
Big Data and Data Science

Doc. RNDr. Irena Holubová, Ph.D. &

https://www.ksi.mff.cuni.cz/~holubova/NDBI048/

NDBI048

https://www.ksi.mff.cuni.cz/~holubova/NDBI048/

 Big Data

 MapReduce

 Apache Spark

 Modern database systems

I. Business Understanding

II. Data Understanding

III. Data Preparation

IV. Modeling

V. Evaluation

VI. Deployment

https://www.datascience-pm.com/crisp-dm-2/

https://www.datascience-pm.com/crisp-dm-2/

 No standard definition

 First occurrence of the term: High Performance Computing (HPC)

Gartner: “Big Data” is high volume,

high velocity, and/or high variety

information assets that require new

forms of processing to enable

enhanced decision making, insight

discovery and process optimization.

3 (4, 5)

Vs

Volume

Variety Velocity

Big Data

IBM: Depending on the industry and organization, Big Data encompasses

information from internal and external sources such as transactions, social

media, enterprise content, sensors, and mobile devices.

Companies can leverage data to adapt their products and services to better

meet customer needs, optimize operations and infrastructure, and find new

sources of revenue.

http://www.ibmbigdatahub.com/

Social media and networks

(all of us are generating data)

Scientific instruments

(collecting all sorts of data)

Mobile devices

(tracking all objects all the time)

Sensor technology and networks

(measuring all kinds of data)

http://www.ibmbigdatahub.com/

2.5 billion monthly active users

5 billion comments are left on Facebook pages monthly

55 million status updates are made every day

Every 60 seconds
 317,000 status updates

 147,000 photos uploaded

 54,000 shared links

https://www.omnicoreagency.com/facebook-statistics/

https://www.omnicoreagency.com/facebook-statistics/

Vertical Scaling (scaling up)

 Traditional choice has been in favour of
strong consistency
 System architects have in the past gone in

favour of scaling up (vertical scaling)

 Involves larger and more powerful machines

 Works in many cases but…

 Vendor lock-in
 Not everyone makes large and powerful

machines

 Who do, often use proprietary formats

 Makes a customer dependent on a vendor
for products and services

 Unable to use another vendor

Horizontal Scaling (scaling out)

 Systems are distributed across multiple
machines/nodes (horizontal scaling)
 Commodity machines (cost effective)
 Often surpasses scalability of vertical

approach

 But…

 Fallacies of distributed computing:
 The network is reliable
 Latency is zero
 Bandwidth is infinite
 The network is secure
 Topology does not change
 There is one administrator
 Transport cost is zero
 The network is homogeneous

2012

2021

 A programming model + implementation

 Developed by Google in 2008
 To replace old, centralized index structure

 Distributed, parallel computing on large data

Google: “A simple and powerful interface that enables automatic
parallelization and distribution of large-scale computations,
combined with an implementation of this interface that achieves
high performance on large clusters of commodity PCs.”

 Programming model in general:
 Mental model a programmer has about execution of application

 Purpose: improve programmer's productivity

 Evaluation: expressiveness, simplicity, performance

Example: Von

Neumann’s

model =

sequence of

instructions

 Divide-and-conquer paradigm
 Map breaks down a problem into sub-problems

 Processes a key/value pair to generate a set of intermediate key/value pairs

 Reduce receives and combines the sub-solutions to solve the problem

 Processes intermediate values associated with the same intermediate key

 Many real-world tasks can be expressed this way
 Programmer focuses on map/reduce code

 Framework cares about data partitioning, scheduling execution across
machines, handling machine failures, managing inter-machine
communication, …

Map
 Input: a key/value pair

 Output: a set of intermediate key/value pairs
 Usually different domain

 (k1,v1) → list(k2,v2)

Reduce
 Input: an intermediate key and a set of all values for that key

 Output: a possibly smaller set of values
 The same domain

 (k2,list(v2)) → (k2,possibly smaller list(v2))

map(String key, String value):

// key: document name

// value: document contents

for each word w in value:

EmitIntermediate(w, "1");

reduce(String key, Iterator values):

// key: a word

// values: a list of counts

int result = 0;

for each v in values:

result += ParseInt(v);

Emit(key, AsString(result));

 distributed grep
 Map: emits <word, line number> if it matches a supplied pattern

 Reduce: identity

 URL access frequency
 Map: processes web logs, emits <URL, 1>

 Reduce: sums values and emits <URL, sum>

 reverse web-link graph
 Map: <target, source> for each link to a target URL found in a page named

source

 Reduce: concatenates the list of all source URLs associated with a given target
URL <target, list(source)>

