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 No standard definition

 First occurrence of the term: High Performance Computing (HPC)

Gartner: “Big Data” is high volume, 

high velocity, and/or high variety 

information assets that require new 

forms of processing to enable 

enhanced decision making, insight 

discovery and process optimization.
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IBM: Depending on the industry and organization, Big Data encompasses 

information from internal and external sources such as transactions, social 

media, enterprise content, sensors, and mobile devices.

Companies can leverage data to adapt their products and services to better 

meet customer needs, optimize operations and infrastructure, and find new 

sources of revenue.

http://www.ibmbigdatahub.com/

Social media and networks

(all of  us are generating data)

Scientific instruments

(collecting all sorts of  data) 

Mobile devices 

(tracking all objects all the time)

Sensor technology and networks

(measuring all kinds of  data) 

http://www.ibmbigdatahub.com/


2.5 billion monthly active users 

5 billion comments are left on Facebook pages monthly

55 million status updates are made every day

Every 60 seconds
 317,000 status updates

 147,000 photos uploaded

 54,000 shared links

https://www.omnicoreagency.com/facebook-statistics/

https://www.omnicoreagency.com/facebook-statistics/


Vertical Scaling (scaling up)

 Traditional choice has been in favour of 
strong consistency
 System architects have in the past gone in 

favour of scaling up (vertical scaling)

 Involves larger and more powerful machines

 Works in many cases but…

 Vendor lock-in
 Not everyone makes large and powerful 

machines

 Who do, often use proprietary formats

 Makes a customer dependent on a vendor 
for products and services

 Unable to use another vendor 

Horizontal Scaling (scaling out)

 Systems are distributed across multiple 
machines/nodes (horizontal scaling)
 Commodity machines (cost effective)
 Often surpasses scalability of vertical 

approach

 But…

 Fallacies of distributed computing:
 The network is reliable
 Latency is zero
 Bandwidth is infinite
 The network is secure
 Topology does not change
 There is one administrator
 Transport cost is zero
 The network is homogeneous
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 A programming model + implementation

 Developed by Google in 2008
 To replace old, centralized index structure

 Distributed, parallel computing on large data

Google: “A simple and powerful interface that enables automatic 
parallelization and distribution of large-scale computations, 
combined with an implementation of this interface that achieves 
high performance on large clusters of commodity PCs.”

 Programming model in general:
 Mental model a programmer has about execution of application

 Purpose: improve programmer's productivity

 Evaluation: expressiveness, simplicity, performance

Example: Von 

Neumann’s 

model = 

sequence of 

instructions



 Divide-and-conquer paradigm
 Map breaks down a problem into sub-problems 

 Processes a key/value pair to generate a set of intermediate key/value pairs

 Reduce receives and combines the sub-solutions to solve the problem

 Processes intermediate values associated with the same intermediate key

 Many real-world tasks can be expressed this way
 Programmer focuses on map/reduce code

 Framework cares about data partitioning, scheduling execution across 
machines, handling machine failures, managing inter-machine 
communication, …



Map
 Input: a key/value pair 

 Output: a set of intermediate key/value pairs 
 Usually different domain

 (k1,v1) → list(k2,v2)

Reduce
 Input: an intermediate key and a set of all values for that key

 Output: a possibly smaller set of values
 The same domain

 (k2,list(v2)) → (k2,possibly smaller list(v2))



map(String key, String value):

// key: document name

// value: document contents

for each word w in value:

EmitIntermediate(w, "1");

reduce(String key, Iterator values):

// key: a word

// values: a list of counts

int result = 0;

for each v in values:

result += ParseInt(v);

Emit(key, AsString(result));





 distributed grep
 Map: emits <word, line number> if it matches a supplied pattern

 Reduce: identity

 URL access frequency
 Map: processes web logs, emits <URL, 1>

 Reduce: sums values and emits <URL, sum>

 reverse web-link graph
 Map: <target, source> for each link to a target URL found in a page named 

source

 Reduce: concatenates the list of all source URLs associated with a given target 
URL <target, list(source)>



