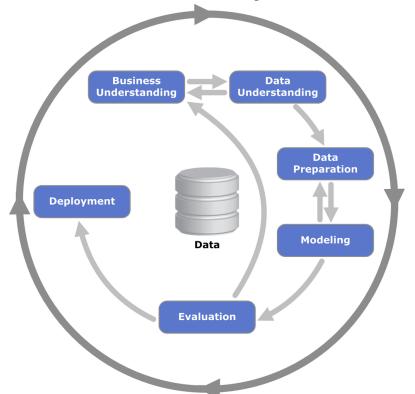


Data Preparation

Eva Blažková, Jan Hučín

3. listopadu 2025

CRISP-DM a Data Preparation



Business Understanding

Data Understanding

Data Preparation

Evaluation

Deployment

PROFINIT > An Amdocs Company

Determine **Business Objectives**

Background **Business Objectives Business Success** Criteria

Assess Situation

Inventory of Resources Requirements. Assumptions, and Constraints Risks and Contingencies Terminology Costs and Benefits

Determine **Data Mining Goals**

Data Mining Goals Data Mining Success Criteria

Produce Project Plan Project Plan

Initial Assessment of Tools and **Techniques**

Collect Initial Data Initial Data Collection Report

Describe Data Data Description Report

Explore Data Data Exploration Report

Verify Data Quality Data Quality Report

Format Data

Dataset Description

Select Data

Rationale for Inclusion/ Exclusion

Clean Data Data Cleaning Report

Construct Data Derived Attributes Generated Records

Integrate Data Merged Data

Reformatted Data

Dataset

Select Modeling Techniques

Modeling

Modeling Technique Modeling Assumptions

Generate Test Design Test Design

Build Model Parameter Settinas

Models Model Descriptions

Assess Model Model Assessment Revised Parameter Settings

Evaluate Results

Assessment of Data Mining Results w.r.t. **Business Success** Criteria Approved Models

Review Process Review of Process

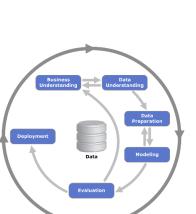
Determine Next Steps List of Possible Actions Decision

Plan Deployment Deployment Plan

Plan Monitoring and Maintenance Monitoring and Maintenance Plan

Produce Final Report Final Report Final Presentation

Review Project Experience Documentation



https://www.mygreatlearning.com/blog/why-using-crisp-dm-will-make-you-a-better-data-scientist/

Data preparation phases

> Select data

- Which (portions of) data sets will (not) be used and why?
- Collect additional data (internal, external)

Clean data:

- Correct, replace, remove, ignore noise
- Deal with special values, missing values and outliers
- Aggregation level

Construct data (feature eng)

Extract new attributes or re-construct missing (BMI, day of the week)

> Integrate data

combinine data from multiple sources

Format data (transform data)

Re-arrange, re-order, re-format (string -> numeric, date formatting, re-ordering categrories)

Data cleaning

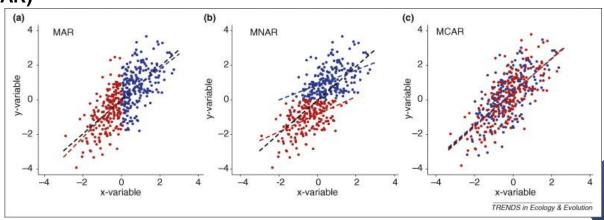
Real-world data are dirty

Incomplete	
Types of missingness:MCaR, MaR, MnaR	Not available when collectedDifferent criteria when collectedHuman/computer errors
Noisy	Income = -10 000
 Errors / outliers Various sources: spelling, typos, word transpositions, multiple values in a single field 	Failures during data collectionHuman/Computer errorsData transmission errors
Inconsistent	Rating 1-5 vs. A-C
 Synonyms, prefix/suffix, variations, abbreviations, truncation and initials Inconsistencies among datasets/subgroups 	Different data sourcesDifferent stages of collection

- Missing completely at random (MCAR)
 - No difference between our primary variable of interest and the missing and nonmissing values
- Missing at random (MAR)
 - No significant difference between our primary variable of interest and the missing and non-missing values
 - Not a realistic assumption for many real-time data

