systems [19] as a feature that enables users to
define what suits them most instead of being restricted by
features and especially disadvantages of a particular technique.
Nevertheless, the disadvantage is evident — it assumes that the
user is skilled in both database and XML technologies. And

2Data collected with interference of a human operator who removes
damaged, artificial, too simple, and/or otherwise useless XML data.

particularly for complex applications the task to propose a
good database schema is not easy.

As we can observe, advantages of all three approaches are
closely related to the particular situation. Thus it seems to
be advisable to propose a method which is able to exploit the
current situation and information or at least to comfort to them.
Naturally this idea is not new. If we analyze database-based
methods more deeply, we can distinguish so-called flexible or
adaptive methods (e.g. [20] [21] [22] [23] [24] [25]). They take
into account a given sample set of XML data, XML queries,
and/or other various user-given information which specify
the future usage and adapt the resulting database schema to
them. It is not surprising that such techniques have better
performance results than the fixed ones (e.g. [6] [7] [9] [10]),
i.e. methods which use pre-defined set of mapping rules and
heuristics regardless the intended future use. Nevertheless, the
adaptive techniques have also one great disadvantage — the
fact that the target database schema is adapted only once, at
the beginning. Thus if the expected usage strategy changes,
the efficiency of such techniques can be even worse than in
corresponding fixed case. Consequently the adaptability needs
to be dynamic.

The idea to adapt a technique to a sample set of data
is naturally closely related to analyses of typical features
and properties of real XML documents [14]. If we combine
these two ideas, we can assume that a method which focuses
especially on these typical XML features will be also more
efficient than the general one. A similar observation is already
widely exploited for example in techniques which represent
XML documents as a set of points in multidimensional space
[26] [27]. Efficiency of such techniques depends strongly on
the depth of XML documents or the number of distinct paths
— naturally both the values should be as small as possible.
Fortunately XML analyses confirm that real XML documents
are surprisingly shallow — the average depth does not exceed
10 levels [13] [14].

Considering all the mentioned points, the presumption that
an adaptive enhancing of XML-processing methods focusing
on given or typical situations seem to be a promising type of
improvement. Thus in this paper we study adaptive techniques
from various points of view. We provide an overview of
existing approaches, we classify them and their main features,
and we sum up the most important findings and characteristics.
Finally, we discuss possible improvements and corresponding
key problems as well as so far unconcerned issues. This
analysis should serve as a good starting point for proposal
of an enhancing of existing adaptive methods as well as of
an unprecedented approach. For this purpose we also mention
and discuss (in our opinion) possible improvements of weak
points of existing methods and solutions to the most of the
stated open problems.

The rest of the paper is structured as follows: The sec-
ond section contains a brief introduction to formalism used
throughout the paper. Section 3 describes and classifies the
existing related works, both practical and theoretical and Sec-
tion 4 sums up their main characteristics. Section 5 discusses
possible ways of improvement of the recent approaches and
finally, the sixth section provides conclusions.



II. DEFINITIONS AND FORMALISM

Before we begin to describe and classify adaptive methods,
we state several basic terms used in the rest of the text.

An XML document is usually viewed as a directed la-
belled tree with several types of nodes whose edges represent
relationships among them. Side structures, such as entities,
comments, CDATA sections, processing instructions, etc., are
without loss of generality omitted.

Definition 1: An XML document is a directed labelled tree
T=(V,E, g, ¥4, T, lab, r), where

o V is a finite set of nodes,

e« ECV xV is a set of edges,

e Y is a finite set of element names,

e X4 is a finite set of attribute names,

o I' is a finite set of text values,

e lab:V — Y UX4UT is a surjective function which
assigns a label to each v € V, whereas v is an element if
lab(v) € X g, an attribute if lab(v) € X 4, or a text value
if lab(v) € T, and

o 1 is the root node of the tree.

A schema of an XML document is usually described using
DTD or XML Schema language. Both the languages use a
similar approach and describe the allowed structure of an
element using its content model. An XML document is valid
against a schema if each element matches its content model.
(We will state the definitions for DTDs only. For XSDs similar
ones are often used involving non-DTD structures. We omit
them for the paper length.)

Definition 2: A content model o over a set of element
names Y’; is a regular expression defined as « = ¢ | pcdata
| 1 (a1,02, . an) | (aq]az]...lan) | 8% | B+ | 87, where
€ denotes the empty content model, pcdata denotes the text
content, f € Y, “)” and “|” stand for concatenation and union
(of content models a, o, ..., a,,), and “*”, “+”, and “?” stand
for zero or more, one or more, and optional occurrence(s) (of
content model (3) respectively.

Definition 3: An XML schema S is a four-tuple (X, X4,
A, s), where

o X'5 is a finite set of element names,

o E;‘ is a finite set of attribute names,

e A is a finite set of declarations of the form ¢ — « or
e — [3, where e € 2}5, « 18 a content model over E’E,
and 8 C Y/,, and

e s € X is a start symbol.

Definition 4: An XML document T'= (V, E, ¥, ¥4, T,
lab, r) is valid against XML schema S = (X5, ¥y, A, s) if
lab(r) = s and for V v € V s.t. lab(v) € Xg:

o lab(v) € ¥,

« the sequence of labels of its child nodes <€i;i:1,...,k s.t.
e; € Yg UT) matches the content model «, where
(lab(v) — a) € A, and

« the set of labels of its child nodes {a;;=1
Y4} C 8, where (lab(v) — 8) € A.