1. MapReduce is a step backwards in database access based on
 Schema describing data structure

 Separating schema from the application

 Advanced query languages

2. MapReduce is a poor implementation
 Instead of indices it uses brute force

3. MapReduce is not novel (ideas more than 20 years old and overcome)

4. MapReduce is missing features common in DBMSs
 Indices, transactions, integrity constraints, views, …

5. MapReduce is incompatible with applications implemented over 
DBMSs

 Data mining, business intelligence, …



 *1943

 Computer scientist – database researcher

 Academic prototypes form the core of various 
databases
 Ingres, Postgres, C-store (Vertica), H-store (VoltDB), SciDB, …

 2015 – Turing award (ACM)
 “Nobel Prize of computing”
 For concepts and practices underlying modern database 

systems
 2016 – Tim Berners Lee 

 For inventing the WWW

http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiol7SV2bPTAhXCKJoKHZXPD8EQjRwIBw&url=http://www.heidelberg-laureate-forum.org/blog/awards/turing-award/&psig=AFQjCNEz_Xc0wa42RSnRHJPwQ5_9Zo0Lrg&ust=1492800435375030
http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiol7SV2bPTAhXCKJoKHZXPD8EQjRwIBw&url=http://www.heidelberg-laureate-forum.org/blog/awards/turing-award/&psig=AFQjCNEz_Xc0wa42RSnRHJPwQ5_9Zo0Lrg&ust=1492800435375030


MapReduce requires: 
 Distributed file system 

 HDFS = Hadoop distributed file system

 Engine that can distribute, coordinate, monitor and gather the results

Hadoop: HDFS + JobTracker + TaskTracker
 JobTracker (master) = scheduler

 TaskTracker (slave per node) – is assigned a Map or Reduce (or other 
operations)
 Map or Reduce run on a node → so does the TaskTracker

 Each task is run on its own JVM



JOBTRACKER

 Like a scheduler:
1. A client application is sent to the JobTracker

2. It “talks” to the NameNode (= HDFS master) and locates 
the TaskTracker (Hadoop client) near the data

3. It moves the work to the chosen TaskTracker node



TASKTRACKER

 Accepts tasks from JobTracker
 Map, Reduce, Combine, …

 Input, output paths

 Has a number of slots for the tasks
 Execution slots available on the machine (or machines on the same rack)

 Spawns a separate JVM for execution of a task

 Indicates the number of available slots through the hearbeat
message to the JobTracker
 A failed task is re-executed by the JobTracker





 For launching program:
1. Create a Job to define a job

 Using class Configuration

2. Submit Job to the cluster and wait for completion

 Job involves:
 Classes implementing Mapper and Reducer interfaces 

 Job.setMapperClass()

 Job.setReducerClass()

 Job outputs
 Job.setOutputKeyClass()

 Job.setOutputValueClass()

 Other options:
 Job.setNumReduceTasks()

 …



 waitForCompletion()– waits (blocks) until the job finishes

 submit() – does not block 

 monitorAndPrintJob() – monitor a job and print status in real-time as 
progress is made and tasks fail



public static class TokenizerMapper

extends Mapper<Object, Text, Text, IntWritable>{

private final static IntWritable one = new IntWritable(1);

private Text word = new Text();

public void map (Object key, Text value, Context context)

throws IOException, InterruptedException {

StringTokenizer itr 

= new StringTokenizer(value.toString());

while (itr.hasMoreTokens()) {

word.set(itr.nextToken());

context.write(word, one);

}

}

}



public static class IntSumReducer

extends Reducer<Text,IntWritable,Text,IntWritable> {

private IntWritable result = new IntWritable();

public void reduce (Text key, 

Iterable<IntWritable> values,

Context context

) 

throws IOException, InterruptedException {

int sum = 0;

for (IntWritable val : values) {

sum += val.get();

}

result.set(sum);

context.write(key, result);

}

}





 Initial release : 2014

 Unified analytics engine for large-scale data processing
 Runs on a cluster of nodes

 Contains:
 High-level APIs in Java, Scala, Python and R

 Optimized engine that supports general execution graphs (DAGs)

 MapReduce has only 2 levels

 Higher-level tools 

 Spark SQL (SQL and structured data processing)