Missing not at random (MNAR)

- Missing values depend on our primary variable of interest or on other unobserved variables
- Not ignorable



PROFINIT >

- Missing completely at random (MCAR)
- Missing at random (MAR)
 - 7
 - 7
- Missing not at random (MNAR)
 - 7

- X = income
- Y = credit risk

(loan approval)

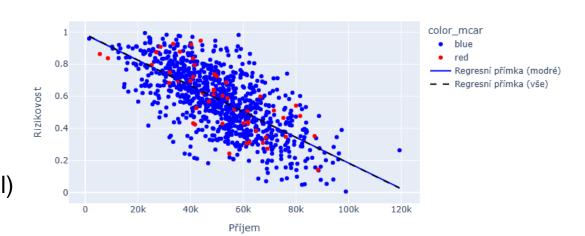
- Missing completely at random (MCAR)
 - During data migration from system A to system B, some data were randomly lost.
- Missing at random (MAR)

>

Missing not at random (MNAR)

7

- X = income
- Y = credit risk(loan approval)



- Missing completely at random (MCAR)
 - During data migration from system A to system B, some data were randomly lost.
- Missing at random (MAR)

, >

Missing not at random (MNAR)

7

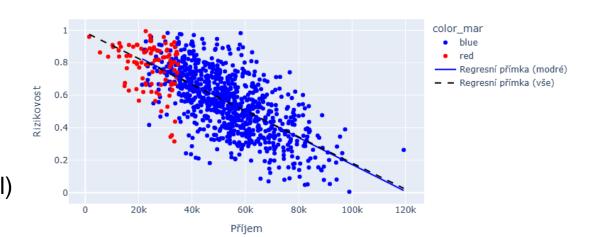
- X = income
- Y = credit risk

(loan approval)

- Missing completely at random (MCAR)
 - > During data migration from system A to system B, some data were randomly lost.
- Missing at random (MAR)
 - Clients with low income avoid filling it in, fearing loan rejection
 - > Self-employed clients often omit income as it's harder to document
- Missing not at random (MNAR)

X = income

Y = credit risk(loan approval)



- Missing completely at random (MCAR)
 - During data migration from system A to system B, some data were randomly lost.
- Missing at random (MAR)
 - Clients with low income avoid filling it in, fearing loan rejection
 - > Self-employed clients often omit income as it's harder to document
- Missing not at random (MNAR)

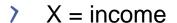
7

- X = income
- Y = credit risk(loan approval)

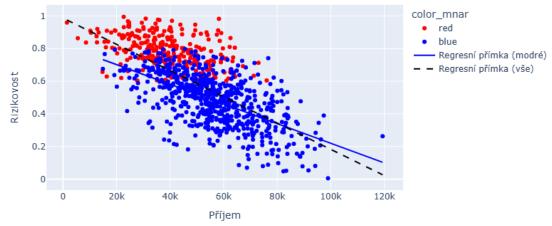
- Missing completely at random (MCAR)
 - During data migration from system A to system B, some data were randomly lost.
- Missing at random (MAR)
 - Clients with low income avoid filling it in, fearing loan rejection
 - > Self-employed clients often omit income as it's harder to document
- Missing not at random (MNAR)

For high-risk clients, income is missing because they didn't reach the part of the application

where income is entered



Y = credit risk(loan approval)



