
Modern Database Systems

Doc. RNDr. Irena Holubová, Ph.D. &

https://www.ksi.mff.cuni.cz/~holubova/NDBI048/

NDBI048

https://www.ksi.mff.cuni.cz/~holubova/NDBI048/

 NoSQL databases

 Key/value

 Column

 Document

 Graph

 NewSQL databases

 Array databases

 Multi-model databases

I. Business Understanding

II. Data Understanding

III. Data Preparation

IV. Modeling

V. Evaluation

VI. Deployment

https://www.datascience-pm.com/crisp-dm-2/

https://www.datascience-pm.com/crisp-dm-2/

 A common assumption for many years

 Relational databases are able to store and process various data
structures

 Advantages:
 Simplicity

 of the model

 of the respective query language

 After so many years mature and verified database management systems
(DBMSs)

 Strong mathematical background

 …

 Proposed by E.F. Codd in 1970
 Paper: “A relational model of data for large

shared data banks”

 IBM Research Labs

 Basic idea:
 Storing of object and their mutual associations in tables (relations)

 A relation R from X to Y is a subset of the Cartesian product X × Y.

 Row in a table (member of relation) = object/association

 Column (attribute) = attribute of an object/association

 Table (relational) schema = name of the schema + list of attributes and their
types

 Schema of a relational database = set of relational schemas

 Basic integrity constraints
 Unique identification of a row

 Super key vs. key

 Simple type attributes
 NULL values

 No “holes”

 Keys/foreign keys

 First generation: navigational
 Hierarchical model

 Network model

 Second generation: relational

 Third generation: post-relational
 Extensions of relational model

 Object-relational

 New models reacting to popular technologies
 Object

 XML

 NoSQL (key/value, column, document, graph, …) - Big Data

 Array databases

 Multi-model systems

 …

 NewSQL
 Back to the relations

time

Core:

 Key-value databases

 Document databases

 Column-family (column-oriented/columnar) stores

 Graph databases

Non-core:

 Object databases

 XML databases

 …

http://nosql-database.org/

http://nosql-database.org/

 The simplest NoSQL data stores

 A simple hash table (map), primarily used when all
access to the database is via primary key

 A table in RDBMS with two columns, such as ID and
NAME
 ID column being the key
 NAME column storing the value

 A BLOB that the data store just stores

 Basic operations:
 Get the value for the key
 Put a value for a key
 Delete a key from the data store

 Simple great performance, easily scaled

 Simple not for complex queries, aggregation needs

Project

Voldemort

MemcachedDB

not

open-source

open-source

version

 We can query by the key

 To query using some attribute of the value column is
(typically) not possible
 We need to read the value to figure out if the attribute meets the

conditions

 What if we do not know the key?
 Some systems enable to retrieve the list of all keys

 Expensive

 Some support searching inside the value

 Using, e.g., a kind of full-text index

 The data must be indexed first

 Riak search (see later)

RIAK

 Open source, distributed database
 First release: 2009

 Implementing principles from Amazon's Dynamo

 OS: Linux, BSD, Mac OS X, Solaris

 Language: Erlang, C, C++, some parts in JavaScript

 Built-in MapReduce support

 Stores keys into buckets = a namespace for keys
 Like tables in a RDBMS, directories in a file system, …

 Have a set of common properties for its contents

 e.g., number of replicas

http://basho.com/riak/

http://en.wikipedia.org/wiki/File:Riak_product_logo.png
http://en.wikipedia.org/wiki/File:Riak_product_logo.png
http://basho.com/riak/

Single object for all data,

everything in a single bucket

Terminology in Oracle vs. Riak

Adding type of data to the key,

still everything in a single bucket

namespace

for keys

Separate buckets for different

types of data

Bucket bucket = getBucket(bucketName);

IRiakObject riakObject =

bucket.store(key, value).execute();

Bucket bucket = getBucket(bucketName);

IRiakObject riakObject =

bucket.fetch(key).execute();

byte[] bytes = riakObject.getValue();

String value = new String(bytes);

http://en.wikipedia.org/wiki/File:Riak_product_logo.png
http://en.wikipedia.org/wiki/File:Riak_product_logo.png

Storing Session Information

 Every web session is assigned a unique session_id value

 Everything about the session can be stored by a single PUT request
or retrieved using a single GET