 MLlib (machine learning)

 GraphX (graph processing)

 Spark Streaming

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiT9YvnoafeAhVoxYUKHYQjBWYQjRx6BAgBEAU&url=https://spark.apache.org/&psig=AOvVaw0HbVIAuxowpR7J9O3rhH8o&ust=1540751780140608
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiT9YvnoafeAhVoxYUKHYQjBWYQjRx6BAgBEAU&url=https://spark.apache.org/&psig=AOvVaw0HbVIAuxowpR7J9O3rhH8o&ust=1540751780140608


 Spark application = driver program
 Runs the user’s main function 

 Executes parallel operations on a cluster

 Independent set of processes

 Coordinated by SparkContext object in the driver program

 SparkContext can connect to several types of cluster managers
 They allocate resources across applications

 When connected:
1. Spark acquires executors on nodes in the cluster

 Processes that run computations and store data for the application

2. Sends the application code to the executors

 Defined by JAR or Python files passed to SparkContext

3. Sends tasks to the executors to run



 Immutable collection of elements partitioned across the nodes of 
the cluster 
 Can be operated on in parallel

 Can be persisted in memory

 Automatically recover from node failures

 Ways to create RDDs: 
1. Parallelizing an existing collection in a driver program

2. Referencing a dataset in an external storage system

 e.g., HDFS, HBase, … 

 In general: any offering a Hadoop InputFormat



PARALLELIZED COLLECTIONS

 Parallelized collections are created by calling SparkContext’s
parallelize method
 Elements of the collection are copied to form a distributed dataset

 The distributed dataset (distData) can be operated on in parallel

 See later

List<Integer> data = Arrays.asList(1, 2, 3, 4, 5); 

JavaRDD<Integer> distData = sc.parallelize(data);



 Spark can create distributed datasets from any storage source supported 
by Hadoop
 Local file system, HDFS, Cassandra, HBase, … 

 Supports text files, SequenceFiles, and any other Hadoop InputFormat

 Example:
 Text file RDDs can be created using SparkContext’s textFile method

 Takes an URI for the file (local, HDFS, …) 

 Reads it as a collection of lines

 Optional argument: number of partitions of the file

 Default: one partition for each block of the file (128MB by default in HDFS)

 Once created, distFile can be acted on by dataset operations

JavaRDD<String> distFile = sc.textFile("data.txt");



1. Transformations = create (lazily) 

a new dataset from an existing one
 e.g., map = passes each dataset element through 

a function and returns a new RDD representing the results

2. Actions = return a value to the driver program after running a 
computation on the dataset

 e.g., reduce = aggregates all the elements of the RDD using some function 
and returns the final result to the driver program

 By default: each transformed RDD may be recomputed each time we 
run an action on it

 We may also persist an RDD in memory using the persist (or cache) method

 Much faster access the next time we query it

 There is also support for persisting RDDs on disk or replicated across 
multiple nodes



 map(func) Returns a new distributed dataset formed by passing each element of 
the source through a function func.

 union(otherDataset) Returns a new dataset that contains the union of the elements 
in the source dataset and the argument. 
 intersection, distinct

 filter(func) Returns a new dataset formed by selecting those elements of the source 
on which func returns true. 

 reduceByKey(func, [numPartitions]) When called on a dataset of (K, V) pairs, 
returns a dataset of (K, V) pairs where the values for each key are aggregated using 
the given reduce function func, which must be of type (V,V) => V. The number of 
reduce tasks is configurable through an optional second argument. 

 sortByKey([ascending], [numPartitions]) When called on a dataset of (K, V) pairs 
where K implements Ordered, returns a dataset of (K, V) pairs sorted by keys in 
ascending or descending order, as specified in the Boolean ascending argument.

 …



 reduce(func) Aggregates the elements of the dataset using a function func
(which takes two arguments and returns one). The function should be 
commutative and associative so that it can be computed correctly in 
parallel. 

 count() Returns the number of elements in the dataset. 

 first() Returns the first element of the dataset. 

 take(n) Returns an array with the first n elements of the dataset. 

 takeOrdered(n, [ordering]) Returns the first n elements of the RDD using 
either their natural order or a custom comparator. 

