

Statistic traps and paradoxes

Limits of statistical methods

Petr Hála, Jan Hučín 29.10.2025

Outline

- 1. Simpson paradox
- 2. Survival bias
- 3. Publication bias
- 4. Benford law
- 5. Where did your data come from?
- 6. Beware the average
- 7. When normality fails
- 8. Log-Log scale
- Pitfalls of measures and models
- 10. Justice system doesn't understand conditional probability

Simpson paradox

UC Berkeley gender bias

- admission figures for the fall of 1973
 - Total

	All		Men		Women	
	Applicants	Admitted	Applicants	Admitted	Applicants	Admitted
Total	12,763	41%	8,442	44%	4,321	35%

UC Berkeley gender bias

- admission figures for the fall of 1973
 - Total

		All		Men		Women	
		Applicants	Admitted	Applicants	Admitted	Applicants	Admitted
1	Total	12,763	41%	8,442	44%	4,321	35%

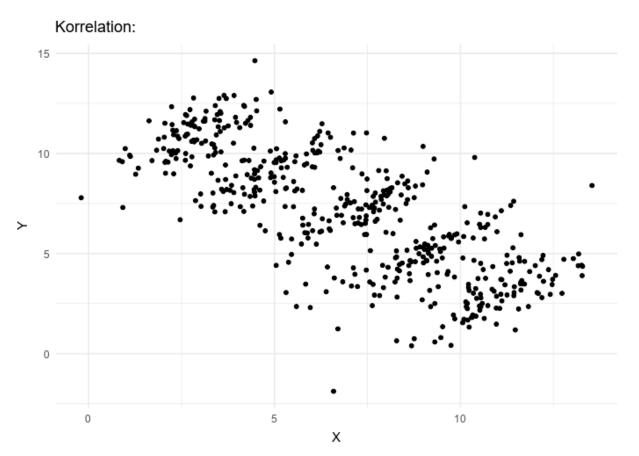
TOP 6 Departments

Donartment	All		Men		Women	
Department	Applicants	Admitted	Applicants	Admitted	Applicants	Admitted
Α	933	64%	825	62%	108	82%
В	585	63%	560	63%	25	68%
С	918	35%	325	37%	593	34%
D	792	34%	417	33%	375	35%
E	584	25%	191	28%	393	24%
F	714	6%	373	6%	341	7%
Total	4526	39%	2691	45%	1835	30%

Kidney stone treatment

- Compare 2 treatments
 - Treatment A
 - Expensive
 - Invasive
 - 78% success rate
 - Treatment B
 - Cheaper
 - Less invasive
 - 83% success rate

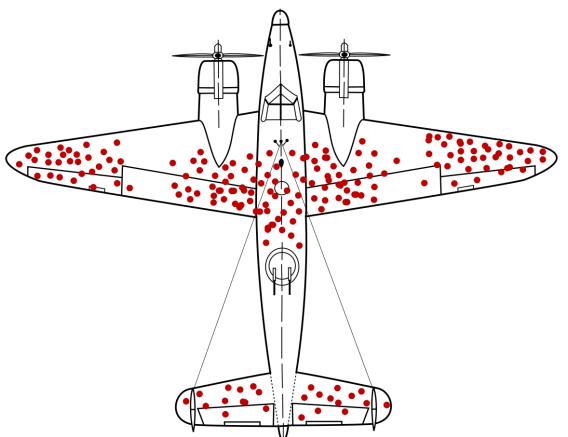
Kidney stone treatment


- Compare 2 treatments
 - Treatment A
 - Expensive
 - Invasive
 - 78% success rate
 - Treatment B
 - Cheaper
 - Less invasive
 - 83% success rate

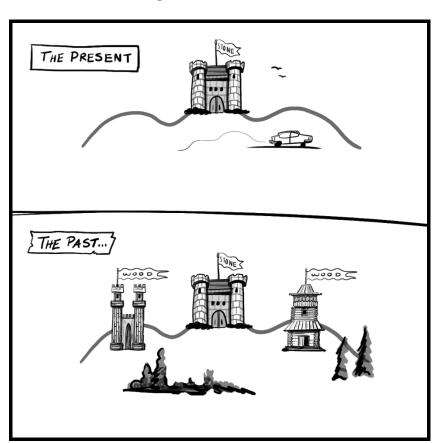
Treatment Stone size	Treatment A	Treatment B	
Small stones	Group 1 93% (81/87)	Group 2 87% (234/270)	
Large stones	Group 3 73% (192/263)	Group 4 69% (55/80)	
Both	78% (273/350)	83% (289/350)	