 Fast, everything is stored in a single object

User Profiles, Preferences

 Every user has a unique user_id, user_name + preferences such as
language, colour, time zone, which products the user has access to,
…

 As in the previous case:
 Fast, single object, single GET/PUT

Shopping Cart Data

 Similar to the previous cases

Relationships among Data

 Relationships between different sets of data

 Some key-value stores provide link-walking features
 Not usual

Multioperation Transactions

 Saving multiple keys
 Failure to save any one of them → revert or roll back the rest of the

operations

Query by Data

 Search the keys based on something found in the value part

Operations by Sets

 Operations are limited to one key at a time

 No way to operate upon multiple keys at the same time

 Also “columnar” or “column-oriented”

 Column families = rows that have many columns
associated with a row key

 Column families are groups of related data that is often
accessed together
 e.g., for a customer we access all profile information at the same

time, but not orders

Google’s

BigTable

 Developed at Facebook

 Initial release: 2008

 Stable release: 2013
 Apache Licence

 Written in: Java

 OS: cross-platform

 Operations:
 CQL (Cassandra Query Language)

 MapReduce support

 Can cooperate with Hadoop (data storage instead of HDFS)

http://cassandra.apache.org/

http://en.wikipedia.org/wiki/File:Cassandra_logo.svg
http://en.wikipedia.org/wiki/File:Cassandra_logo.svg
http://cassandra.apache.org/

 Column = basic unit, consists of a name-value pair
 Name serves as a key

 Stored with a timestamp (expired data, resolving conflicts, …)

 Row = a collection of columns attached or linked to a
key

 Column family = a collection of similar rows
 Rows do not have to have the same columns

Usually

one per

application

3-tuple

 Column key of firstName and the value of Martin

{ name: "firstName",

value: "Martin",

timestamp: 12345667890 }

{ "pramod-sadalage" : {

firstName: "Pramod",

lastName: "Sadalage",

lastVisit: "2012/12/12" }

"martin-fowler" : {

firstName: "Martin",

lastName: "Fowler",

location: "Boston" } }

 pramod-sadalage row and martin-fowler row with different columns;
both rows are a part of a column family

{ "pramod-sadalage" : {

firstName: "Pramod",

lastName: "Sadalage",

lastVisit: "2012/12/12" }

"martin-fowler" : {

firstName: "Martin",

lastName: "Fowler",

location: "Boston" } }

 We do not need to model all of the columns up front
 Each row is not required to have the same set of columns

 Usually we assume similar sets of columns

 Related data

 Can be extended when needed

 No formal foreign keys
 Joining column families at query time is usually not supported

 We need to pre-compute the query / use a secondary index

Other column

families /

secondary

indexes for

special queries

 Can define metadata about columns
 Actual columns of a row are determined by client application
 Each row can have a different set of columns

 Static – similar to a relational database table
 Rows have the same set of columns
 Not required to have all of the columns defined

 Dynamic – takes advantage of Cassandra's ability to use arbitrary
application-supplied column names
 Pre-computed result sets
 Stored in a single row for efficient data retrieval
 Row = a snapshot of data that satisfy a given query

 Like a materialized view

static

dynamic

Users that subscribe to a particular user's blog

SET
CREATE TABLE users (

user_id text PRIMARY KEY,

first_name text,

last_name text,

emails set<text>);

INSERT INTO users (user_id, first_name, last_name, emails)

VALUES('frodo', 'Frodo', 'Baggins', {'f@baggins.com', 'baggins@gmail.com'});

UPDATE users SET emails = emails + {'fb@friendsofmordor.org'}

WHERE user_id = 'frodo';

SELECT user_id, emails FROM users WHERE user_id = 'frodo';

UPDATE users SET emails = emails - {'fb@friendsofmordor.org'}

WHERE user_id = 'frodo';

UPDATE users SET emails = {} WHERE user_id = 'frodo';

order

LIST
ALTER TABLE users ADD top_places list<text>;

UPDATE users SET top_places = ['rivendell', 'rohan']

WHERE user_id = 'frodo';

UPDATE users SET top_places = ['the shire'] + top_places

WHERE user_id = 'frodo';

UPDATE users SET top_places = top_places + ['mordor']

WHERE user_id = 'frodo';