To simplify the XML-to-relational mapping process an
XML schema is often transformed into a graph representation.
Probably the first occurrence of this representation, so-called
DTD graph, can be found in [9]. There are also various other
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types of graph representation of an XML schema, nevertheless
the analyzed techniques use the following or a similar one. If
necessary, we mention the slight differences later in the text.

Definition 5: A schema graph of a schema S =
(X%, 2%, A, s) is a directed, labelled graph G = (V, E, lal’),
where

e V is a finite set of nodes,

o« FECV xV is a set of edges,

o lab : V — U UL, «“*, <47, «?, “ "YU {pcdata}

is a surjective function which assigns a label to Vv € V,
and

¢ s is the root node of the graph.

The core idea of XML-to-relational mapping methods is to
decompose a given schema graph into fragments, which are
mapped to corresponding relations.

Definition 6: A fragment f of a schema graph G is each its
connected subgraph.

Definition 7: A decomposition of a schema graph G is a set
of its fragments {f1,..., fn}, where V v € V is a member of
at least one fragment.

ITII. EXISTING APPROACHES AND THEIR CLASSIFICATION

Up to now only a few papers have focused on a proposal
of a database-based XML-processing method which is able
to adapt the target database schema to given information or
typical situations. We distinguish two main directions — cost-
driven and user-driven. (We wittingly use the term ‘“‘user-
driven” to distinguish the approach from the “user-defined”
one.)

Techniques of the former group can choose the most effi-
cient XML-to-relational storage strategy automatically. They
usually evaluate a subset of possible mappings and choose
the best one according to the given sample of XML data,
query workload, etc. The main advantage is expressed by the
adverb “automatically”, i.e. without necessary or undesirable
user interference.

By contrast, techniques of the latter group also support
several storage strategies but the final decision is left in
hands of users. We distinguish these techniques from the user-
defined ones since their approach is slightly different: By
default they offer a fixed mapping. But users can influence
the mapping process by annotating fragments of the input
XML schema (which should not be mapped by default) with
demanded storage strategies. In other words the user is enabled
to improve the fixed strategy. Similarly to the user-defined
techniques this approach also assumes a skilled user but, on
the other hand, most of the work is done by the system itself
and the user is expected to help the mapping process, not to
perform it.

In the following subsections we briefly describe the found
existing methods of the two approaches and we further classify
their features.

A. Cost-Driven Techniques

As mentioned above, cost-driven techniques can choose the
best storage strategy for a particular application automatically,
without any interference of a user. In other words the user can



influence the mapping process only through the provided XML
schema, set of sample XML documents or data statistics, set
of XML queries and eventually their weights, etc.

Each of the techniques can be characterized by the following
five features:

e an initial XML schema S;,;;,

o a set of XML schema transformations 7' = {t1, to, ...,
tn}, where V i : t; transforms a given schema S into a
schema S;,

« a fixed XML-to-relational mapping function f,,,, which
transforms a given XML schema S into a relational
schema R,

o a set of sample data Dgypmpe characterizing the future
application, which usually consists of

- aset of XML documents {d1, ds, .., dy} valid against
Sinit, and
— aset of XML queries {q1, g2, .., ¢} over S;,;;, even-
tually with corresponding weights {wq,ws, .., w;},
Vi:w; €(0,1),
and

« acost function f.,s; which evaluates the cost of the given
relational schema R with regard to the set Dggmpie.

The required result is an optimal relational schema R,;,
i.e. a schema, where feos:(Ropt; Dsample) 18 minimal.

It is important to mention that though the set of transfor-
mations 7' is always finite, they often generate a possibly
infinite set of XML schemes. It is caused by the fact that
particular transformations have usually various parameters or
can be applied to any subgraph of schema S;.

A naive but illustrative cost-driven storage strategy that is
based on the idea of using a “brute force” is depicted by
Algorithm 1.

Algorithm 1 Naive Search Algorithm
Il’lpllt: Sinits T, fmap’ Dsample’ fcost
Output: R,
0 S — {Sinit}
while 3t € T,s € S:t(s) ¢S do
S—Su{t(s)}
end while
COStopt < 00
for all s € S do
Ripmp — fmap(s)
COSttmp — fcost (Rtmp; Dsamplc)
if costimp < costyp then
Ropt — Rtmp
COStopt < COStimp
end if
: end for
return R,

R A A R ol e
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The naive algorithm first generates a set of possible XML
schemes S using transformations from set 7' and starting
from initial schema S;,,;; (lines 1 — 4). Then it searches for
schema s € S with minimal cost feost(fmap(s); Dsampie)
(lines 5 — 13) and returns the corresponding optimal relational
schema R,p; = fmap(s). It is obvious that the complexity

of such algorithm strongly depends on the set 7'. It can be
proven that even a simple set of transformations causes the
problem of finding the optimal schema to be NP-hard [22]
[23] [28]. Thus the existing techniques in fact search for a
suboptimal solution using various heuristics, greedy strategies,
approximation algorithms, terminal conditions, etc.

We can also observe that purely fixed methods can be
considered as a special type of cost-driven methods, where
T =0, Dsampie = 0, and feo5:(R,0) = const for V R.

1) Hybrid Object-Relational Mapping: One of the first
attempts of a cost-driven adaptive approach is a method called
Hybrid object-relational mapping [20]. It is based on the
fact that if XML documents are mostly semi-structured, a
“classical” decomposition of unstructured or semi-structured
XML parts into relations (e.g. [9]) leads to inefficient query
processing caused by plenty of inevitable join operations. The
algorithm exploits the idea of storing well structured parts
into relations and semi-structured parts in a more natural way
— using so-called XML data type, which supports path queries
and XML-aware full-text operations. The fixed mapping for
structured parts is similar to the classical Hybrid algorithm
[9], whereas, in addition, it exploits N F2-relations using
constructs such as set-of, tuple-of, and 1ist-of.