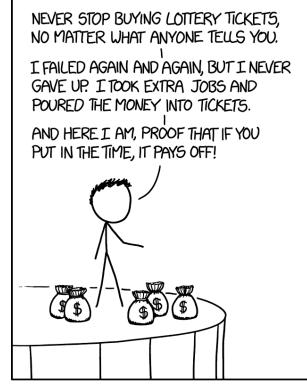
Confounder – seriousness of the condition

llustrace



Survival bias


WW2 airplane damage



Other examples

Specialized experts

✓ PROFINIT > An Amdocs Company

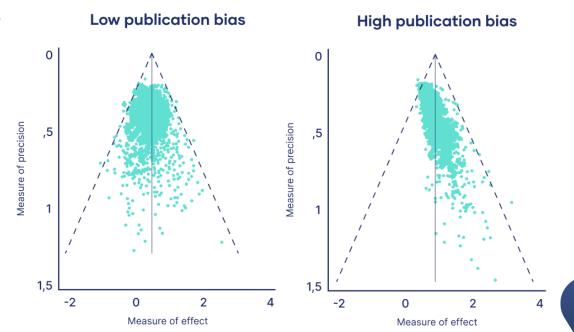
- > Experts
 - tend to come in when things go WRONG
 - get paid to DO SOMETHING

Specialized experts

Even well-respected experts may have their opinion preset by the nature of their position

Publication bias

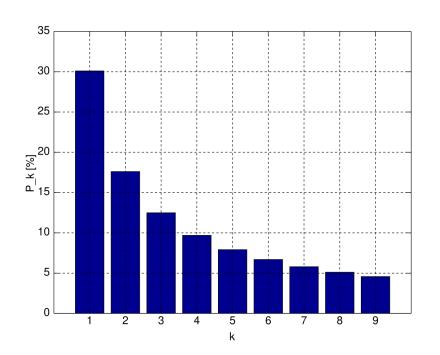
Publication bias

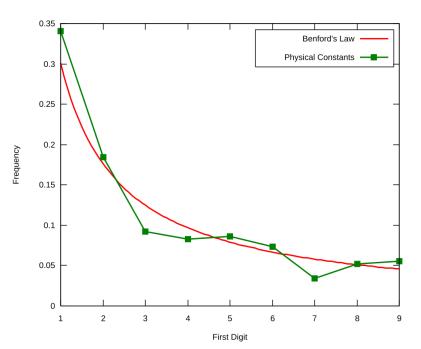


- Which scientific results are published is dependent on the result itself
 - Statistical significance
 - "Unfavourable" outcome

Publication bias

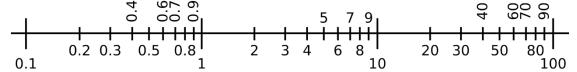
- Which scientific results are published is dependent on the result itself
 - Statistical significance
 - "Unfavourable" outcome

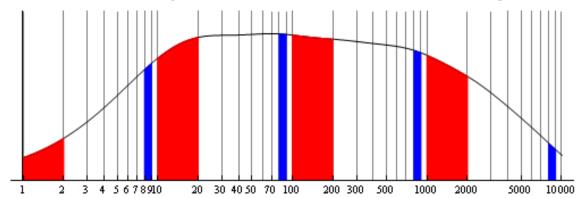



Benford law

Benford law

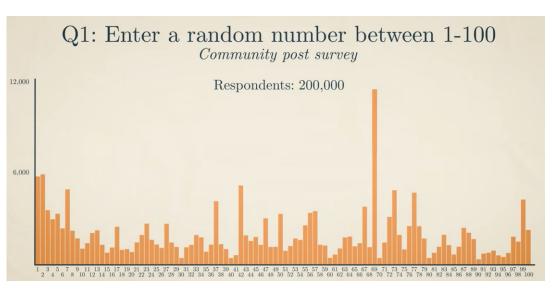
- law of anomalous numbers, or the first-digit law,
 - in many real-life sets of numerical data, the leading digit is likely to be small.