UPDATE users SET top_places[2] = 'riddermark'

WHERE user_id = 'frodo';

DELETE top_places[3] FROM users WHERE user_id = 'frodo';

UPDATE users SET top_places = top_places - ['riddermark']

WHERE user_id = 'frodo';

MAP
ALTER TABLE users ADD todo map<timestamp, text>;

UPDATE users SET todo = { '2012-9-24' : 'enter mordor',

'2012-10-2 12:00' : 'throw ring into mount doom' }

WHERE user_id = 'frodo';

UPDATE users SET todo['2012-10-2 12:00'] =

'throw my precious into mount doom'

WHERE user_id = 'frodo';

INSERT INTO users (user_id, todo) VALUES ('frodo', {

'2013-9-22 12:01' : 'birthday wishes to Bilbo',

'2013-10-1 18:00' : 'Check into Inn of Prancing Pony' });

DELETE todo['2012-9-24'] FROM users

WHERE user_id = 'frodo';

DROP TABLE timeline;

 Delete a table including all data

TRUNCATE timeline;

 Remove all data from a table

CREATE INDEX userIndex ON timeline (posted_by);

 Create a (secondary) index

 Allow efficient querying of other columns than key

DROP INDEX userIndex;

 Drop an index

 No joins, just simple conditions
 For simple data reads

SELECT * FROM users

WHERE firstname = 'jane' and lastname='smith'

ALLOW FILTERING;

 Filtering (WHERE)

SELECT * FROM emp

WHERE empID IN (130,104)

ORDER BY deptID DESC;

 Ordering (ORDER BY)

SELECT select_expression

FROM keyspace_name.table_name

WHERE relation AND relation ...

GROUP BY columns

ORDER BY (clustering_key (ASC | DESC)...)

LIMIT n

ALLOW FILTERING

 select_expression:

 List of columns

 DISTINCT

 COUNT

 Aliases (AS)

 TTL(column_name)

 WRITETIME(column_name)

 relation:

 column_name (= | < | > | <= | >=) key_value

 column_name IN ((key_value,...))

 TOKEN (column_name, ...) (= | < | > | <= | >=)

 (term | TOKEN (term, ...))

 term:

 constant

 set/list/map

hash

Event Logging

 Ability to store any data structures → good choice to store event
information

Content Management Systems, Blogging Platforms

 We can store blog entries with tags, categories, links, and trackbacks in
different columns

 Comments can be either stored in the same row or moved to a different
keyspace

 Blog users and the actual blogs can be put into different column families

Systems that Require ACID Transactions

 Column-family stores are not just a special kind of RDBMSs with
variable set of columns!

Aggregation of the Data Using Queries

 (Such as SUM or AVG)

 Have to be done on the client side

For Early Prototypes

 We are not sure how the query patterns may change

 As the query patterns change, we have to change the column family
design

 Documents are the main concept
 Stored and retrieved
 XML, JSON, …

 Documents are
 Self-describing
 Hierarchical tree data structures
 Can consist of maps, collections (lists, sets, …), scalar values,

nested documents, …

 Documents in a collection are expected to be similar
 Their schema can differ

 Document databases store documents in the value part
of the key-value store
 Key-value stores where the value is examinable

{ "firstname": "Martin",

"likes": ["Biking",

"Photography"],

"lastcity": "Boston",

"lastVisited": }

{ "firstname": "Pramod",

"citiesvisited": ["Chicago", "London", "Pune", "Bangalore"],

"addresses": [

{ "state": "AK",

"city": "DILLINGHAM",

"type": "R" },

{ "state": "MH",

"city": "PUNE",

"type": "R" }],

"lastcity": "Chicago“ }

Data are similar, but have differences, e.g., in attribute
names
 Still belong to the same collection

We can represent
 A list of cities visited as an array

 A list of addresses as a list of documents embedded inside
the main document

Lotus Notes

Storage Facility

http://en.wikipedia.org/wiki/File:Lotus_Notes_8_icon.png
http://en.wikipedia.org/wiki/File:Lotus_Notes_8_icon.png

