PROFINIT

Tools for EDA & visualisation

Jan Hučín

2022

Outline

PROFINIT

- 1. EDA reminder
- 2. Why we make graphs & examples
- 3. How to imperative vs. declarative plotting
- 4. How to grammar of graphics principle
- 5. How to Python tools

EDA = exploratory data analysis

The path to understanding the reality behind data.

- data understanding
- statistical inference

Use of:

- data source
- statistical tools
- visualisation tools
- reporting

HR Information	Contact						
Position	÷	Salary	÷	Office	φ	Extn.	÷
Accountant		\$162,700		Tokyo		5407	
Chief Executive Officer (CEO)		\$1,200,000		London		5797	
Junior Technical Author		\$86,000		San Francisco		1562	
Software Engineer		\$132,000		London		2558	
Software Engineer		\$206,850		San Francisco		1314	
Integration Specialist		\$372,000		New York		4804	
Software Engineer		\$163,500		London		6222	
Pre-Sales Support		\$106,450		New York		8330	
Sales Assistant		\$145,600		New York		3990	
Senior Javascript Developer		\$433,060		Edinburgh		6224	

Typical use of EDA

Goal:

 exploration of dataset XY (regarding problems P1, P2)

Data:

- dataset XY, obtained from source Z,
- limited to cases ABC, from 2020 to 2021

. . .

Summary:

- regarding P1, there is no useful data in dataset XY because of reasons 1,2,3
- regarding P2, it is related to variables K,
 L, M; their distributions and
 relationships are described in the report

Part of **Data Understanding** (see CRISP)

- Key dataset properties
- Tables structure and values
- Data origin and quality
- Descriptive statistics
- > Data visualisation

Purpose – technical and impressing

Perception of the (good) image – much faster than of the table.

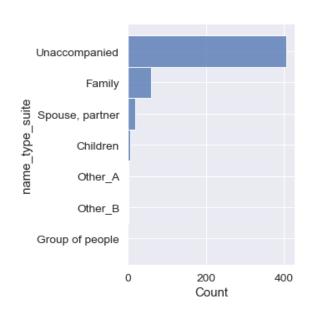
- > to show observed **distributions** of individual variables
- > to show observed **relationships** between multiple variables
- > to build (or support) a **story**

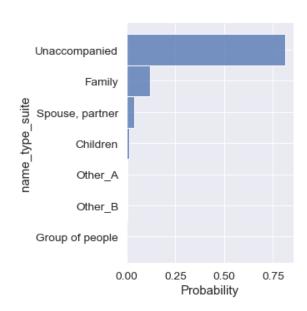
PROFINIT

Categorial variable distribution

Frequency table

- absolute
- relative
- cumulative (for ordered)

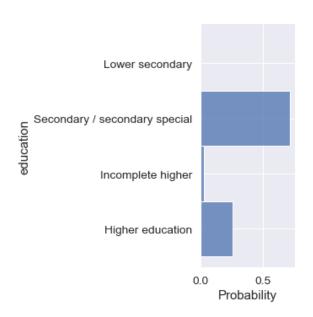

name_type_suite	count	count_rel
Children	7	0.014028
Family	60	0.120240
Group of people	1	0.002004
Other_A	3	0.006012
Other_B	2	0.004008
Spouse, partner	20	0.040080
Unaccompanied	406	0.813627

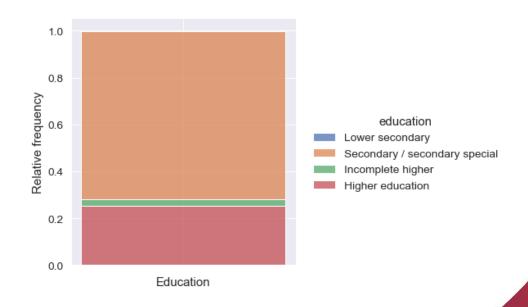

education	count	count_cum	count_rel	count_relcum
Lower secondary	1	1	0.002	0.002
Secondary / secondary special	358	359	0.716	0.718
Incomplete higher	14	373	0.028	0.746
Higher education	127	500	0.254	1.000