Benford law

- The 1st digit distribution is invariant to the units of measurement
 - Physical constants, Length of world rivers, Area of countries, ...
- Theoreticaly data uniformly distributed on a logarithmic scale

Practically - data spanning over several orders of magnitude

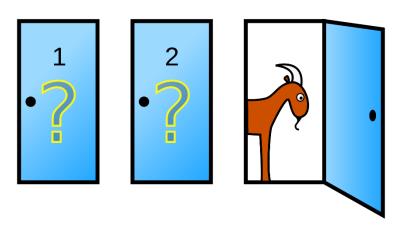


Fraud detection

An Amdocs Company

- People's brains are bad at generating randomness
- People think linearly

- > Financial data
- **>** Elections
 - If enough variation in electoral district sizes

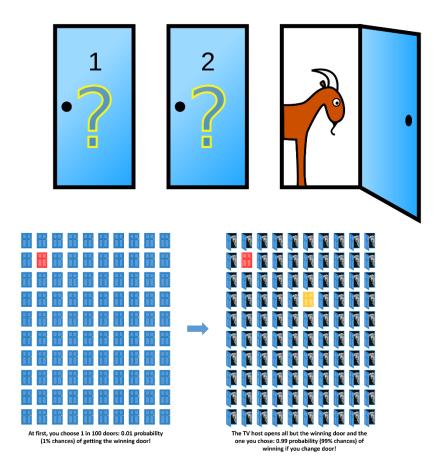


Where did your data come from?

Monty Hall problem

✓ PROFINIT >
An Amdocs Company

- American TV game show
- 3 doors
 - 1 car
 - 2 goats
- Once you choose, the host opens one of the other door – with a goat.
- > Should you change your pick?



Monty Hall problem

✓ PROFINIT >
An Amdocs Company

- American TV game show
- 3 doors
 - 1 car
 - 2 goats
- Once you choose, the host opens one of the other door – with a goat.
- > Should you change your pick?

) Imagine 100 doors

Jackie's improbable sister

- Jackie is a girl in a family with two children.
- What is the probability that Jackie has a sister?

Jackie's improbable sister

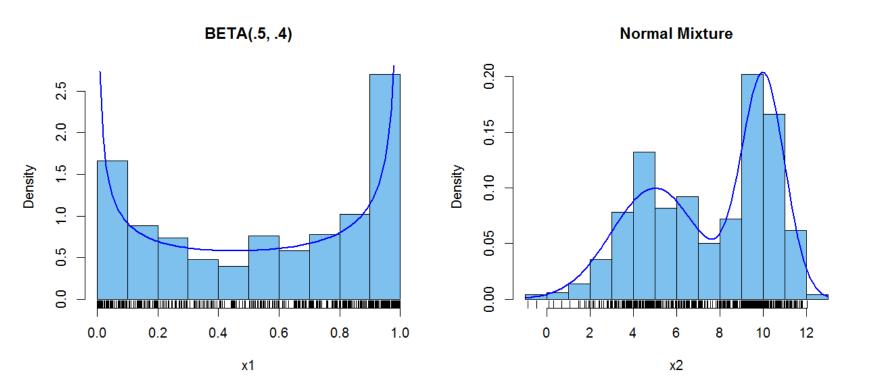
- Jackie is a girl in a family with two children.
- What is the probability that Jackie has a sister?
- > How we found Jackie?

Option A: 1/2

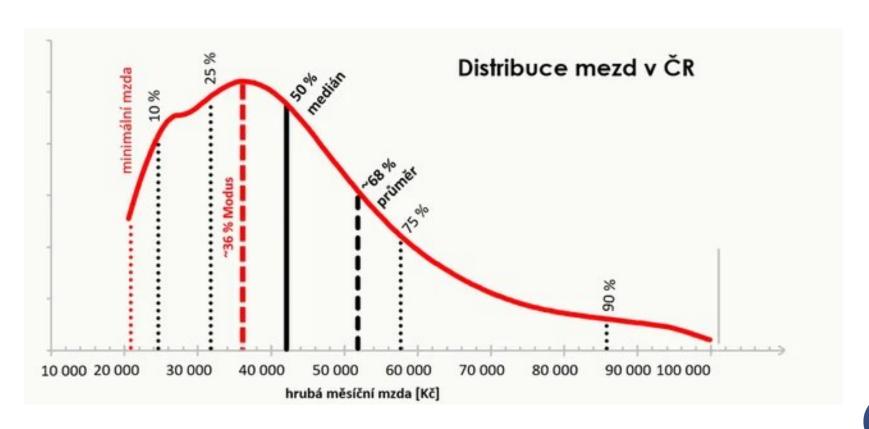
- 1) Pick a two child family at random.
- 2) Pick a child from the family at random.