 Initial release: 2009

 Written in C++
 Open-source

 Cross-platform

 JSON documents
 Dynamic schemas

 Features:
 High performance – indices
 High availability – replication + eventual consistency + automatic

failover
 Automatic scaling – automatic sharding across the cluster
 MapReduce support

http://www.mongoDB.org/

http://www.mongodb.org/

Terminology in Oracle and mongoDB

 Each mongoDB
instance has
multiple databases

 Each database can
have multiple
collections

 When we store a
document, we
have to choose
database and
collection

DOCUMENTS
 Use JSON

 Stored as BSON
 Binary representation of JSON

 Have maximum size: 16MB (in BSON)
 Not to use too much RAM

 GridFS tool divides larger files into fragments

 Restrictions on field names:
 _id is reserved for use as a primary key

 Unique in the collection

 Immutable

 Any type other than an array

 The field names cannot start with the $ character
 Reserved for operators

 The field names cannot contain the . character
 Reserved for accessing fields

REFERENCES

 References provide more flexibility than
embedding

 Use normalized data models:
 When embedding would result in duplication of data not

outweighted by read performance

 To represent more complex many-to-many relationships

 To model large hierarchical data sets

 Disadvantages:
 Can require more roundtrips to the server (follow up

queries)

EMBEDDED DATA

 Related data in a single document structure
 Documents can have subdocuments (in a field of array)

 Applications may need to issue less queries

 Denormalized data models

 Allow applications

to retrieve and

manipulate related

data in a single

database operation

DATA MODIFICATION

 Operations:
create, update,
delete
 Modify the

data of a
single
collection of
documents

 For update /
delete:
criteria to
select the
documents to
update /
remove

QUERY

 Targets a specific collection of documents

 Specifies criteria that identify the returned documents

 May include a projection that specifies the fields from the
matching

documents

to return

 May impose

limits, sort

orders, …

Event Logging

 Many different applications want to log events
 Type of data being captured keeps changing

 Events can be sharded (i.e. divided) by the name of the application or type of
event

Content Management Systems, Blogging Platforms

 Managing user comments, user registrations, profiles, web-facing documents,
…

Web Analytics or Real-Time Analytics

 Parts of the document can be updated

 New metrics can be easily added without schema changes
 E.g. adding a member of a list, set,…

E-Commerce Applications

 Flexible schema for products and orders

 Evolving data models without expensive data migration

Complex Transactions Spanning Different Operations

 Atomic cross-document operations
 Some document databases do support (e.g., RavenDB)

Queries against Varying Aggregate Structure

 Design of aggregate is constantly changing → we need
to save the aggregates at the lowest level of granularity
 i.e. to normalize the data

 To store entities and relationships between these
entities
 Node is an instance of an object

 Nodes have properties

 e.g., name

 Edges have directional significance

 Edges have types

 e.g., likes, friend, …

 Nodes are organized by relationships
 Allow to find interesting patterns

 e.g., “Get all people (= nodes in the graph) employed by Big Co
that like (book called) NoSQL Distilled”

 When we store a graph-like structure in RDBMS, it is for
a single type of relationship
 “Who is my manager”

 Adding another relationship usually means a lot of
schema changes

 In RDBMS we model the graph beforehand based on the
Traversal we want
 If the Traversal changes, the data will have to change

 In graph databases the relationship is not calculated at query
time but persisted

FlockDB

http://en.wikipedia.org/wiki/File:Neo4j.jpg
http://en.wikipedia.org/wiki/File:Neo4j.jpg

 Nodes can have different types of relationships between them
 To represent relationships between the domain entities

 To have secondary relationships

 Category, path, time-trees, quad-trees for spatial indexing, linked lists for sorted
access, …

 There is no limit to the number and kind of relationships a node can
have
 Except for upper limits of a particular system, if any

 Relationships have type, start node, end node, own properties
 e.g., since when did they become friends

 We have to create a relationship between the nodes in
both directions
 Nodes know about INCOMING and OUTGOING relationships

Node martin = graphDb.createNode();

martin.setProperty("name", "Martin");

Node pramod = graphDb.createNode();

pramod.setProperty("name", "Pramod");

martin.createRelationshipTo(pramod, FRIEND);

pramod.createRelationshipTo(martin, FRIEND);