1. MapReduce is a step backwards in database access based on
 Schema describing data structure

 Separating schema from the application

 Advanced query languages

2. MapReduce is a poor implementation
 Instead of indices it uses brute force

3. MapReduce is not novel (ideas more than 20 years old and overcome)

4. MapReduce is missing features common in DBMSs
 Indices, transactions, integrity constraints, views, …

5. MapReduce is incompatible with applications implemented over
DBMSs

 Data mining, business intelligence, …

 *1943

 Computer scientist – database researcher

 Academic prototypes form the core of various
databases
 Ingres, Postgres, C-store (Vertica), H-store (VoltDB), SciDB, …

 2015 – Turing award (ACM)
 “Nobel Prize of computing”
 For concepts and practices underlying modern database

systems
 2016 – Tim Berners Lee

 For inventing the WWW

http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiol7SV2bPTAhXCKJoKHZXPD8EQjRwIBw&url=http://www.heidelberg-laureate-forum.org/blog/awards/turing-award/&psig=AFQjCNEz_Xc0wa42RSnRHJPwQ5_9Zo0Lrg&ust=1492800435375030
http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiol7SV2bPTAhXCKJoKHZXPD8EQjRwIBw&url=http://www.heidelberg-laureate-forum.org/blog/awards/turing-award/&psig=AFQjCNEz_Xc0wa42RSnRHJPwQ5_9Zo0Lrg&ust=1492800435375030

MapReduce requires:
 Distributed file system

 HDFS = Hadoop distributed file system

 Engine that can distribute, coordinate, monitor and gather the results

Hadoop: HDFS + JobTracker + TaskTracker
 JobTracker (master) = scheduler

 TaskTracker (slave per node) – is assigned a Map or Reduce (or other
operations)
 Map or Reduce run on a node → so does the TaskTracker

 Each task is run on its own JVM

JOBTRACKER

 Like a scheduler:
1. A client application is sent to the JobTracker

2. It “talks” to the NameNode (= HDFS master) and locates
the TaskTracker (Hadoop client) near the data

3. It moves the work to the chosen TaskTracker node

TASKTRACKER

 Accepts tasks from JobTracker
 Map, Reduce, Combine, …

 Input, output paths

 Has a number of slots for the tasks
 Execution slots available on the machine (or machines on the same rack)

 Spawns a separate JVM for execution of a task

 Indicates the number of available slots through the hearbeat
message to the JobTracker
 A failed task is re-executed by the JobTracker

 For launching program:
1. Create a Job to define a job

 Using class Configuration

2. Submit Job to the cluster and wait for completion

 Job involves:
 Classes implementing Mapper and Reducer interfaces

 Job.setMapperClass()

 Job.setReducerClass()

 Job outputs
 Job.setOutputKeyClass()

 Job.setOutputValueClass()

 Other options:
 Job.setNumReduceTasks()

 …

 waitForCompletion()– waits (blocks) until the job finishes

 submit() – does not block

 monitorAndPrintJob() – monitor a job and print status in real-time as
progress is made and tasks fail

public static class TokenizerMapper

extends Mapper<Object, Text, Text, IntWritable>{

private final static IntWritable one = new IntWritable(1);

private Text word = new Text();

public void map (Object key, Text value, Context context)

throws IOException, InterruptedException {

StringTokenizer itr

= new StringTokenizer(value.toString());

while (itr.hasMoreTokens()) {

word.set(itr.nextToken());

context.write(word, one);

}

}

}

public static class IntSumReducer

extends Reducer<Text,IntWritable,Text,IntWritable> {

private IntWritable result = new IntWritable();

public void reduce (Text key,

Iterable<IntWritable> values,

Context context

)

throws IOException, InterruptedException {

int sum = 0;

for (IntWritable val : values) {

sum += val.get();

}

result.set(sum);

context.write(key, result);

}

}

 Initial release : 2014

 Unified analytics engine for large-scale data processing
 Runs on a cluster of nodes

 Contains:
 High-level APIs in Java, Scala, Python and R

 Optimized engine that supports general execution graphs (DAGs)

 MapReduce has only 2 levels

 Higher-level tools

 Spark SQL (SQL and structured data processing)

 MLlib (machine learning)

 GraphX (graph processing)

 Spark Streaming

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiT9YvnoafeAhVoxYUKHYQjBWYQjRx6BAgBEAU&url=https://spark.apache.org/&psig=AOvVaw0HbVIAuxowpR7J9O3rhH8o&ust=1540751780140608
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiT9YvnoafeAhVoxYUKHYQjBWYQjRx6BAgBEAU&url=https://spark.apache.org/&psig=AOvVaw0HbVIAuxowpR7J9O3rhH8o&ust=1540751780140608

 Spark application = driver program
 Runs the user’s main function

 Executes parallel operations on a cluster

 Independent set of processes

 Coordinated by SparkContext object in the driver program

 SparkContext can connect to several types of cluster managers
 They allocate resources across applications