Option B: 1/3

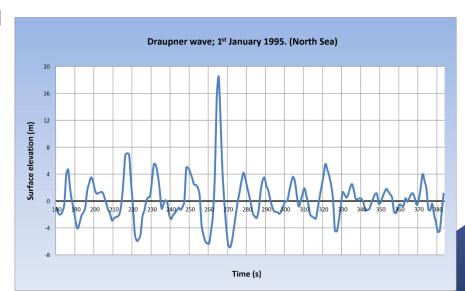
- 1) Pick a two child family with at least one girl at random.
- 2) Report one girl's name for each family.



Beware the average


Beware the average

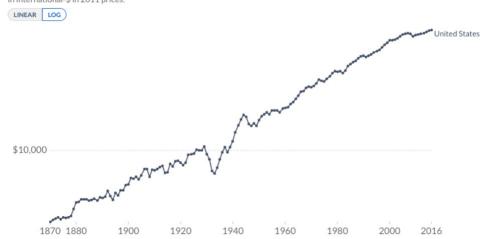
Beware the average


- Black Monday (Oct 19, 1987)
 - Dow Jones dropped 22.6% in single day
 - 25 sigma event (5 sigma daily event happens once in 10 000 years)

- Black Monday (Oct 19, 1987)
 - Dow Jones dropped 22.6% in single day
 - 25 sigma event (5 sigma daily event happens once in 10 000 years)
- 2008 global financial crisis
 - Mortgage defaults highly correlated

- Black Monday (Oct 19, 1987)
 - Dow Jones dropped 22.6% in single day
 - 25 sigma event (5 sigma daily event happens once in 10 000 years)
- > 2008 global financial crisis
 - Mortgage defaults highly correlated
- > Rogue waves
 - Gaussian model:
 - ≈ 12 m waves => max. 15 m waves
 - Draupner wave (1995)
 - ≈ 12 m waves => 25.6 m
 - Waves add up together
 - Schrödinger equation may apply

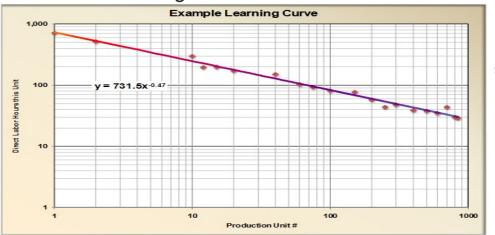
Log-Log scale


Multiplicative nature

✓ PROFINIT >
An Amdocs Company

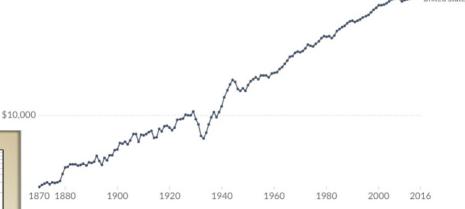
- Many natural processes are multiplicative, not additive
 - whole economy...

GDP per capita, 1870 to 2016


GDP per capita adjusted for price changes over time (inflation) and price differences between countries – it is measured in international-\$ in 2011 prices.

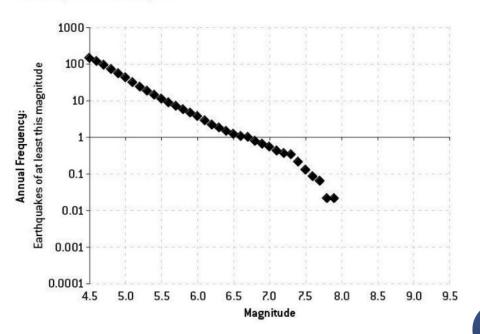
Multiplicative nature

✓ PROFINIT >
An Amdocs Company


- Many natural processes are multiplicative, not additive
 - whole economy...
- Sometimes, the other axis is also not linear
 - Learning curve...