The main concern of the method is to identify the structured
and semi-structured parts. The process consist of the following
steps:

1) A schema graph Gy = (V1, E1, lab)) is built for a given

DTD.

2) For YV v € V; a measure of significance w, (see below)

is determined.

3) Each v € V; which satisfies the following conditions is

identified:

a) v is not a leaf node.

b) For v and V its descendant v;.1<i<j : wy < WLoD
and w,, < wrop, where wrop is a required level
of detail of the resulting schema.

¢) v does not have a parent node which would satisfy
the conditions too.

4) Each fragment f C G; which consists of a previously
identified node v and its descendants is replaced with an
attribute node having the XML data type, resulting in a
schema graph Ga.

5) G, is mapped to a relational schema using a fixed
mapping strategy.

The measure of significance w, of a node v is defined as

Wy = 1w + lw + 1w (1)
v 2 Sy 4 D, 4 Qo

card(D,)

i Sl V) 2

“Du card(D) @
card(Qy)

= 3

vQ card(Q) )

where



e wg, is derived from the DTD structure as a combination
of predefined weights expressing position of v in the
graph and complexity of its content model®,

e D C Dggmpie is a set of all given documents,

e D, C D is a set of documents containing v,

e Q C Dygmpie is a set of all given queries, and

e Q, C (@ is a set of queries containing v.

As we can see, the algorithm optimizes the naive approach
mainly in the following points:

o The schema graph is preprocessed, i.e. w, is determined

for Vv e V.

o The set of transformations 7" is a singleton.

o The transformation is performed if the current node
satisfies the above mentioned conditions a) — c).

As it is obvious, the preprocessing ensures that
the complexity of the search algorithm is given by
Ky % card(Vy) + Ky x card(Ey), where Ki,Ky € N.
On the other hand, the optimization is too restrictive in terms
of the amount of possible XML-to-relational mappings.

2) LegoDB Mapping: Another example of adaptive cost-
driven methods, was proposed and implemented for LegoDB
system [21] and later enhanced and extended into FlexMap
framework [29]. The algorithm optimizes the naive approach
using a simple greedy strategy as depicted in Algorithm 2.

Algorithm 2 Greedy Search Algorithm

Inpllti Sinits T, fmaps Dsamples fcost
Output: R,

1: Sopt — Sinit

2: Ropt — fmap(Sopt)

3: COStopt — fcost(Ropt7 Dsample)

4: loop

5: COStymin <— 00

6: forallteT do

7: costy «— fcost(fmap(t(sopt))7 Dsample)
8: if cost; < costy,i, then

9: tmin < t

10: COStpin — COSty

11: end if

12 end for

13:  if costynn < costop: then

14: Sopt — tmin(Sopt)

15: Ropt — fmap(Sopt)

16: COStopt — fcost(Ropt7 Dsample)
17:  else

18: break;

19:  end if
20: end loop

21: return R,

The main differences in comparison with the naive approach
are the choice of the least expensive transformation at each
iteration (lines 5 — 12) and the termination of searching if
there exists no transformation ¢ € 7" that can reduce the current
(sub)optimum (lines 13 — 19).

3For more details see [20].

The set T of XML-to-XML transformations involves the
following XSD modifications:

e Inlining and outlining — mutually inverse operations
which enable to store columns of a subelement or at-
tribute either in a parent table or in a separate table

o Splitting and merging elements — mutually inverse opera-
tions which enable to store columns of a shared element*
either in a common table or in separate tables, each for
a particular sharer’

o Associativity and commutativity — operations which en-
able to group different elements into one table

e Union distribution and factorization — mutually inverse
operations which enable to separate out components of a
union using equation (a, (b|c)) = ((a,b)|(a,c))

o Splitting and merging repetitions — exploitation of equa-
tion (a+) = (a, ax)

o Simplifying unions — exploitation of equation (a|b) C
(a?,b7?)

Note that except for commutativity and simplifying unions
the transformations generate equivalent schema in terms of
equivalence of sets of document instances. Commutativity
does not retain the order of the schema, whereas simplify-
ing unions generates a more general schema, i.e. a schema
with larger set of document instances. (Unfortunately only a
subset of the mentioned transformations — namely inlining and
outlining — was implemented and experimentally tested by the
FlexMap system.)

The fixed mapping again uses a strategy similar to the
Hybrid algorithm but it is applied locally on each fragment of
the schema. The fragments are specified by the transformation
rules stated by the search algorithm. For example elements
determined to be outlined are not inlined though a “traditional”
Hybrid algorithm would do so.

The process of evaluating f.,s+ is significantly optimized.
A naive approach would require:

 construction of a particular relational schema,

« loading sample XML data into the relations, and

« cost analysis of the resulting relational structures.

The LegoDB evaluation exploits an XML Schema-aware
statistics framework StatiX [30] which analyzes the structure
of a given XSD and XML documents and computes their
statistical summary. The XML statistics are then “mapped”
to relational statistics regarding the fixed XML-to-relational
mapping and together with sample query workload used as
an input for a classical relational optimizer which estimates
the resulting cost. Thus no relational schema has to be
constructed. Furthermore, as the statistics are respectively
updated at each XML-to-XML transformation, the XML
documents need to be processed only once.