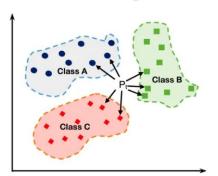
Dealing with missingness

PROFINIT >

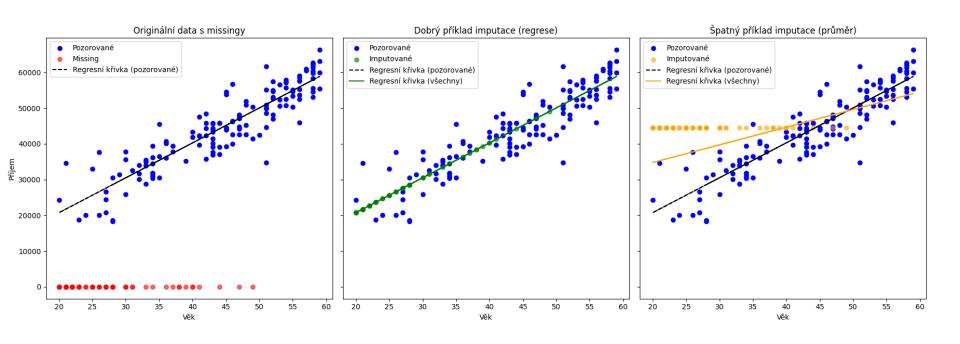
- > Delete coumns/rows
-) Ignore
- > Fill-in the holes
 - Reconstruct
 - Global constant (use as information)
 - Impute
 - Typical value mean, median, modus
 - Random (observed) value
 - Use submodel
 - K Nearest Neighbors
 - EM algoritmus

- > Consistently
- > Document the process

K Nearest Neighbors

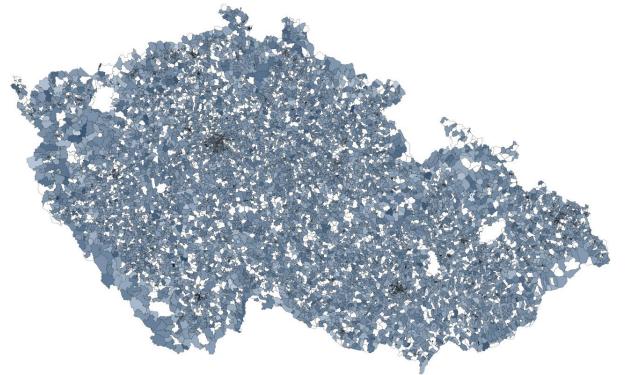


Imputation - Example



Geoscore

- > Electoral districts change slightly with each election
- Missing data are filled in using a submodel



Příklady

✓ PROFINIT >
An Amdocs Company

- > Reviews
- > Limnigraphs
- > Precipitation
- > Vehicule age
- Personal data (GDPR)

Noise

- Random error/variance added to measured variables
- Not necessary gaussian
- > Weakens target ~ feature relationship
- Domain knowledge sometimes necessary

Reduce the noise

- > Binning
 - Sort values and than cut into bins
- > Smoothing
 - Fit subomodel and use fitted values instead

Outliers

- Errors might introduce too influential observations
 - Very large/small/otherwise strange values
 - Might be a multidim. problem (e.g. short basketball player)

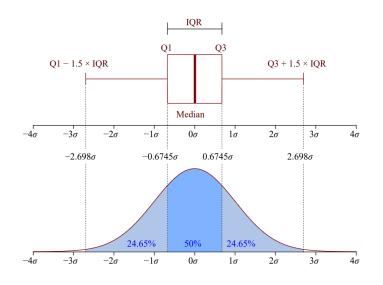
How to detect outliers

- Visually (boxplot, scatterplot)
- > Statistics

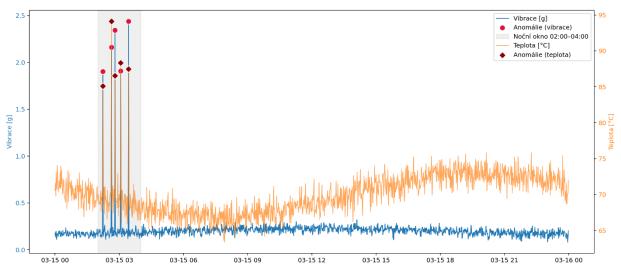
- Z-score
$$Z = \frac{X - \mathrm{E}[X]}{\sigma(X)}$$