 …



1. Defines a base RDD from an external file
 Not loaded in memory or otherwise acted on, due to laziness

 lines is merely a pointer to the file

2. Defines lineLengths as the result of a map transformation
 Not immediately computed, due to laziness

3. Runs reduce = action
 Spark breaks the computation into tasks to run on separate machines

 Each machine runs both its part of the map and a local reduction, returning its 
answer to the driver program

JavaRDD<String> lines = sc.textFile("data.txt"); 

JavaRDD<Integer> lineLengths = lines.map(s -> s.length()); 

int totalLength = lineLengths.reduce((a, b) -> a + b);



Spark module for structured data processing

More information about the structure of both the data and 
the computation being performed
 Internally, Spark SQL uses this extra information to perform extra 

optimizations

 Interact with Spark SQL: SQL, Dataset API, ... 
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 RDD = primary API in Spark since its inception
 Since Spark 1.0

 Internally each final computation is still done on RDDs

 DataFrame = data organized into named columns
 Since Spark 1.3

 Distributed collection of data, which is organized into named columns

 Designed to make data processing easier

 Higher level of abstraction

 Similar to a table in a relational database or a data frame in R/Python

 Can be constructed from: structured data files, tables in Hive, external 
databases, existing RDDs , …

 API: Scala, Java, Python, R



 Dataset = a distributed collection of data
 Since Spark 1.6

 Provides the benefits of 

 RDDs - strong typing, ability to use powerful lambda functions

 Spark SQL - optimized execution engine 

 i.e. DataFrame processing

 Can be constructed from: JVM objects

 API: Scala, Java



 Since Spark 2.0: unification of DataFrame and Dataset

 Two distinct APIs: 
 Untyped API

 Conceptually: DataFrame ~ collection of generic objects Dataset<Row>, 
where a Row is a generic untyped JVM object

 Strongly-typed API

 Conceptually: Dataset ~ collection Dataset<T> of strongly-typed JVM 
objects, dictated by a case class T
 Defined in Scala or a class in Java



SparkSession spark = SparkSession.builder().

appName("Java Spark SQL basic example").

config("spark.some.config.option", "some-value").getOrCreate();

Dataset<Row> df = 

spark.read().json("examples/src/main/resources/people.json");

df.show();

// +----+-------+

// | age|   name|

// +----+-------+

// |null|Michael|

// |  30|   Andy|

// |  19| Justin|

// +----+-------+

df.printSchema();

// root

// |-- age: long (nullable = true)

// |-- name: string (nullable = true)

DataFrame - untyped



// Select only the "name" column

df.select("name").show();

// +-------+

// |   name|

// +-------+

// |Michael|

// |   Andy|

// | Justin|

// +-------+

// Select everybody, but increment the age by 1

df.select(col("name"), col("age").plus(1)).show();

// +-------+---------+

// |   name|(age + 1)|

// +-------+---------+

// |Michael|     null|

// |   Andy|       31|

// | Justin|       20|

// +-------+---------+

// Select people older than 21

df.filter(col("age").gt(21)).show();

// +---+----+

// |age|name|

// +---+----+

// | 30|Andy|

// +---+----+



// Count people by age

df.groupBy("age").count().show();

// +----+-----+

// | age|count|

// +----+-----+

// |  19|    1|

// |null|    1|

// |  30|    1|

// +----+-----+

// Register the DataFrame as an SQL temporary view

df.createOrReplaceTempView("people");

Dataset<Row> sqlDF = spark.sql("SELECT * FROM people");

sqlDF.show();

// +----+-------+

// | age|   name|

// +----+-------+

// |null|Michael|

// |  30|   Andy|

// |  19| Justin|

// +----+-------+

 Temporary views are session-scoped 
 Disappear if the session that creates it terminates

 Global temporary view = a temporary view shared 
among all sessions
 Keeps alive until the Spark application terminates

 Tied to a system preserved database global_temp

 df.createGlobalTempView("people"); 

 Must use the qualified name to refer it

 e.g. SELECT * FROM global_temp.people





 A common assumption for many years

 Relational databases are able to store and process various data 
structures

 Advantages:
 Simplicity

 of the model

 of the respective query language

 After so many years mature and verified database management systems 
(DBMSs)

 Strong mathematical background

 …



 Proposed by E.F. Codd in 1970
 Paper: “A relational model of data for large

shared data banks”
 IBM Research Labs

 Basic idea:
 Storing of object and their mutual associations in tables (relations)

 A relation R from X to Y is a subset of the Cartesian product X × Y. 