3) An Adjustable and Adaptable Method (AAM): The fol-
lowing method, which is also based on the idea of searching
a space of possible mappings, is presented in [22] as an Ad-
Jjustable and adaptable method (AAM). In this case the authors
adapt the given problem to features of genetic algorithms. This

“An element with multiple parent elements in the schema — see [9].
3 A parent element involving the shared element.



is also the first paper that mentions that the problem of finding
a relational schema R for a given set of XML documents and
queries Dsgmples S-t- feost (R, Dsample) 1s minimal, is NP-hard
in the size of the data.

The set T' of XML-to-XML transformations consists of
inlining and outlining of subelements. For the purpose of
the genetic algorithm each transformed schema is represented
using a bit string, where each bit corresponds to an edge of
the schema graph and it is set to

« 1 if the element the edge points to is stored into a separate

table, or

o 0 if the element the edge points to is stored into parent

table.

The bits set to 1 represent “borders” among fragments,
whereas each fragment is stored into one table correspond-
ing to so-called Universal table [6]. The extreme instances
correspond to “one table for the whole schema” (in case of
00...0 bit string) resulting in many null values and “one table
per each element” (in case of 11...1 bit string) resulting in
many join operations.

Similarly to the previous strategy the genetic algorithm
chooses only the best possible continuation at each iteration.
The algorithm consists of the following steps:

1) The initial population Py (i.e. the set of schema bit

strings) is generated randomly.

2) The following steps are repeated until terminating con-

ditions are met:

a) Each member of the current population P; is eval-
uated and only the best representatives are selected
for further production.

b) The next generation P;y; is produced by genetic
operators crossover, mutation, and propagate.

The algorithm terminates either after certain number of
transformations or if a good-enough schema is achieved.

The cost function feost(R, Dsample) is expressed as:

fcost( sample) fM( sample) + fQ( sample) (4)
fM( sample Z Ol * Rl (5)
fQ( sample ZS *PS +2Jk*PJk (6)

where

o far(R, Dsample) 18 a space-cost function, where Cj is
number of columns and R; is number of rows in table 7;
created for [-th element in the schema,

e ¢ is the number of all elements in the schema,

o fo(R, Dsgmpie) is a query-cost function, where S; is cost
and Ps, is probability of i-th given select query and J
is cost and Pj,_ is probability of k-th given join query,

e m is the number of select queries in Dygppie, and

e n is the number of join queries in D qmpic-

In other words fas(R, Dsampie) represents the total mem-

ory cost of the mapping instance, whereas fo(R, Dsampie)

represents the total query cost. The probabilities Pg, and P,
enable to specify which elements will (not) be often retrieved
and which sets of elements will (not) be often combined to
search.

As we can see, this algorithm represents another way of
finding a reasonable suboptimal solution in the theoretically
infinite set of possibilities — using (in this case two) terminal
conditions.

4) A Hill Climbing Algorithm: The last but not least cost-
driven adaptable representative can be found in paper [23]. The
approach is again based on a greedy type of algorithm, in this
case a Hill climbing strategy that is depicted by Algorithm 3.

Algorithm 3 Hill Climbing Algorithm
Il’lpllt: Sinit’ Ta fmap, D
Output: R,

I: Sopt — Sinit
Ropt — fmap(Sopt)
COStopt — fcost (Ropt7 Dsample)
Tomp — T
while T},,, # 0 do

t < any member of T},

Ttmp — Ttmp\{t}

Stan — t(Sopt)

COSttmp — fcost (fmap(Stmp)» Dsample)
10:  if costimp < costyy: then
Sopt — Stmp

samples fcost

R A A A T o
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12: Ropt — fmap(Stmp)
13: CoStopt < COStymp
14: Ttmp — T

15:  end if

16: end while
17: return R,

As we can see, the hill climbing strategy differs from the
simple greedy strategy depicted in Algorithm 2 in the way it
chooses the appropriate transformation ¢ € 7. In the previous
case the least expensive transformation that can reduce the
current (sub)optimum is chosen, in this case it is the first such
transformation found.

The schema transformations are based on the idea of vertical
(V) or horizontal (H) cutting and merging the given XML
schema fragment(s). The set T' consists of the following four
types of (pairwise inverse) operations:

o V-Cut(f, (u,v)) — cuts fragment f into fragments f; and
f2, s.t. f1 U fo = f, where (u,v) is an edge from f; to
fa,ie. u € frand v € fy

o V-Merge(f1, fo) — merges fragments f; and f> into frag-
ment f = f1U fa

o H-Cut(f, (u,v)) — splits fragment f into twin fragments f;
and fy horizontally from edge (u,v), where u ¢ f and
v € f, st ext(f1) Uext(fz) = ext(f) and ext(f1) N
ext(fo) =0°7

bext(f;) is the set of all document-instance fragments conforming to the
schema fragment f;.

"Fragments f1 and fo are called twins if ext(f1) Next(f2) = @ and for
each node u € fi, there is a node v € fo with the same label and vice versa.



o H-Merge(fi1, f2) — merges two twin fragments f; and fs

into one fragment f s.t. ext(f1) Uext(fz) = ext(f)

As we can observe, V-Cut and V-Merge operations are sim-
ilar to outlining and inlining of the fragment f5 out of or into
the fragment f;. On the other hand, H-Cut operation, which
is in practice applied only on shared fragments, corresponds
to splitting of elements mentioned in LegoDB mapping, i.e.
duplication of the shared part. Likewise the H-Merge operation
corresponds to inverse merging of elements.

