
Practicals 10. Apache Spark

Doc. RNDr. Irena Holubová, Ph.D. &

https://www.ksi.mff.cuni.cz/~holubova/NDBI048/

NDBI048

https://www.ksi.mff.cuni.cz/~holubova/NDBI048/


 Spark application = driver program
 Runs the user’s main function 

 Executes parallel operations on a cluster

 Independent set of processes

 Coordinated by SparkContext object in the driver program

 SparkContext can connect to several types of cluster managers
 They allocate resources across applications

 When connected:
1. Spark acquires executors on nodes in the cluster

 Processes that run computations and store data for the application

2. Sends the application code to the executors

 Defined by JAR or Python files passed to SparkContext

3. Sends tasks to the executors to run



1. Build a SparkConf object 
 Contains information about application

 appName = application name to show on the cluster UI

 master = Spark/Mesos/YARN cluster URL or string “local” to run in 
local mode

2. Create a JavaSparkContext object
 Tells Spark how to access a cluster

SparkConf conf = 

new SparkConf().setAppName(appName).setMaster(master); 

JavaSparkContext sc = 

new JavaSparkContext(conf);



 Immutable collection of elements partitioned across the nodes of 
the cluster 
 Can be operated on in parallel

 Can be persisted in memory

 MapReduce: has to be written od disk between Map and Reduce

 Automatically recover from node failures

 Ways to create RDDs: 
1. Parallelizing an existing collection in a driver program

2. Referencing a dataset in an external storage system

 e.g., HDFS, HBase, … 

 In general: any offering a Hadoop InputFormat

https://spark.apache.org/docs/3.2.0/rdd-programming-guide.html

https://spark.apache.org/docs/3.2.0/rdd-programming-guide.html


PARALLELIZED COLLECTIONS

 Parallelized collections are created by calling SparkContext’s
parallelize method
 Elements of the collection are copied to form a distributed dataset

 The distributed dataset (distData) can be operated on in parallel

 See later

List<Integer> data = Arrays.asList(1, 2, 3, 4, 5); 

JavaRDD<Integer> distData = sc.parallelize(data);



 Spark can create distributed datasets from any storage source supported 
by Hadoop
 Local file system, HDFS, Cassandra, HBase, … 

 Supports text files, SequenceFiles, and any other Hadoop InputFormat

 Example:
 Text file RDDs can be created using SparkContext’s textFile method

 Takes an URI for the file (local, HDFS, …) 

 Reads it as a collection of lines

 Optional argument: number of partitions of the file

 Default: one partition for each block of the file (128MB by default in HDFS)

 Once created, distFile can be acted on by dataset operations

JavaRDD<String> distFile = sc.textFile("data.txt");



1. Transformations = create (lazily) 

a new dataset from an existing one
 e.g., map = passes each dataset element through 

a function and returns a new RDD representing the results

2. Actions = return a value to the driver program after running a 
computation on the dataset

 e.g., reduce = aggregates all the elements of the RDD using some function 
and returns the final result to the driver program

 By default: each transformed RDD may be recomputed each time we 
run an action on it

 We may also persist an RDD in memory using the persist (or cache) method

 Much faster access the next time we query it

 There is also support for persisting RDDs on disk or replicated across 
multiple nodes



 map(func) Returns a new distributed dataset formed by passing each element of 
the source through a function func.

 union(otherDataset) Returns a new dataset that contains the union of the elements 
in the source dataset and the argument. 
 intersection, distinct

 filter(func) Returns a new dataset formed by selecting those elements of the source 
on which func returns true. 

 reduceByKey(func, [numPartitions]) When called on a dataset of (K, V) pairs, 
returns a dataset of (K, V) pairs where the values for each key are aggregated using 
the given reduce function func, which must be of type (V,V) => V. The number of 
reduce tasks is configurable through an optional second argument. 

 sortByKey([ascending], [numPartitions]) When called on a dataset of (K, V) pairs 
where K implements Ordered, returns a dataset of (K, V) pairs sorted by keys in 
ascending or descending order, as specified in the Boolean ascending argument.

 …

https://spark.apache.org/docs/3.2.0/rdd-programming-guide.html#transformations

https://spark.apache.org/docs/3.2.0/rdd-programming-guide.html#transformations


 reduce(func) Aggregates the elements of the dataset using a function func
(which takes two arguments and returns one). The function should be 
commutative and associative so that it can be computed correctly in 
parallel. 

 count() Returns the number of elements in the dataset. 

 first() Returns the first element of the dataset. 

 take(n) Returns an array with the first n elements of the dataset. 

 takeOrdered(n, [ordering]) Returns the first n elements of the RDD using 
either their natural order or a custom comparator. 

 …

https://spark.apache.org/docs/3.2.0/rdd-programming-guide.html#actions

https://spark.apache.org/docs/3.2.0/rdd-programming-guide.html#actions


 By lambda expression

data.reduceByKey((a, b) -> a + b);

 By interface function

 Java: functions are represented by classes implementing interface Function[2,3,4]<IN[,IN[,IN[,IN]]], 
OUT> from package org.apache.spark.api.java.function

 Pass an instance of implemented class (either as an anonymous inner class or a named one)

data.reduceByKey(new Function2<Integer, Integer, Integer>() {

@Override

public Integer call(Integer a, Integer b) throws Exception {

return a + b;

}

});



 Spark module for structured data processing

 Spark SQL data structures (DataFrame, Dataset) provide information about the 
structure of the data and the computation

 Supports execution of SQL queries

 Supports reading data from an existing database (Hive, MySQL, ...)

 The entry point is the SparkSession class 

SparkSession spark = SparkSession.builder().appName("AppName").getOrCreate(); 



 DataFrame
 Distributed collection of data, which is organized into named columns

 Conceptually equivalent to a table in a relational database

 Can be constructed from structured data files, external databases, existing RDDs, ...

Dataset<Row> dataFrame = spark.read().json("actors.json"); 

 DataSet
 Distributed collection of data

 Can be constructed from strongly-typed JVM objects and manipulated using transformations

 Ability to use lambda functions

Dataset<Person> dataset = spark.read().json("actors.json").as(actorEncoder);



 Apache Spark https://spark.apache.org

 Quick Start http://spark.apache.org/docs/latest/quick-start.html

 RDD Programming Guide https://spark.apache.org/docs/latest/rdd-
programming-guide.html#resilient-distributed-datasets-rdds

 Spark SQL, DataFrames and Datasets Guide
https://spark.apache.org/docs/latest/sql-getting-started.html

 Submitting Applications https://spark.apache.org/docs/latest/submitting-
applications.html

 Additional Spark Examples
https://github.com/apache/spark/tree/master/examples/src/main/java/or
g/apache/spark/examples

https://spark.apache.org/
http://spark.apache.org/docs/latest/quick-start.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/latest/sql-getting-started.html
https://spark.apache.org/docs/latest/submitting-applications.html
https://github.com/apache/spark/tree/master/examples/src/main/java/org/apache/spark/examples