 When connected:
1. Spark acquires executors on nodes in the cluster

 Processes that run computations and store data for the application

2. Sends the application code to the executors

 Defined by JAR or Python files passed to SparkContext

3. Sends tasks to the executors to run

 Immutable collection of elements partitioned across the nodes of
the cluster
 Can be operated on in parallel

 Can be persisted in memory

 Automatically recover from node failures

 Ways to create RDDs:
1. Parallelizing an existing collection in a driver program

2. Referencing a dataset in an external storage system

 e.g., HDFS, HBase, …

 In general: any offering a Hadoop InputFormat

PARALLELIZED COLLECTIONS

 Parallelized collections are created by calling SparkContext’s
parallelize method
 Elements of the collection are copied to form a distributed dataset

 The distributed dataset (distData) can be operated on in parallel

 See later

List<Integer> data = Arrays.asList(1, 2, 3, 4, 5);

JavaRDD<Integer> distData = sc.parallelize(data);

 Spark can create distributed datasets from any storage source supported
by Hadoop
 Local file system, HDFS, Cassandra, HBase, …

 Supports text files, SequenceFiles, and any other Hadoop InputFormat

 Example:
 Text file RDDs can be created using SparkContext’s textFile method

 Takes an URI for the file (local, HDFS, …)

 Reads it as a collection of lines

 Optional argument: number of partitions of the file

 Default: one partition for each block of the file (128MB by default in HDFS)

 Once created, distFile can be acted on by dataset operations

JavaRDD<String> distFile = sc.textFile("data.txt");

1. Transformations = create (lazily)

a new dataset from an existing one
 e.g., map = passes each dataset element through

a function and returns a new RDD representing the results

2. Actions = return a value to the driver program after running a
computation on the dataset

 e.g., reduce = aggregates all the elements of the RDD using some function
and returns the final result to the driver program

 By default: each transformed RDD may be recomputed each time we
run an action on it

 We may also persist an RDD in memory using the persist (or cache) method

 Much faster access the next time we query it

 There is also support for persisting RDDs on disk or replicated across
multiple nodes

 map(func) Returns a new distributed dataset formed by passing each element of
the source through a function func.

 union(otherDataset) Returns a new dataset that contains the union of the elements
in the source dataset and the argument.
 intersection, distinct

 filter(func) Returns a new dataset formed by selecting those elements of the source
on which func returns true.

 reduceByKey(func, [numPartitions]) When called on a dataset of (K, V) pairs,
returns a dataset of (K, V) pairs where the values for each key are aggregated using
the given reduce function func, which must be of type (V,V) => V. The number of
reduce tasks is configurable through an optional second argument.

 sortByKey([ascending], [numPartitions]) When called on a dataset of (K, V) pairs
where K implements Ordered, returns a dataset of (K, V) pairs sorted by keys in
ascending or descending order, as specified in the Boolean ascending argument.

 …

 reduce(func) Aggregates the elements of the dataset using a function func
(which takes two arguments and returns one). The function should be
commutative and associative so that it can be computed correctly in
parallel.

 count() Returns the number of elements in the dataset.

 first() Returns the first element of the dataset.

 take(n) Returns an array with the first n elements of the dataset.

 takeOrdered(n, [ordering]) Returns the first n elements of the RDD using
either their natural order or a custom comparator.

 …

1. Defines a base RDD from an external file
 Not loaded in memory or otherwise acted on, due to laziness

 lines is merely a pointer to the file

2. Defines lineLengths as the result of a map transformation
 Not immediately computed, due to laziness

3. Runs reduce = action
 Spark breaks the computation into tasks to run on separate machines

 Each machine runs both its part of the map and a local reduction, returning its
answer to the driver program

JavaRDD<String> lines = sc.textFile("data.txt");

JavaRDD<Integer> lineLengths = lines.map(s -> s.length());

int totalLength = lineLengths.reduce((a, b) -> a + b);

Spark module for structured data processing

More information about the structure of both the data and
the computation being performed
 Internally, Spark SQL uses this extra information to perform extra

optimizations

 Interact with Spark SQL: SQL, Dataset API, ...

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiSoYaipq_eAhUGC-wKHWPbDTIQjRx6BAgBEAU&url=https://medium.com/@manuelmourato25/how-spark-dataframe-shuffling-can-hurt-your-partitioning-28d05fdcb6fa&psig=AOvVaw0bF8BG3DJbHj2WUfZc2ZdA&ust=1541027852658508
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiSoYaipq_eAhUGC-wKHWPbDTIQjRx6BAgBEAU&url=https://medium.com/@manuelmourato25/how-spark-dataframe-shuffling-can-hurt-your-partitioning-28d05fdcb6fa&psig=AOvVaw0bF8BG3DJbHj2WUfZc2ZdA&ust=1541027852658508