The fixed XML-to-relational mapping maps each fragment
fi which consists of nodes {vy, v, ..., v, } to relation

R, = (id(r;) : int,id(r;.parent) : int,
lab(vy) : type(vy), ..., lab(vy,) : type(vy))
where r; is the root element of f;. Note that such mapping is
again similar to locally applied Universal table.
The cost function feost (R, Dsampie) is expressed as

fcost(Ra Dsample) = z Wi * COSt(Qia R) (7)
i=1

where D qmpie consists of a sample set of XML documents

and a given query workload {(Q;,w;)i=12, .}, Where Q;

is an XML query and w; is its weight. The cost function

cost(Q;, R) for a query ; which accesses fragment set

{fi1, -y fim} 1s expressed as

| fi1l m=1

cost(Qi, R) = § >0,k ([ fi| * Selij + 0 = (|Eij| + [Eixl)/2)
m > 1

3

where f;; and f, j # k are two join fragments, |E;;| is the
number of elements in ext(f;;), and Sel;; is the selectivity
of the path from the root to f;; estimated using Markov table.
In other words, the formula simulates the cost for joining
relations corresponding to fragments f;; and f;.

The authors further analyze the influence of the choice of
initial schema S;,;; on efficiency of the search algorithm.
They analyze three types of initial schema decompositions
leading to Binary [6], Shared, or Hybrid [9] mapping. The
paper concludes with the finding that a good choice of an
initial schema is crucial and can lead to faster searches of the
suboptimal mapping.

B. User-Driven Techniques

As mentioned above, the most flexible approach is “to leave
the whole process in hands of a user” who defines both the
target database schema and the required mapping. We speak
about so-called user-defined mapping techniques. Probably
due to simple implementation they are especially popular and
supported in most commercial database systems®.

At first sight the idea is correct — users can decide what suits
them most and are not restricted by features and especially
disadvantages of a particular technique. The problem is that
such approach assumes users skilled in two complex technolo-
gies — (object-)relational databases and XML. Furthermore, for

8 An overview and analysis of commercial user-defined approaches can be
found in [19].

more complex applications the design of an optimal relational
schema is generally an uneasy task.

On this account several new techniques — for the purpose
of this paper called user-driven mapping strategies — were
proposed. The main difference is that the user can influence a
default fixed mapping strategy using annotations which specify
the required mapping for particular schema fragments. The
set of allowed mappings is naturally limited but still enough
powerful to define various mapping strategies.

Each of the techniques is characterized by the following
four features:

o an initial XML schema S;,;;,

e a set of allowed fixed XML-to-relational mappings

{f}nap}i:L.“,n,

o a set of annotations A, each of which is specified by
name, target, allowed values, and function, and

o a default mapping strategy fq.; for not annotated frag-
ments.

1) MDF: Probably the first approach which faces the
mentioned issues is proposed in papers [24] [31] (which extend
ideas of papers [19] [32]) as ShreX or Mapping definition
framework (MDF). 1t allows users to specify the required map-
ping and it is able to check correctness and completeness of
such specifications and to complete possible incompleteness.
The mapping specifications are made by annotating the input
XSD with a predefined set of annotations, i.e. attributes from
namespace called mdf. The set of annotating attributes A is
listed in Table 1.

As we can see from the table, the set of allowed XML-to-
relational mappings { ffﬁap}i:h..,n involves inlining and out-
lining of an element or an attribute, Edge mapping [6] strategy,
and mapping an element or an attribute to a CLOB column.
Furthermore, it enables to specify the required capturing of
the structure of the whole schema using one of the following
three approaches:

o Key, Foreign Key, and Ordinal Strategy (KFO) — each
node is assigned a unique integer ID and a foreign key
pointing to parent ID, the sibling order is captured using
an ordinal value

e Interval Encoding — a unique {start,end} interval
is assigned to each node corresponding to preorder and
postorder traversal entering time

e Dewey Decimal Classification — each node is assigned a
path to the root node described using concatenation of
node IDs along the path

As side effects can be considered attributes for specifying
names of tables or columns and data types of columns.
Not annotated parts are stored using user-predefined rules,
whereas such mapping is always a fixed one.

2) XCacheDB System: Paper [25] also proposes a user-
driven mapping strategy which is implemented and experimen-
tally tested as an XCacheDB system. Similarly to the previous
case a user can provide an annotated XML schema which con-
tains the demanded mappings for particular schema fragments,
otherwise a default strategy is used. Unfortunately the system
considers only unordered and acyclic XML schemes and omits
mixed-content elements.



TABLE I
ANNOTATION ATTRIBUTES FOR MDF

Attribute Target Value Function

outline attribute or element true, false If the value is true, a separate table is created for
the attribute / element. Otherwise, it is inlined to parent
table.

tablename attribute, element, or group string The string is used as the table name.

columnname attribute, element, or simple type  string The string is used as the column name.

sqltype attribute, element, or simple type  string The string defines the SQL type of a column.

structurescheme  root element KFO, Interval, Dewey  Defines the way of capturing the structure of the whole
schema.

edgemapping element true, false If the value is t rue, the element and all its subelements
are mapped using Edge mapping.

maptoclob attribute or element true, false If the value is true, the element / attribute is mapped

to a CLOB column.

TABLE I
ANNOTATION ATTRIBUTES FOR XCACHEDB

Attribute Value Function
INLINE 0 If placed on a node v, the fragment rooted at v is inlined into parent table.
TABLE 0 If placed on a node v, a new table is created for the fragment rooted at v.

