Limits of statistical method

Petr Paščenko
6. 1. 2022

Motivation: Limits of konwledge

It is good to know the limits...

, Second law of thermodynamics

- Heat does not spontaneously flow from a colder body to a hotter.
> Gödel's incompleteness
- No all truths are provable. Turing's halting problem

HEY, GÖDEL - WE'RE COMPIUNG
A COMPREHENSIVE LIST OF FETISHES. WHAT TURNS YOU ON?

) Heisenberg uncertainty principle

- the position and the velocity of an object cannot both be measured exactly, at the same time, even in theory
, Many others
- speed of light

Osnova

1. Mandelbrot 7 states of randomness and why it matters
2. Central limit theorem assumtions
3. Correlation and causation
4. Statistical paradoxes

Mandelbrot seven states of randomness and why it matters (a lot)

10 most important days

Imagine, you delete 10 most important days from your life...

10 most important days

Imagine, you delete 10 most important days from the stock market.
, out of 20 years

- i.e. 4000 busines days
- i.e $<0.25 \%$

Benoit Mandelbrot and Nassim Taleb

Pareto law and other empirical observations

, Pareto principle (1890 - economy)

- 80% of Italy's land was owned by 20% of the population
, Zipf's law (1935 - mathematical linguistics)
- the frequency of any word is inversely proportional to its rank in the frequency table

, Jackson's law: size of human settlements

Taleb: fable of two worlds

Mediocristan

Extremistan

, Take 1000 random people on a stadium, sort them all by weight
wealth
Calculate average value in each group 75 kg
\$ 120k
) Add a single most heavy / wealthy person on the planet

$$
200 \text { kg }
$$

\$ 131T
How does the average changed?
$75,1 \mathrm{~kg}$
\$ 131G

The source proces on the background

Mediocristan

) Evolutionary search for optimum

- size, weight, height, etc.
- natural panalization of extrems
- negative feedback loop
, Aggregation
- Central limit theorem
- covergence to Normal distribution

Extremistan

, Winner takes all

- join the winner
- positive feedback loop
- popularity, capital, gravity,...
, Matthew effect
- 'For unto every one that have shall be given, and he shall have abundance; but him that have not shall be taken, even that which he have.' Matthew 25:29

Key properties

Mediocristan	Extremistan
Does not scale (dentist)	Does scale (google)
Physical limits	No limits
Physical measures (height)	Power law (Pareto) randomness
Gaussian randomness	No typical, no average
Typical is close to average	Winner takes (almost) all
Winner takes a small piece	Common in current era
Common in history	Black swan vulnerable
Black swan robust	Extremes is what matters
Extremes can be neglected	Tricky to comprehend
Easy to comprehend	Imposible to predict
Easy to predict	Phase changes, discontinuities
Slow gradual changes, continuity	

Mandelbrot: Seven states of randomness Key concepts

, even portioning vs. concentration portioning

- Having N random addends from a distribution, are they of the same order of magnitude?
- In other words, is maximum major portion of the sum?
, scale factor of order q

$$
\alpha_{q}=E\left|(X)^{q}\right|
$$

- root of degree q of a q-th moment
- finite or infinite moment

Mandelbrot: Seven states of randomness

, Mild randomness (long term even portioning, all moments finite)

1. Proper mild randomness (normal distribution)

- Even portioning for $\mathrm{N}=2$.

2. Borderline mild randomness (exponential)

- Short term concentrated portioning, long term even portioning
, Slow randomness (long term concentrated portioning, all moments finite)

3. Slow randomness with finite delocalized moments
4. Slow randomness with finite and localized moments (lognormal)

) Wild randomness

5. Pre-wild randomness (pareto $\alpha>2$)

- infinite moments for $q>2$

$\operatorname{Pr}(X=x)$

6. Wild randomness (pareto $\alpha \leq 2$)

- infinite variance, i.e. non convergent sample variance

7. Extreme randomness (pareto $\alpha \leq 1$)

- infinite mean, i. e. non convergent sample mean

Mandelbrot: Seven states of randomness

abs(normal)

Pareto distribution, empirical parameter estimation

Variable	Alpha
Word usage frequency	1,2
WWW visits per page (before FB)	1,4
Book title sell numbers	1,5
Earthquake magnitude	2,8
Moon crater size	2,14
Sun corona eruption sizes	0,8
War intensity	0,8
American citizen wealth	1,1
Surname frequency	1
Market movements	3 or less?
City sizes	1,3
Corporation sizes	1,5
Terrorist attack death counts	2