GDP per capita, 1870 to 2016

GDP per capita adjusted for price changes over time (inflation) and price differences between countries – it is measured in international-\$ in 2011 prices.


Earthquakes & Fukushima

- Archeological evidence of ≈ 40 m tsunamis disregarded
- Reactor build to withstand 8.6

Earthquake in 2011 was 9.1

FIGURE 5-7A: TOHOKU, JAPAN EARTHQUAKE FREQUENCIES JANUARY 1, 1964–MARCH 10, 2011

NATO terrorism

FIGURE 13-4: TERROR ATTACK FREQUENCY BY DEATH TOLL IN NATO COUNTRIES, 1979–2009 (LINEAR SCALE)

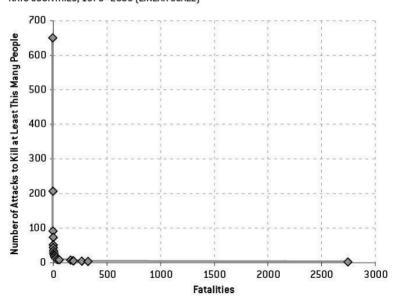
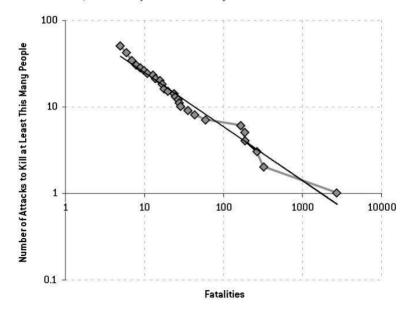
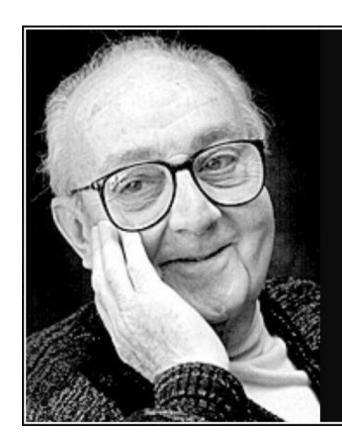



FIGURE 13-5: TERROR ATTACK FREQUENCY BY DEATH TOLL, NATO COUNTRIES, 1979–2009 (LOGARITHMIC SCALE)

NATO terrorism

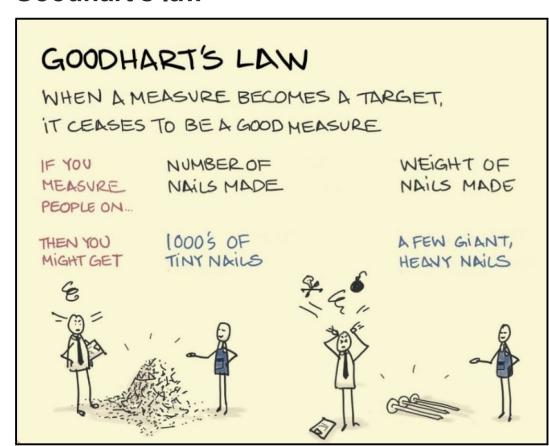


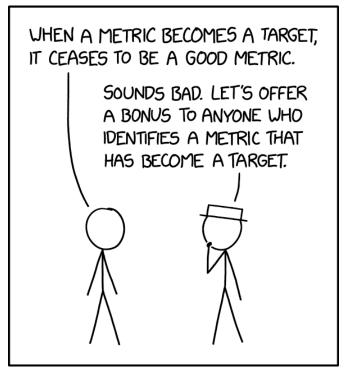
- What's the biggest threat?
- Nuclear attack, killing ≈ 1 000 000 people
 - ≈ 1 : 1 500 years
 - ≈ 667 deaths / year
- Airplane attack, killing ≈ 3 000 people
 - ≈ 1 : 30 years
 - ≈ 100 deaths / year
- Where should the security efforts aim?

Pitfalls of measures and models

All models are approximations.
Essentially, all models are wrong, but some are useful. However, the approximate nature of the model must always be borne in mind.