Categorial variable distribution

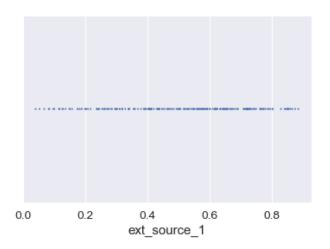
PROFINIT

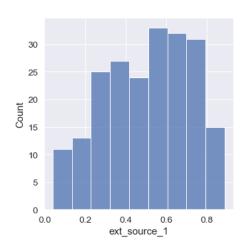
Frequency graphs

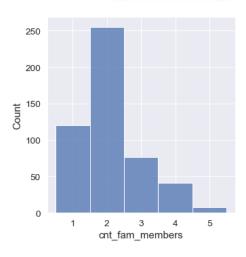




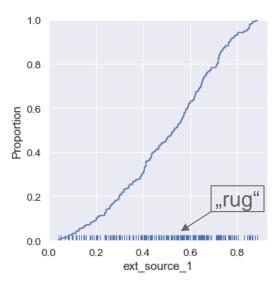
Categorial variable distribution


PROFINIT

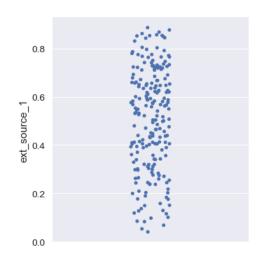

Frequency graphs stacked (ordinal variables)

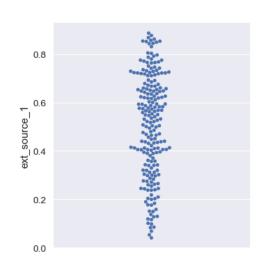


- A little of unique values → treat as categorial
- A lot of unique values:
 - full information: ECDF, rug/strip
 - balanced: histogram, density estimation
 - compressed: boxplot, numerical statistics

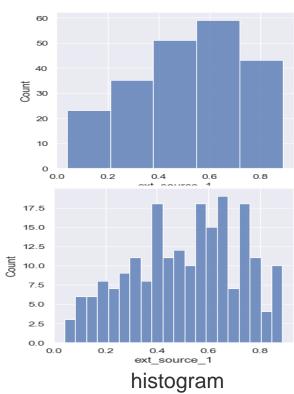


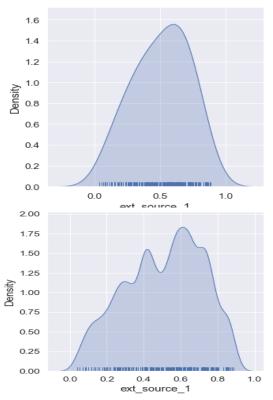
PROFINIT




full information:

ECDF: empirical cumulative distribution function $F(z) = prop. \ cases \ (X < z)$


stripplot

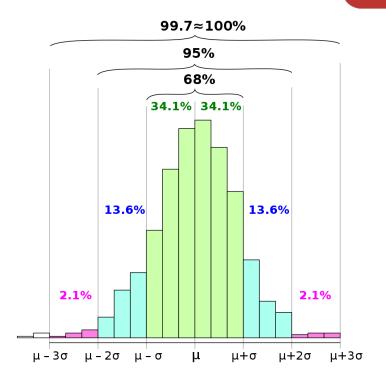


swarmplot

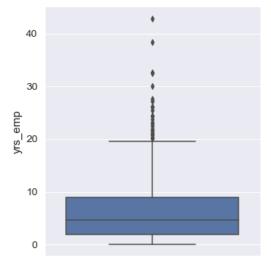
PROFINIT

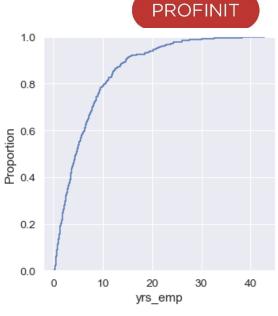
balanced:

KDE (kernel density est.)


compressed: (essential info in few numbers)

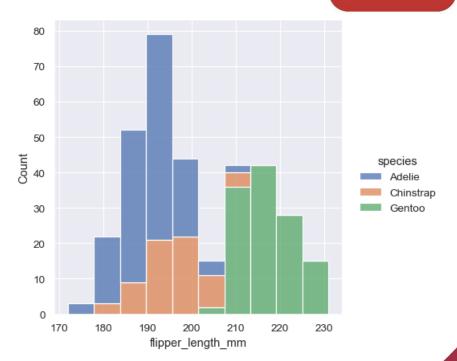
- What range are values in? → min, max
- Which value is the "center"? → (trimmed) mean/average, median, mode
- What is the dispersion of values? → standard deviation, interquartile range
- > What other values or thresholds are important? → quantiles, second mode
- > What is the shape of distribution? → approximating by a standard distribution