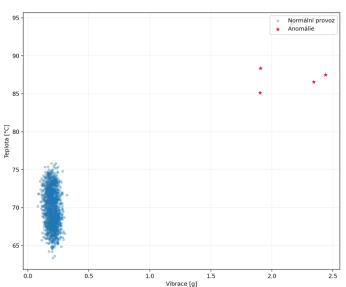
$$- x < Q1 - 1.5 * IQR and$$

 $x > Q3 + 1.5 * IQR$



Anomaly detection – IoT sensors

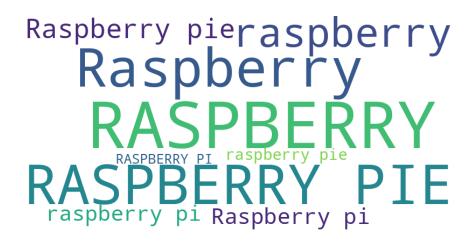




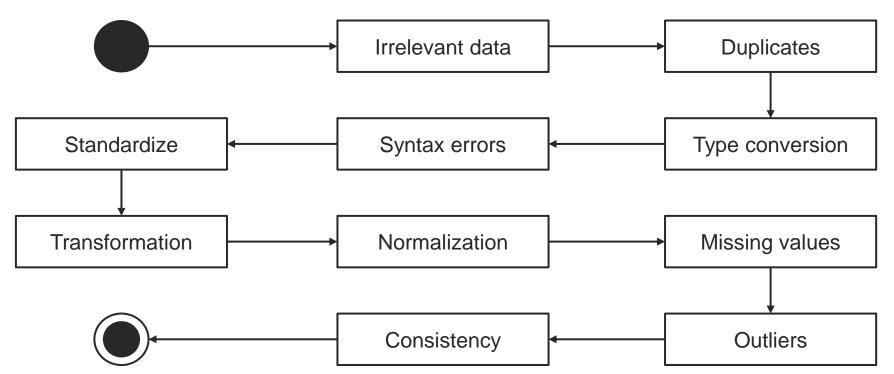
Inconsistent data

- Different data sources claim different things
- > Domain knowledge might be necessery

- Replace by N/A
- > Repair
 - Pick the ground truth dataset
 - String distances (Levenshtein)
- Clustering
- Ignore/ Remove



Data cleaning

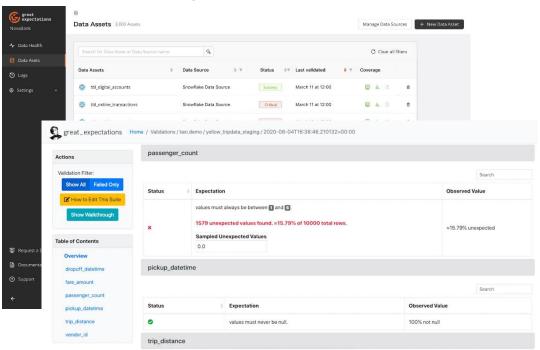


Data cleaning

Data quality

✓ PROFINIT >
An Amdocs Company

- Automatic check
 - before and/or after data cleaning



Data transformation

Data type issues

✓ PROFINIT > An Amdocs Company

String

- > Standardize casing
- Remove whitespaces, new lines
- Correcting typos
- > Standardize encoding
- Map to type / categorical variables
- > Remove stop words

Date and time

- Format
- > Time zones

Data transformation

	FROM Categorical	Numeric
TO Numeric	One-hot encoding Ordinal encoding Label encoding Target mean encoding Frequency encoding Scoring	Mathematic transformationslog, Box-CoxStandardization (z-score)
Categorical	Ordering Segmentation, clustering	BinningEqual widthEqual frequency (quantile)Entropy (decision tree)

One-Hot encoding

- Most common method
- > Binary Column is created for each Unique Category
- If a category is present, the corresponding column is set to 1, and all other columns are set to 0.
- One column can be omitted

City	
Praha	
Plzeň	
Písek	
Polička	

Praha	Plzeň	Písek	Polička	Binary encoding
1	0	0	0	1000
0	1	0	0	100
0	0	1	0	10
0	0	0	1	1

Binary encoding

the columns are treated as digits of binary number

Label and ordinal encoding

Label encoding

- ➤ Each unique category → unique integer
- Number may be misinterpreted by ML

Ordinal encoding

Special case when the categories can be naturally ordered

City
Praha
Plzeň
Písek
Polička

City	Value
Praha	1
Plzeň	2
Písek	3
Polička	4

City	Value
Praha	1
Plzeň	2
Polička	4
Praha	1

Label and ordinal encoding

Label encoding

- ➤ Each unique category → unique integer
- Number may be misinterpreted by ML

Ordinal encoding

Special case when the categories can be naturally ordered

Size
S
M
L
XL

Size	Value
М	2
XL	4
S	1
S	1

Count and target encoding

Count encoding

Category is encoded by its count (frequency)