— George E. P. Box —


Goodhart's law



GOODHART'S LAW WHEN A MEASURE BECOMES A TARGET. IT CEASES TO BE A GOOD MEASURE WEIGHT OF IF YOU NUMBER OF NAILS MADE MEASURE NAILS MADE PEOPLE ON ... THEN YOU 1000'S OF A FEW GIANT, MIGHT GET TINY NAILS HEANY NAILS

Goodhart's law

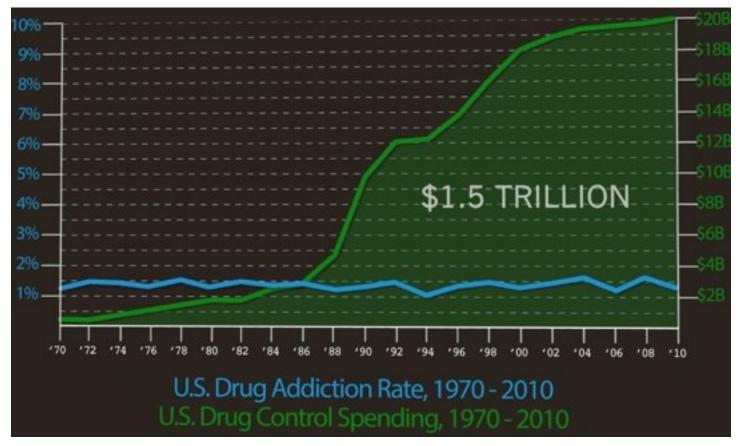
Lucas critique

- Traditional forecasting or modeling often assumes that the relationships observed in the past will hold in the future
- > But when a major change occurs (e.g., a new rule, technology, incentive, or policy), people adjust their behavior
- Those adjustments can undermine or completely alter the original relationships on which the predictions were based

Lucas critique - examples

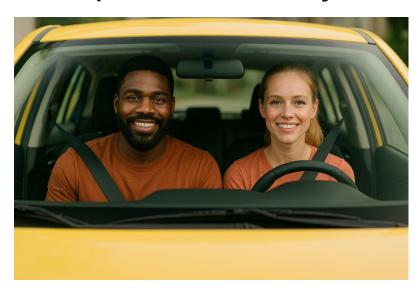
- > Phillips curve
 - Expectations are the driving factor
 - Lower unemployment <=> unexpectedly high inflation

Lucas critique - examples



- > Phillips curve
 - Expectations are the driving factor
 - Lower unemployment <=> unexpectedly high inflation
- > Ban guns => people will use other weapons
- Add security checks => terrorists attack the que before the checkpoint
- New highway => shorter travel times => more cars...

War on drugs



Justice system doesn't understand conditional probability

1968 American robbery trial in California noted for its misuse of probability and as an example of the prosecutor's fallacy

Black man with beard	1 in 10
Man with mustache	1 in 4
White woman with pony tail	1 in 10
White woman with blond hair	1 in 3
Yellow motor car	1 in 10
Interracial couple in car	1 in 1,000

- Ignoring dependencies between the characteristics
- $P(A|B) \neq P(B|A)$

- Ignoring dependencies between the characteristics
- $P(A|B) \neq P(B|A)$
- > P(4 legs | dog) ≠ P(dog | 4 legs)

- Ignoring dependencies between the characteristics
- $P(A|B) \neq P(B|A)$
- > P(4 legs | dog) ≠ P(dog | 4 legs)
- > P(evidence | innocent) ≠ P(innocent | evidence)

$$P(I|E) = \frac{P(E|I) * P(I)}{P(E|I) * P(I) + P(E|G) * P(G)}$$

Sally Clark

- Her 2 sons suffered SIDS in 1996 and 1998
- Probability of SIDS said to be 1:8 543

> Prosecution claimed 1: 73 000 000 chance

- Convicted of double murder and sentenced to life imprisonment in 1999
- At least one of the sons actually died of Staphylococcus infection
- Released in 2003
- > Botched, nonsensical statistics never addressed
- Never mentally recovered, died in 2007

Discussion

Thank You for Your attention

Profinit EU, s.r.o. Tychonova 2, 160 00 Praha 6

Tel.: + 420 224 316 016, web: www.profinit.eu