Gaussian-like distributions


- quasi-symmetric, unimodal
- mean ~ median ~ mode
- standard deviation (SD, sigma, σ) is meaningful
- 1σ, 2σ, 3σ rules applies

skewed distributions

- non-symmetric, unimodal
- mean ≠ median, mean ≠ mode
- SD hardly interpretable
- needs robust statistics: quantiles (median, quartiles, deciles)
- boxplot, ECDF


boxplot median, quartiles, "outliers"

ECDF

PROFINIT

weird distributions

- > mix of multiple distributions
- when split by another variable, seems reasonable
- → relationships between (among) variables

Relationships between variables

- 1. categorial vs. categorial
- 2. categorial vs. numeric
- 3. numeric vs. numeric

Multiple relationships: basic pair + split by other (categorial) variables

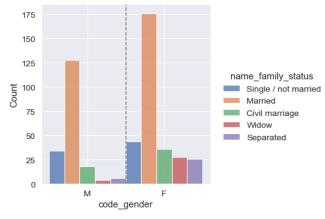
Categorial vs. categorial

PROFINIT

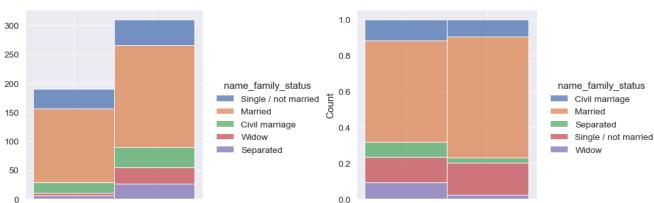
contingency table

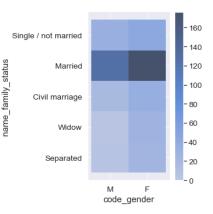
- absolute
- relative by rows / columns
- relative completely

Family_status	female	male
Civil marriage	36	18
Married	176	128
Separated	26	6
Single / not married	44	34
Widow	28	4


Family_status	female	male
Civil marriage	0.116	0.095
Married	0.568	0.673
Separated	0.084	0.032
Single / not married	0.142	0.179
Widow	0.090	0.021

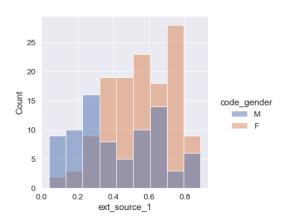
Categorial vs. categorial graphs

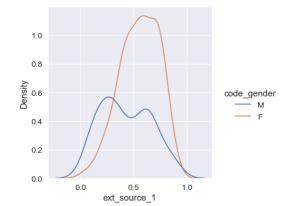

PROFINIT

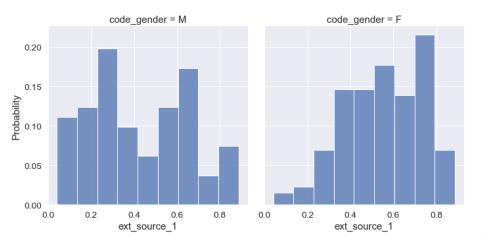

- barplot
- discrete heatmap

code_gender

code_gender

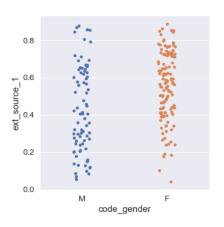


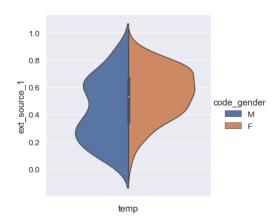



Numeric vs. categorial graphs

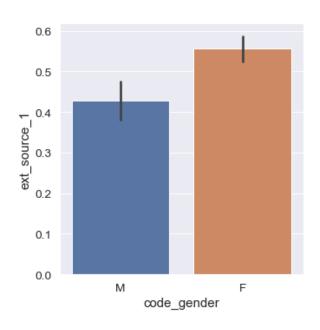
PROFINIT

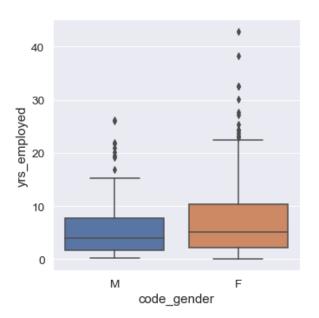
- split by categories
- look at numeric distribution by category