Target encoding

Category is encoded by its target mean

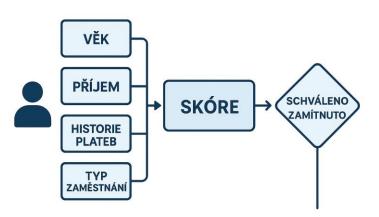
Size	Target
S	1
XL	1
S	1
S	0
M	0
L	1
L	0

Size	count	Target mean
S	3	2/3
M	1	0
L	2	1/2
XL	1	1

Size	Count enc.	Target enc.
S	3	2/3
XL	1	1
S	3	2/3
S	3	2/3
M	1	0
L	2	1/2
L	2	1/2

Scoring

- > Simplifies complex data
- feature vector → single value
- Result of a submodel or dimensionality reduction
- Give possibility of automation
- > Examples
 - Scorecards in risk departments
 - Socio-demographic score
 - Behavioral score
 - Transactional score
 - Credit score



Equal width an depth binning

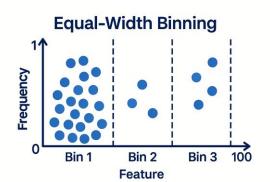
Dividing the range into N intervals

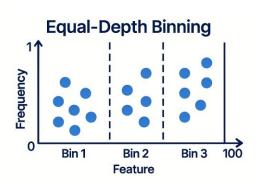
Equal width binning

- > Uniform grid
- > Pros
 - Simple
 - Explainable
- Cons
 - Sensitive to outliers

Equal depth binning

- Same number of samples
- > Pros
 - Suitable for skewed distributions
 - Better model stability





Entropy Binning

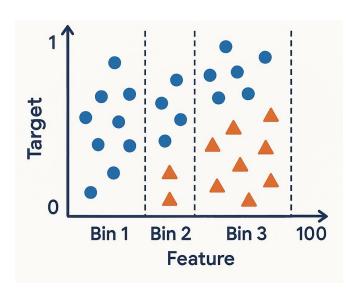
- > Based on Information Gain from decision tree algorithms.
- Measures how well a split separates the target classes.
- Chooses bin edges that maximize reduction in entropy

Use

- Captures non-linear relationships between feature and target.
- Produces bins that are informative for classification.
- Often used in credit scoring, churn prediction, and risk modeling.

How It Works

- 1. Sort feature values.
- Evaluate all possible split points.
- 3. Calculate entropy before and after each split.
- 4. Select split with **highest information gain**.
- 5. Repeat recursively until stopping criteria.



Mathematic transformations

- > Unit conversion
- > °F→°C,mpg → liters/100 km,€→CZK
- > Scale standardization
- Change of distribution shape (normalization)
- > Q-Q plot, skewness, kurtosis

Z-score

$$Z = rac{X - \mathrm{E}[X]}{\sigma(X)}$$

Box-Cox transformation

$$y_i^{(\lambda)} = egin{cases} rac{y_i^{\lambda}-1}{\lambda} & ext{if } \lambda
eq 0, \ \ln y_i & ext{if } \lambda = 0, \end{cases}$$

Long format

- Each observation is a row
- Useful for seaborn, plotnine, plotly

> To wide format

Vývoj prodejů a nákladů v čase

Datum

--- Prodeje

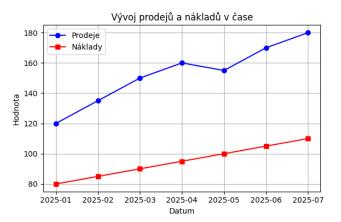
long_df.pivot(index='Datum',
columns='Kategorie',
values='Hodnota')

Datum	Kategorie	Hodnota
2025-01	Prodeje	120
2025-02	Prodeje	135
2025-03	Prodeje	150
2025-04	Prodeje	160
2025-05	Prodeje	155
2025-06	Prodeje	170
2025-07	Prodeje	180
2025-01	Náklady	80
2025-02	Náklady	85
2025-03	Náklady	90
2025-04	Náklady	95
2025-05	Náklady	100
2025-06	Náklady	105
2025-07	Náklady	110