Consequences of wild randomness

, Statistical inference does not work

- we can not infer the parameters of distributions from data
, Central limit theorem does not work
- we can not reduce the uncertainty by aggregation
, Prediction does not work
- our forecast is systematically underestimated
- our confidence interval is underestimated as well

Black swan events

- Unpredictable large scale events with usually negative consequences
- Natural disasters, market crashes, political crises, epidemics, etc.
- We can only prepare for foreseeable catastrophes

Central limit theorem assumptions

Central limit theorem and its assumptions

$$
\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{N} X_{i}-n \mu}{\sqrt{\sigma^{2} n}} \sim N(0,1)
$$

) Assumptions

1. X has finite mean and variance
2. X is iid

- independent
- random variables $X_{1} \ldots X_{n}$ are independent on each other
- coins vs. sheeps
- identically distributed
- $\quad X_{1} \ldots X_{n}$ are chosen from the same probabilistic distribution
- there is no phase change or any other discontinuity in the process
- almost never satisfied in practice
- stability of model testing etc.

Example: local retail bank in a small town

A retail bank

- 50k people, 10k mortgages, \$250k each
- Priori probability of default is 1%
- What is my expected worst case loss (68\%, 98\%, 99,9\%)?

Binomial distribution

- $p_{0}=0.01$
$-E X=p_{0} \cdot N=0.01 \cdot 10000=100$
$-s d(X)=\sqrt{N \cdot p_{0} \cdot\left(1-p_{0}\right)} \cong 10$
- Number of defaults in worst case:

Probability	$\mathbf{6 8 \%}$	$\mathbf{9 8 \%}$	$\mathbf{9 9 , 9 \%}$
Worst Case	110	120	130

Example: local retail bank in a small town

, Small city

- half of the people work for 1 factory
- probability of bankruptcy 15%

Situation	Number	Probability	Default
banc., fac.	5000	15%	5%
banc., non fac.	5000	15%	$1,6 \%$
non banc., fac.	5000	85%	$0,4 \%$
non banc., non fac.	5000	85%	0.8%

$-\quad E X=5000 \cdot(0.15 \cdot(0.05+0.016)+0.15 \cdot(0.04+0.08)=100$

Probability	$\mathbf{6 8 \%}$	$\mathbf{9 8 \%}$	$\mathbf{9 9 , 9 \%}$
Worst Case independent	110	120	130
Worst Case real	66	357	375

Statistical paradoxes

Correalation and Causation

, Correlation

- linear dependency of variables: A and B

Causation = any form of dependence

- visiting lectures implies passing the exam
, Correlation does not imply causation

(B) \rightarrow (A)
$\xrightarrow{(C)} \underset{\rightarrow}{(A)}$
(A) (B)

, Correlation without causation
, Causation without correlation

$$
\rho_{X, Y}=\frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}}=\frac{E\left(\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right)}{\sigma_{X} \sigma_{Y}},
$$

Simpson paradox

What is the vaccine effectivness?

$$
\begin{gathered}
e=1-\frac{P(S \mid V)}{P(S \mid \neg V)} \\
e=1-\frac{\frac{5,3}{100000}}{\frac{16,4}{100000}}=67,5 \%
\end{gathered}
$$

Severe cases

Efficacy

Not Vax	Fully Vax	vs. severe disease
per 100k	per 100k	

$214 \quad 301 \quad 67.5 \%$
67.5\%

Simpson paradox

Age	Population (\%)		Severe cases		Efficacy
	Not Vax $\%$	Fully Vax $\%$	Not Vax per 100k	Fully Vax per 100k	vs. severe disease
All ages	$1,302,912$	$5,634,634$	214	301	$\mathbf{6 7 . 5 \%}$
	18.2%	78.7%	16.4	5.3	
<50	$1,116,834$	$3,501,118$	43	11	$\mathbf{9 1 . 8 \%}$
	23.3%	73.0%	3.9	0.3	
>50	186,078	$2,133,516$	171	290	$\mathbf{8 5 . 2 \%}$
	7.9%	90.4%	91.9	13.6	

, The classes are imbalaced

- in both severe cases and vaccination

Simpson paradox

Diskuze