 Row in a table (member of relation) = object/association
 Column (attribute) = attribute of an object/association 
 Table (relational) schema = name of the schema + list of attributes and their 

types
 Schema of a relational database = set of relational schemas
 Integrity constraints



 First generation: navigational
 Hierarchical model

 Network model

 Second generation: relational

 Third generation: post-relational
 Extensions of relational model

 Object-relational

 New models reacting to popular technologies
 Object

 XML

 NoSQL (key/value, column, document, graph, …) - Big Data

 Array databases

 Multi-model systems

 …

 NewSQL
 Back to the relations

time





 The simplest NoSQL data stores

 A simple hash table (map), primarily used 
when all access to the database is via primary 
key

 A table in RDBMS with two columns, such as ID 
and NAME
 ID column being the key 

 NAME column storing the value
 A BLOB that the data store just stores

 Basic operations:
 Get the value for the key

 Put a value for a key

 Delete a key from the data store



 We can query by the key

 To query using some attribute of the value column is 
(typically) not possible
 We need to read the value to figure out if the attribute meets the 

conditions

 What if we do not know the key?
 Some systems enable to retrieve the list of all keys

 Expensive

 Some support searching inside the value
 Using, e.g., a kind of full-text index

 Often many extensions
 MapReduce



 Also “columnar” or “column-oriented”

 Column families = rows that have many columns associated with a 
row key

 Column families are groups of related data that is often accessed 
together
 e.g., for a customer we access all profile information at the same time, but not 

orders



Other column 

families / 

secondary 

indexes for 

special queries



 Documents are the main concept
 Stored and retrieved
 XML, JSON, …

 Documents are 
 Self-describing 
 Hierarchical tree data structures 
 Can consist of maps, collections (lists, sets, 

…), scalar values, nested documents, …

 Documents in a collection are expected 
to be similar
 Their schema can differ

 Document databases store documents in 
the value part of the key-value store
 Key-value stores where the value is 

examinable



References vs. embedding



 To store entities and relationships 
between these entities
 Node is an instance of an object 

 Nodes have properties

 e.g., name

 Edges have directional significance

 Edges have types

 e.g., likes, friend, …

http://en.wikipedia.org/wiki/File:Neo4j.jpg
http://en.wikipedia.org/wiki/File:Neo4j.jpg


“Get all people (= 

nodes in the graph) 

employed by Big Co 

that like (book called) 

NoSQL Distilled”





{ "Order_no":"0c6df508",

"Orderlines": [

{ "Product_no":"2724f"

"Product_Name":"Toy",

"Price":66 },

{ "Product_no":"3424g",

"Product_Name":"Book",

"Price":40 } ] }

Marry (1)

John (2)

knowsknows

William (3)

"1" -- > "34e5e759"

"2"-- > "0c6df508"

Customer_ID Name Credit_limits

1 Mary 5,000

2 John 3,000

3 William 2,000

Relation-graph join

Graph-key/value join

Key/value-JSON join

Recommendation query:
Return all product_no-s which are ordered by a 
friend of a customer whose credit_limit>3000



LET CustomerIDs = (

FOR Customer IN Customers 

FILTER Customer.CreditLimit > 3000 

RETURN Customer.id)

LET FriendIDs = (

FOR CustomerID IN CustomerIDs

FOR Friend IN 1..1 OUTBOUND CustomerID Knows 

RETURN Friend.id)

FOR Friend in FriendIDs

FOR Order in 1..1 OUTBOUND Friend Customer2Order

RETURN Order.orderlines[*].Product_no

SELECT

expand( out("Knows").Orders.

orderlines.Product_no ) 

FROM Customers 

WHERE CreditLimit > 3000
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