 Properties of a node/edge can be indexed

 Indices are queried to find the starting node to begin a
traversal

Transaction transaction = graphDb.beginTx();

try {

Index<Node> nodeIndex = graphDb.index().forNodes("nodes");

nodeIndex.add(martin, "name", martin.getProperty("name"));

nodeIndex.add(pramod, "name", pramod.getProperty("name"));

transaction.success(); }

finally {

transaction.finish(); }

Node martin = nodeIndex.get("name", "Martin").getSingle();

allRelationships = martin.getRelationships();

adding

nodes

creating index

retrieving a node

getting all its relationships

FINDING PATHS

We are interested in determining if there are multiple
paths, finding all of the paths, the shortest path, …

Node barbara = nodeIndex.get("name", "Barbara").getSingle();

Node jill = nodeIndex.get("name", "Jill").getSingle();

PathFinder<Path> finder1 = GraphAlgoFactory.allPaths(

Traversal.expanderForTypes(FRIEND,Direction.OUTGOING),

MAX_DEPTH);

Iterable<Path> paths = finder1.findAllPaths(barbara, jill);

PathFinder<Path> finder2 = GraphAlgoFactory.shortestPath(

Traversal.expanderForTypes(FRIEND,Direction.OUTGOING),

MAX_DEPTH);

Iterable<Path> paths = finder2.findAllPaths(barbara, jill);

Connected Data

 Social networks

 Any link-rich domain is well suited for graph databases

Routing, Dispatch, and Location-Based Services

 Node = location or address that has a delivery

 Graph = nodes where a delivery has to be made

 Relationships = distance

Recommendation Engines

 “your friends also bought this product”

 “when invoicing this item, these other items are usually invoiced”

 When we want to update all or a subset of entities
 Changing a property on all the nodes is not a straightforward

operation
 e.g., analytics solution where all entities may need to be updated

with a changed property

 Some graph databases may be unable to handle lots of
data
 Distribution of a graph is difficult

 Idea (from 2011): scalable storage + all functionality
known from traditional relational databases
 Not just SQL access, but classical relational model, ACID

properties, …

 Previously ScalableSQL

Aslett, M.: What We Talk about When We Talk about NewSQL. 452 Group, 2011.

http://blogs.the451group.com/information_management/2011/04/06/what-we-talk-

about-when-we-talk-about-newsql/

Stonebraker, M.: New SQL: An Alternative to NoSQL and Old SQL for New OLTP

Apps, 2011. https://cacm.acm.org/blogs/blog-cacm/109710-new-sql-an-alternative-

to-nosql-and-old-sql-for-new-oltp-apps/fulltext

http://blogs.the451group.com/information_management/2011/04/06/what-we-talk-about-when-we-talk-about-newsql/
https://cacm.acm.org/blogs/blog-cacm/109710-new-sql-an-alternative-to-nosql-and-old-sql-for-new-oltp-apps/fulltext
http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjx2omlxv3TAhUByRQKHZW6DwEQjRwIBw&url=http://labs.sogeti.com/newsql-whats/&psig=AFQjCNGL4stnjdlRkmCkw7mFONA3G7XApw&ust=1495337915909681
http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjx2omlxv3TAhUByRQKHZW6DwEQjRwIBw&url=http://labs.sogeti.com/newsql-whats/&psig=AFQjCNGL4stnjdlRkmCkw7mFONA3G7XApw&ust=1495337915909681

 Approaches:
 Distributed systems which add advantages of relational model + ACID

 e.g. Clustrix, ScaleArc, MemSQL, VoltDB, …

 Relational DBMSs extended towards horizontal scalability

 e.g. TokuDB, JustOne DB, ..

 Cloud: NewSQL as a Service
 Special type of a cloud service = scalable relational DBMS

 e.g. Amazon Relational Database Service, Microsoft Azure Database, …

 Why do we need them?
1. There are applications which work with relational databases

+ they need to solve new increase of data volumes

 Transformation to any NoSQL data model would be too
expensive

2. There are application which still need strong data
consistency + horizontal scalability

 Consequence: Again NewSQL does not mean the end
of traditional SQL (relational) DBMSs

 An alternative approach – we need alternatives and there
will occur other

Stonebraker, M. et al.: The end of an architectural era: (it's time for a complete rewrite).

VLDB '07.