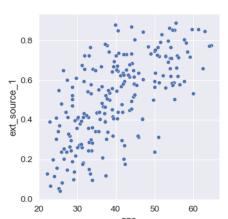


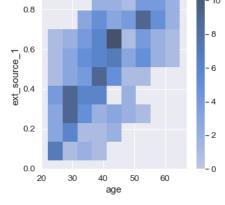
Numeric vs. categorial graphs

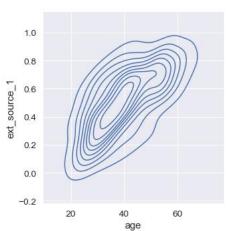


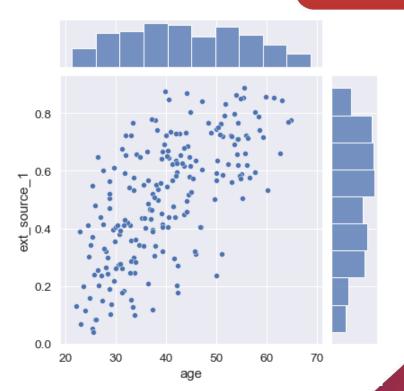


violinplot

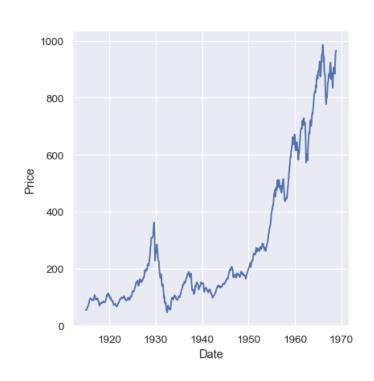

Numeric vs. categorial graphs

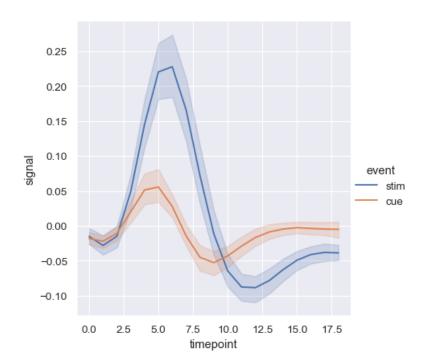



Numeric vs. numeric graphs



- contourplot
- heatmap

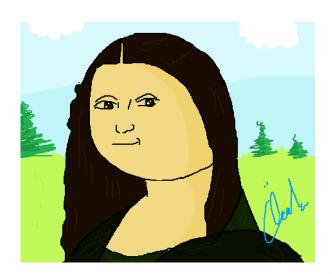

PROFINIT



Numeric vs. numeric graphs

PROFINIT

lineplot


Imperative and declarative plotting

PROFINIT

Imperative plotting

Detailed instructions step by step.

- > Draw a yellow circle in the middle.
- Draw two small black circles side by side.
- (etc.)
- + full control, get whatever you want
- tedious, Leonardos are rare

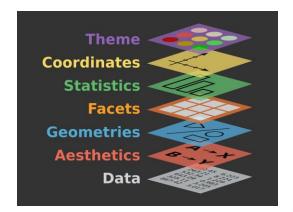
Imperative and declarative plotting

PROFINIT

Declarative plotting

Asking a friend/artist to draw a picture according to your needs.

 Draw young lady with dark hair sitting alone and having a mysterious smile on her face.


- + nicely looking results
- lower level of control, need to know how to express your needs

Grammar of graphics

PROFINIT

Seven components

- 1. Theme = Adds all non-data ink
- 2. Coordinates = How do we position the visual?
- 3. Statistics = How we preprocess the data?
- 4. Facets = Do we split the visual into subplots?
- 5. Geometric objects = What marks are we using?
- 6. Aesthetics = How do we show it?
- 7. Data = What do we want to show?

Plotting in Python

PROFINIT

matplotlib

- standard package
- "sweat and toil"

seaborn

- package for high-level plotting
- more intuitive
- enables low-level finetuning by matplotlib

plotnine

grammar of graphics

profiplots

- ?