STORE_BLOB ()
BLOB_ONLY 1]
RENAME

DATATYPE

string

string

If placed on a node v, the fragment rooted at v is stored also into a BLOB column.
If placed on a node v, the fragment rooted at v is stored into a BLOB column.
The value specifies the name of corresponding table or column created for node v.

The value specifies the data type of corresponding column created for node v.

The set of annotating attributes A that can be assigned to any
node v € S;,;; is listed in Table II. As we can see, it enables
inlining and outlining of a node, storing a fragment into a
BLOB column, specifying table names or column names, and
specifying column data types. The main difference is in the
data redundancy allowed by attribute STORE_BLOB which
enables to shred the data into table(s) and at the same time to
store pre-parsed XML fragments into a BLOB column.

The fixed mapping uses a slightly different strategy: Each
element or attribute node is assigned a unique ID. Each
fragment f is mapped to a table 7 which has an attribute
ay,;, of ID data type for each element or attribute node
v € f. If v is an atomic node?, Ty has also an attribute a,
of the same data type as v. For each distinct path that leads
to f from a repeatable ancestor v, Ty has a parent reference
column of ID type which points to ID of v. Note that this
mapping strategy is again a fixed one.

For better lucidity we recapitulate the main features of the
mentioned cost-driven and user-driven approaches in Tables
IIT and IV respectively.

C. Theoretic Issues

Besides proposals of cost-driven and user-driven techniques
there are also papers which discuss the corresponding open
issues of various XML-to-relational mappings and their
efficiency on theoretic level.

°An attribute node or an element node having no subelements.

1) Data Redundancy: As mentioned above, the XCacheDB
system allows a certain degree of redundancy to ensure
more efficient query processing. The corresponding paper
[25] discusses the strategy also on theoretic level. There are
two main representatives of the allowed redundancy — BLOB
columns and the violation of BCNF or 3NF condition. On
this account the authors define four classes of XML schema
decompositions.

Before we state the definitions we have to note that this
approach is based on a slightly different graph representation
of a schema than was defined by Definition 5. In this case
nodes of the graph correspond to elements, attributes, or pc-
data, whereas edges are labelled with corresponding operators.

Definition 8: A schema decomposition is minimal if all
edges connecting nodes of different fragments are labelled
with “*” or “+”.

Definition 9: A schema decomposition is 4NF if all frag-
ments are 4NF fragments. A fragment is 4NF if no two nodes
of the fragment are connected by a “*” or “+” labelled edge.

Definition 10: A schema decomposition is non-MVD if all
fragments are non-MVD fragments. A fragment is non-MVD
if all “*” or “+” labelled edges appear in a single path.

Definition 11: A schema decomposition is inlined if it is
non-MVD but it is not a 4NF decomposition. A fragment is
inlined if it is non-MVD but it is not a 4NF fragment.

According to these definitions fixed mapping strategies
(e.g. [9] [10]) naturally consider only 4NF decompositions
which are least space-consuming and seem to be the best
choice if we do not consider any other information. Paper [25]
shows that having further information (in this particular case
given by a user), the choice of other type of decomposition



TABLE III
OVERVIEW OF CHARACTERISTICS OF COST-DRIVEN METHODS

Method Sinit T fmap Dsample feost
Hybrid OR user-given DTD Semi-structured fragments  Hybrid algorithm mod-  documents, The measure of significance w,
are replaced with an at- ified for NF2-relations  queries of node v must be below the
tribute having an XML level of detail wp,op
data type
LegoDB user-given XSD inlining / outlining, split- Hybrid algorithm ap-  documents, Performed by relational opti-
ting / merging elements, plied locally on each  queries mizer with input based on XML
associativity, commutativ-  fragment data statistics
ity, union distribution / fac-
torization, splitting / merg-
ing repetitions, simplifying
unions
AAM randomly generated set inlining / outlining Each  fragment is documents, The total memory  cost
of schema decomposi- mapped to one table queries + frr (R, Dggmpie) + the total
tions similar to the Universal ~ probabilities  query cost fq (R, Dggmpie)
table
Hill Climbing  decomposed user-given  V-Cut / V-Merge, H-Cut /  Each  fragment is  documents, :L:l w; * cost(Q;, R),
DTD leading to Binary, = H-Merge mapped to one table queries + where cost(Q;, R) is the cost
Shared, or Hybrid map- similar to the Universal — weights estimation of query Q; and w;
ping table is its weight
TABLE IV
OVERVIEW OF CHARACTERISTICS OF USER-DRIVEN METHODS
Method Sinit {fiapti=1,...n A fdef
MDF user-given XSD  inlining / outlining, BLOB, Edge mapping outline, tablename, user-predefined rules
+ capturing of the structure using Key, columnname, sgltype,
Foreign Key and Ordinal Strategy / Interval ~ structurescheme,
Encoding / Dewey Decimal Classification edgemapping, maptoclob
XCacheDB  user-given XSD  inlining / outlining, BLOB INLINE, TABLE, Each fragment is mapped to one ta-
STORE_BLOB, BLOB_ONLY, ble with an ID attribute for each el-

RENAME, DATATYPE ement / attribute, data type attribute
for each atomic node, and foreign

key to each repeatable ancestor

can lead to more efficient query processing though it requires
a certain level of redundancy.

2) Grouping problem: Paper [28] is dealing with the idea
that searching a (sub)optimal relational decomposition is not
only related to given XML schema, query workload, and XML
data, but it is also highly influenced by the chosen query
translation algorithm'® and the cost model.