 Database systems specific for data represented as one- or multi-dimensional
arrays

 Usually: We need to represent the respective values in time and/or space
 Biology, chemistry, physics, geology, …

 Complex research analyses of natural events

 e.g. astronomical measurements, changes of climate, satellite pictures of the Earth,
oceanographic data, human genome, …

 Example: Each satellite picture is a 2D-array (longitude + latitude) with
values informing about the particular positions
 Next dimensions: time when the picture was taken, characteristics of the tool

taking the picture, …

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi2xpTYyf3TAhXBtBQKHSGTBzEQjRwIBw&url=https://www.climatemodeling.org/~forrest/presentations/Hoffman_Data-Mining_20020623/&psig=AFQjCNGyggraOeOJJjfysMe_-fYhf1xpPA&ust=1495338903369013
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi2xpTYyf3TAhXBtBQKHSGTBzEQjRwIBw&url=https://www.climatemodeling.org/~forrest/presentations/Hoffman_Data-Mining_20020623/&psig=AFQjCNGyggraOeOJJjfysMe_-fYhf1xpPA&ust=1495338903369013

 In general:
 Big Data of a specific type

 Data not suitable for flat 2D relations

 Some RDBMSs support arrays

 Too simple operations for these purposes

 Not efficient

http://www.paradigm4.com/wp-content/uploads/2014/05/scidb_logo.png
http://www.paradigm4.com/wp-content/uploads/2014/05/scidb_logo.png

 Idea: Use the right tool for the job

 If you have structured data with some differences
 Use a document store

 If you have relations between entities and want to efficiently
query them
 Use a graph database

 If you manage the data structure yourself and do not need
complex queries
 Use a key/value store

 Handles multi-model data

 Helps apps to scale well

 A rich experience

 Requires the company to
hire people to integrate
different databases

 Developers need to learn
different databases

 How to handle cross-
model queries and
transactions?

 One unified database for multi-model data

Table

RDFXML

Spatial

Text

Multi-model

DB
JSON

…

NOT
Can be traced to object-

relational databases (ORDBMS)

ORDBMS framework allows users
to plug in their domain and/or
application specific data models
as user-defined
functions/types/indexes

•By 2017, all leading
operational DBMSs will
offer multiple data
models, relational and
NoSQL, in a single
DBMS platform.

-- Gartner report for operational
databases 2016

e.g. MongoDB supports multi-model in
the recent release 3.4 (NOV 29, 2016)

Handle multi-model data

One system implements
fault tolerance

Data consistency

Unified query language for
multi-model data

A complex system

 Immature and developing

Many challenges and open
problems

 ArangoDB is a multi-model, open-source database with flexible data models

 Documents, graphs, key/values

 Stores all data as documents

 Vertices and edges of graphs are documents allows to mix all three data models

{ "Order_no":"0c6df508",

"Orderlines": [

{ "Product_no":"2724f"

"Product_Name":"Toy",

"Price":66 },

{ "Product_no":"3424g",

"Product_Name":"Book",

"Price":40 }]

}

Marry (1)

John (2)

knowsknows

William (3)

Social network graph

Key/value pairs
(Customer_ID , Order_no)

Order JSON document
Customer relation"1" -- > "34e5e759"

"2"-- > "0c6df508" Customer_ID Name Credit_limits

1 Mary 5,000

2 John 3,000

3 William 2,000

{ "Order_no":"0c6df508",

"Orderlines": [

{ "Product_no":"2724f"

"Product_Name":"Toy",

"Price":66 },

{ "Product_no":"3424g",

"Product_Name":"Book",

"Price":40 }] }

Marry (1)

John (2)

knowsknows

William (3)

"1" -- > "34e5e759"

"2"-- > "0c6df508"

Customer_ID Name Credit_limits

1 Mary 5,000

2 John 3,000

3 William 2,000

Relation-graph join

Graph-key/value join

Key/value-JSON join

Recommendation query:
Return all product_no-s which are ordered by a
friend of a customer whose credit_limit>3000

LET CustomerIDs = (

FOR Customer IN Customers

FILTER Customer.CreditLimit > 3000

RETURN Customer.id)

LET FriendIDs = (

FOR CustomerID IN CustomerIDs

FOR Friend IN 1..1 OUTBOUND CustomerID Knows

RETURN Friend.id)

FOR Friend in FriendIDs

FOR Order in 1..1 OUTBOUND Friend Customer2Order

RETURN Order.orderlines[*].Product_no

Recommendation query:
Return all product_no-s which are ordered by a friend of a customer whose credit_limit>3000

Supporting graph, document, key/value and object models

The relationships are managed as in graph databases with
direct connections between records

 It supports schema-less, schema-full and schema-mixed
modes

Queries: SQL extended for graph traversal

SELECT expand(out("Knows").Orders.orderlines.