Wide format

- Each variable forms a separate column
- Example: time series data, pivot tables
- Useful for mathplotlib

```
plt.plot(df wide['Datum'], df wide['Sales'],
        label='Sales', color='blue')
plt.plot(df wide['Datum'], df wide['Náklady'],
        label='Náklady', color='red')
```



```
Datum
          Náklady
                     Prodeje
2025-01
          80
                     120
2025-02
          85
                     135
2025-03
          90
                     150
2025-04
          95
                     160
2025-05
          100
                     155
2025-06
          105
                     170
2025-07
          110
                     180
```

```
To long format
pd.melt(df wide,
        id vars=['Datum'],
        value vars=['Sales', 'Náklady'],
        var name='Kategorie',
        value name='Hodnota')
```

Feature engineering

Feature engineering

= Using domain knowledge to extract the most relevant information in a raw data into variables to be used in an ML model.

Creation

Combining variables to get new ones

Transformations

- To be able to use desired ML tool (e.g. numeric input only)
- To improve model performance (therefore, depends on the ML in use)

> Extraction

text mining, clustering

> Selection

Judge which features worth to keep in model

Atomic data

- > Logs (events, sessions)
- > Products of client
- Relations (of people, events)

Statistical unit

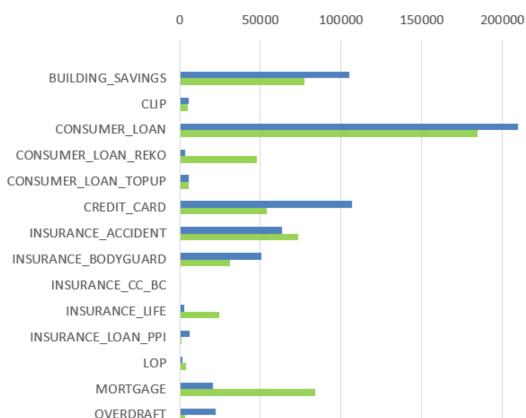
- Type of behavior
- Client
- > Clusters

✓ PROFINIT > An Amdocs Company

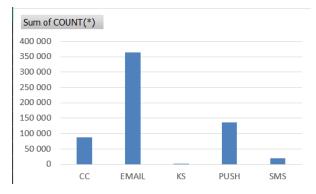
Transformations

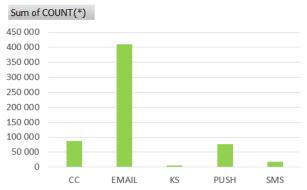
- Aggregations (min, max, count, avg, median)
- Detection of interesting points
- Clustering, dimension reduction

Campaign optimization



- channel costs (channel)





Campaign optimization

Campaigns

Campaign_id

Product_id

Customer_id

Channel_id

datetime

Campaigns

- One client was contacted multiple times
- One client was contacted via multiple channels
- One client was contacted about multiple products

Sales

Product_id

Customer_id

datetime

Sales

- One client bought multiple products
- How far from the outreach did the outreach have an effect?
- What if the client purchased a different product than the one targeted by the campaign

Channel

Campaigns

Campaign_id

Product_id

Customer_id

Channel_id

datetime

Sales

Product_id

Customer_id

datetime

Expected revenue (client, product, channel) = propensity to buy (client, product) * product revenue (client, product) * channel efficiency (product, channel)

- channel costs (channel)

Promissing features

- Last_channel_before_sell
- Last_channel_product_before_sell
- Channel_sale_contribution_per_product
- Channel_sale_contribution_per_customer

Data leakage

Data leak

- Train data are not consistent with prediction data
 - Something is unvailable
 - Something is added later
 - Something is removed
 - The policy has changed
 - Even information quality matters

- Validation data have to be shifted in time
 - Customer behavior after application, post-approval transactions
 - Loan status or outcome fields, derived features from future data
 - Internal notes or manual overrides
 - Credit bureau updates after application

- Missing completely at random (MCAR)
 - During data migration from system A to system B, some data were randomly lost.
- Missing at random (MAR)
 - Clients with low income avoid filling it in, fearing loan rejection
 - > Self-employed clients often omit income as it's harder to document
- Missing not at random (MNAR)

For high-risk clients, income is missing because they didn't reach the part of the application

where income is entered

Use of information about missing is data leak!

- X = income
- Y = credit risk (loan approval)