For the theoretic purpose a subset of the problem — so-
called grouping problem — is considered. It deals with possible
storage strategies for shared subelements, i.e. either into one
common table (so-called fully grouped strategy) or into sep-
arate tables, one for each sharer (so-called fully partitioned
strategy). For analysis of its complexity the authors further
define two simple cost metrics:

e RelCount — the cost of a relational query is the number

of relation instances in the query expression

e RelSize — the cost of a relational query is the sum of

the number of tuples in relation instances in the query
expression

and three query translation algorithms:

e Naive Translation — performs a join between the relations
corresponding to all the elements appearing in the query,

10An algorithm for translating XML queries into SQL queries

a wild-card query'! is converted into union of several
queries, one for each satisfying wild-card substitution

o Single Scan — a separate relational query is issued for each
leaf element and joins all relations on the path until the
least common ancestor of all the leaf elements is reached

e Multiple Scan — on each relation containing a part of the
result is applied Single Scan algorithm and the resulting
query consists of union of the partial queries

On a simple example the authors show that for a wild-
card query () which retrieves a shared fragment f with
algorithm Naive Translation the fully partitioned strategy per-
forms better, whereas with algorithm Multiple Scan the fully
grouped strategy performs better. Furthermore, they illustrate
that reliability of the chosen cost model is also closely related
to query translation strategy. If a query contains not very
selective predicate than the optimizer may choose a plan that
scans corresponding relations and thus RelSize is a good
corresponding metric. On the other hand, in case of highly
selective predicate the optimizer may choose an index lookup
plan and thus RelCount is a good metric.

Last but not least the authors theoretically prove that various
combinations of the above mentioned cost metrics and trans-
lation algorithms can produce differently complex problems,

A query containing *“/ /> or “/ " operators.



up to NP-hard ones.

IV. SUMMARY

We can sum up the state of the art of adaptability of
database-based XML-processing methods into the following
natural but important findings:

1) As the storage strategy has a crucial impact on query-
processing performance, a fixed mapping based on pre-
defined rules and heuristics is not universally efficient.

2) It is not an easy task to choose an optimal mapping
strategy for a particular application and thus it is not
advisable to rely only on user’s experience and intuition.

3) As the space of possible XML-to-relational mappings is
very large (usually theoretically infinite) and most of the
subproblems are even NP-hard, the exhaustive search is
impractical and often even impossible. It is necessary
to define search heuristics, approximation algorithms,
and/or reliable terminal conditions.

4) The choice of an initial schema can strongly influence
the efficiency of the search algorithm. It is reasonable
to start with at least “locally good” schema.

5) A strategy of finding a (sub)optimal XML schema
should take into account not only the given schema,
query workload, and XML data statistics, but also con-
sider possible query translations, cost metrics, and their
consequences.

6) Cost evaluation of a particular XML-to-relational map-
ping should not involve time-consuming construction of
a particular relational schema, loading sample XML data
and analyzing the resulting relational structures. It can be
optimized using cost estimation of XML queries, XML
data statistics, etc.

7) Despite the previous claim, the user should be allowed
to influence the mapping strategy. On the other hand, the
approach should not demand a full schema specification
but it should be able to efficiently complete the user-
given hints.

8) Even thought a storage strategy is able to adapt to
a given sample of schemes, data, queries, etc., its
efficiency is still endangered by later changes of the
expected usage.

V. OPEN ISSUES

Although each of the existing approaches brings certain
interesting ideas and optimizations, there is still a space of
possible future improvements of the adaptable methods. We
describe and discuss them in this section starting from (in our
opinion) the least complex ones.

A. Problem of Missing Input Data

As we already know, for cost-driven techniques there are
three types of input data:
e an XML schema S;,;;,
e a set of XML documents {di,ds,..,d;} valid against
Sinit, and
o aset of XML queries {q1, ¢2, .., q; } over S;;: (eventually
with corresponding weights).

The problem of missing input XML schema S;,;: was
already outlined in the introduction in connection with ad-
vantages and disadvantages of generic and schema-driven
methods. As we suppose that the adaptability is the ability to
adapt to the given situation, an adaptive method which does
not depend on existence of an XML schema but can exploit
the information if being given is probably a natural first type
of improvement. This idea is also strongly related to the earlier
mentioned problem of choice of a locally good initial schema
Sinit- The corresponding main questions are:

e Can be the user-given schema considered as a good
candidate for initial schema S;,,;;?

« How can we measure this quality?

o How can we (efficiently) find an eventual better candi-
date?

¢ Can we find such candidate for schema-less XML docu-
ments?

A possible solution can be found in exploitation of methods
for automatic construction of XML schema for the given set
of XML documents (e.g. [33] [34]). These methods are able
to derive corresponding content models from a given sample
set of (similar) XML documents. Thus if we assume that
documents are more precise sources of structural information,
we can expect that a schema generated on their bases will
have good characteristics too.

On the other hand, the problem of missing input XML
documents can be at least partly solved using reasonable
default settings based on general analysis of real XML data
(e.g. [13] [14]). Furthermore, the surveys show that real XML
data are surprisingly simple thus the default mapping strategy
does not have to be complex too. It should rather focus on
efficient processing of frequently used XML patterns.

On the contrary, the presence of sample query workload
is crucial since (to our knowledge) there are no analyses on
real XML queries, i.e. no source of information for default
settings. The reason is that the way how to collect such real
representatives is not as straightforward as in case of XML
documents which can be easily crawled from the Internet.
Currently the best sources of XML queries are XML bench-
marking projects (e.g. [35] [36]) but as the data and especially
queries are supposed to be used for rating the performance of
a system in various situations, they cannot be considered as
an example of a real workload.