Product_no)

FROM Customers

WHERE CreditLimit > 3000

Recommendation query:
Return all product_no-s which are ordered by a friend of a customer whose credit_limit>3000

Relational PostgreSQL, SQL Server, IBM DB2, Oracle DB, Oracle MySQL, Sinew

Column Cassandra, CrateDB, DynamoDB, HPE Vertica

Key/value Riak, c-treeACE, Oracle NoSQL DB

Document ArangoDB, Couchbase, MarkLogic, MongoDB, Cosmos DB

Graph OrientDB

Object InterSystems Caché

Special • Not yet multi-model – NuoDB, Redis, Aerospike

• Multi-use-case – SAP HANA DB, Octopus DB

 Basic approach: on the basis of original (or core) data model

RELATIONAL
 Biggest set of multi-model

databases
 The most popular type of databases

 SQL has been extended towards
other data formats (e.g, SQL/XML)

 Simplicity and universality of the
relational model

RELATIONAL

SELECT json_build_object('id',id,'name',name,'orders',orders)

FROM customer;

SELECT jsonb_each(orders) FROM customer;

SELECT jsonb_object_keys(orders) FROM customer;

CREATE TABLE customer (

id INTEGER PRIMARY KEY,

name VARCHAR(50),

address VARCHAR(50),

orders JSONB

);

RELATIONAL
CREATE TABLE customer (

id INTEGER PRIMARY KEY,

name VARCHAR(50),

address VARCHAR(50),

orders JSONB

);

INSERT INTO customer

VALUES (1, 'Mary', 'Prague',

'{"Order_no":"0c6df508",

"Orderlines":[

{"Product_no":"2724f", "Product_Name":"Toy", "Price":66},

{"Product_no":"3424g", "Product_Name":"Book", "Price":40}]

}');

INSERT INTO customer

VALUES (2, 'John', 'Helsinki',

'{"Order_no":"0c6df511",

"Orderlines":[

{ "Product_no":"2454f", "Product_Name":"Computer", "Price":34 }]

}');

{"Order_no":"0c6df508",

"Orderlines":[

{ "Product_no":"2724f",

"Product_Name":"Toy",

"Price":66 },

{"Product_no":"3424g",

"Product_Name":"Book",

"Price":40}]

}

SELECT name,

orders->>'Order_no' as Order_no,

orders#>'{Orderlines,1}'->>'Product_Name' as

Product_Name

FROM customer

where orders->>'Order_no' <> '0c6df511';

{"Order_no":"0c6df508",

"Orderlines":[

{ "Product_no":"2724f",

"Product_Name":"Toy",

"Price":66 },

{"Product_no":"3424g",

"Product_Name":"Book",

"Price":40}]

}

RELATIONAL

 http://nosql-database.org/

 Pramod J. Sadalage – Martin Fowler: NoSQL Distilled: A Brief Guide to the Emerging World of
Polyglot Persistence

 Eric Redmond – Jim R. Wilson: Seven Databases in Seven Weeks: A Guide to Modern Databases
and the NoSQL Movement

 Sherif Sakr – Eric Pardede: Graph Data Management: Techniques and Applications

 Shashank Tiwari: Professional NoSQL

 Neither Fish Nor Fowl: the Rise of Multi-model Databases. The 451 Group, 2013.

 D. Feinberg, M. Adrian, N. Heudecker, A. M. Ronthal, and T. Palanca. Gartner Magic Quadrant for
Operational Database Management Systems, 12 October 2015.

 J. Lu, Z. H. Liu, P. Xu, and C. Zhang. UDBMS: road to unification for multi-model data management.
CoRR, abs/1612.08050, 2016

 J. Lu: Towards Benchmarking Multi-model Databases. CIDR 2017

 S. Abiteboul et al: Research Directions for Principles of Data Management, Dagstuhl Perspectives
Workshop 16151 (2017)

http://nosql-database.org/