Naturally, the query statistics can be gathered by the system
itself and the relational schema can be adapted continuously.
But this is already the problem of dynamic adaptability dis-
cussed later in Section V-E.

B. Efficient Solution of Subproblems

A surprising fact we have encountered are numerous sim-
plifications of the chosen solutions. As it was mentioned,
some of the techniques omit, e.g., ordering of elements, mixed
contents, or recursion. This is a bit confusing finding regarding
the fact that there are proposals of efficient processing of these
XML constructs (e.g. [37]) and that adaptive methods should
be able to cope with various situations.



A similar observation can be done for user-driven meth-
ods. Though the proposed systems are able to store schema
fragments in various ways, the default mapping strategy for
not annotated parts of a given schema is again a fixed one.
It seems to be an interesting optimization to join the ideas
of cost-driven and user-driven approaches and to search the
(sub)optimal mapping for not annotated parts using a cost-
driven method.

C. Deeper Exploitation of User-Given Information

Another open issue is the problem of possible deeper
exploitation of the information given by the user. We can
identify two main questions:

1) How can be the user-given information better exploited?

2) Are there any other information a user can provide to

increase the efficiency?

A possible answer at least for the first question can be
found in the idea of pattern matching. The idea is to use user-
given schema annotations as “hints” how to store particular
XML patterns which can be further exploited in searching an
efficient mapping for not annotated parts. We can naturally
predict that structurally similar fragments should be stored
similarly and thus to focus on finding these fragments in the
rest of the schema. The main problem of this idea is how
to identify the structurally similar fragments. If we consider
the variety of XML-to-XML transformations, two structurally
same fragments can be expressed using “at first glance”
different regular expressions. Thus it is necessary to propose
particular levels of equality of XML schema fragments and
algorithms how to determine them. Last but not least, such
system should focus on scalability of the similarity metric and
particularly its reasonable default setting (based on existing
analyses of real-world data).

D. Theoretical Analysis of the Problem

As we can see from the overview of the existing methods,
there are various types of XML-to-XML transformations,
whereas the mentioned ones certainly do not cover the whole
set of possibilities. Unfortunately there seems to be no theo-
retic study of these transformations, their key characteristics,
and possible classifications. The study can, among others,
focus on equivalent and generalizing transformations and as
such serve as a good basis for the pattern matching strategy.

Especially interesting will be the question of NP-hardness
in connection with the set of allowed transformations and its
complexity (similarly to paper [28] which analyzes theoretical
complexity of combinations of cost metrics and query transla-
tion algorithms). Such survey will provide useful information
especially for optimizations of the search algorithm.

E. Dynamic Adaptability

The last but not least mentioned open issue is naturally
connected with the most striking disadvantage of adaptive
methods — the problem of possible changes of both XML
queries and XML data that can lead to crucial worsening
of their efficiency. As it was already mentioned, it is also

related to the problem of missing input XML queries and ways
how to gather them. Furthermore, the question of changes of
XML data opens another wide research area of updatability
of the stored data — a feature that is often omitted in current
approaches although its importance is crucial.

The solution to these issues — i.e. a system that is able to
adapt dynamically — is obvious and challenging but it is not
an easy task. It should especially avoid total reconstructions
of the whole relational schema and corresponding necessary
reinserting of all the stored data, or such operation should be
done only in very special cases and not often.

On the other hand, this “brute-force” approach can serve
as a good inspiration. It is possible to suppose that changes
especially in case of XML queries will not be radical but will
have a gradual progress. Thus the changes of the relational
schema will be mostly local and we can apply the expensive
reconstruction just locally. Furthermore, we can again exploit
the idea of pattern matching and try to find the XML pattern
defined by the modified schema fragment in the rest of the
schema.

Another question is how often should be the relational
schema reconstructed. The natural idea is of course “not too
often”. But, on the other hand, a research can be done on
the idea of performing gradual minor changes. It is probable
that such approach will lead to less expensive (in terms of
reconstruction) and at the same time more efficient (in terms
of query processing) system. The former hypothesis should be
verified, the latter one can be almost certainly expected. The
key issue is how to find a reasonable compromise.

VI. CONCLUSION

The main goal of this paper was to describe and discuss
the current state of the art and open issues of adaptability
in database-based XML-processing methods. First of all, we
have stated the reasons why this topic should be ever studied.
Then we have provided an overview and classification of the
existing approaches and their features and summed up the key
findings. Finally, we have discussed the corresponding open
issues and their possible solutions.

Our aim was to show that the idea of processing XML data
using relational databases is still up to date and should be
further developed. From the overview of the state of the art
we can see that even though there are interesting and inspiring
approaches, there is still a variety of open problems which can
further improve the database-based XML processing.

Our future work will naturally follow the open issues stated
at the end of this paper and especially survey into the possible
solutions we have mentioned. Firstly, we will focus on the
idea of improving the user-driven techniques using adaptive
algorithm for not annotated parts of the schema together
with deeper exploitation of the user-given hints using pattern-
matching methods — i.e. a hybrid user-driven cost-based sys-
tem. Secondly, we will deal with the problem of missing
theoretic study of schema transformations, their classification,
and particularly influence on the complexity of the search
algorithm. Finally, on the basis of the theoretical study and
the hybrid system we will study and experimentally analyze
the dynamic enhancing of the system.



It is important to mention that though all the open issues can
be studied from various points of view, they are still closely
related and influence each other. Thus it is always important
to consider the given problem globally and not omit important
consequences.
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