 RDD = primary API in Spark since its inception
 Since Spark 1.0

 Internally each final computation is still done on RDDs

 DataFrame = data organized into named columns
 Since Spark 1.3

 Distributed collection of data, which is organized into named columns

 Designed to make data processing easier

 Higher level of abstraction

 Similar to a table in a relational database or a data frame in R/Python

 Can be constructed from: structured data files, tables in Hive, external
databases, existing RDDs , …

 API: Scala, Java, Python, R

 Dataset = a distributed collection of data
 Since Spark 1.6

 Provides the benefits of

 RDDs - strong typing, ability to use powerful lambda functions

 Spark SQL - optimized execution engine

 i.e. DataFrame processing

 Can be constructed from: JVM objects

 API: Scala, Java

 Since Spark 2.0: unification of DataFrame and Dataset

 Two distinct APIs:
 Untyped API

 Conceptually: DataFrame ~ collection of generic objects Dataset<Row>,
where a Row is a generic untyped JVM object

 Strongly-typed API

 Conceptually: Dataset ~ collection Dataset<T> of strongly-typed JVM
objects, dictated by a case class T
 Defined in Scala or a class in Java

SparkSession spark = SparkSession.builder().

appName("Java Spark SQL basic example").

config("spark.some.config.option", "some-value").getOrCreate();

Dataset<Row> df =

spark.read().json("examples/src/main/resources/people.json");

df.show();

// +----+-------+

// | age| name|

// +----+-------+

// |null|Michael|

// | 30| Andy|

// | 19| Justin|

// +----+-------+

df.printSchema();

// root

// |-- age: long (nullable = true)

// |-- name: string (nullable = true)

DataFrame - untyped

// Select only the "name" column

df.select("name").show();

// +-------+

// | name|

// +-------+

// |Michael|

// | Andy|

// | Justin|

// +-------+

// Select everybody, but increment the age by 1

df.select(col("name"), col("age").plus(1)).show();

// +-------+---------+

// | name|(age + 1)|

// +-------+---------+

// |Michael| null|

// | Andy| 31|

// | Justin| 20|

// +-------+---------+

// Select people older than 21

df.filter(col("age").gt(21)).show();

// +---+----+

// |age|name|

// +---+----+

// | 30|Andy|

// +---+----+

// Count people by age

df.groupBy("age").count().show();

// +----+-----+

// | age|count|

// +----+-----+

// | 19| 1|

// |null| 1|

// | 30| 1|

// +----+-----+

// Register the DataFrame as an SQL temporary view

df.createOrReplaceTempView("people");

Dataset<Row> sqlDF = spark.sql("SELECT * FROM people");

sqlDF.show();

// +----+-------+

// | age| name|

// +----+-------+

// |null|Michael|

// | 30| Andy|

// | 19| Justin|

// +----+-------+

 Temporary views are session-scoped
 Disappear if the session that creates it terminates

 Global temporary view = a temporary view shared
among all sessions
 Keeps alive until the Spark application terminates

 Tied to a system preserved database global_temp

 df.createGlobalTempView("people");

 Must use the qualified name to refer it

 e.g. SELECT * FROM global_temp.people

 A common assumption for many years

 Relational databases are able to store and process various data
structures

 Advantages:
 Simplicity

 of the model

 of the respective query language

 After so many years mature and verified database management systems
(DBMSs)

 Strong mathematical background

 …

 Proposed by E.F. Codd in 1970
 Paper: “A relational model of data for large

shared data banks”
 IBM Research Labs

 Basic idea:
 Storing of object and their mutual associations in tables (relations)

 A relation R from X to Y is a subset of the Cartesian product X × Y.

 Row in a table (member of relation) = object/association
 Column (attribute) = attribute of an object/association
 Table (relational) schema = name of the schema + list of attributes and their

types
 Schema of a relational database = set of relational schemas
 Integrity constraints

 First generation: navigational
 Hierarchical model

 Network model

 Second generation: relational

 Third generation: post-relational
 Extensions of relational model

 Object-relational

 New models reacting to popular technologies
 Object

 XML

 NoSQL (key/value, column, document, graph, …) - Big Data

 Array databases

 Multi-model systems

 …

 NewSQL
 Back to the relations

time

 The simplest NoSQL data stores

 A simple hash table (map), primarily used
when all access to the database is via primary
key

 A table in RDBMS with two columns, such as ID
and NAME
 ID column being the key

 NAME column storing the value
 A BLOB that the data store just stores

 Basic operations:
 Get the value for the key

 Put a value for a key

 Delete a key from the data store

 We can query by the key

 To query using some attribute of the value column is
(typically) not possible
 We need to read the value to figure out if the attribute meets the

conditions

 What if we do not know the key?
 Some systems enable to retrieve the list of all keys

 Expensive

 Some support searching inside the value
 Using, e.g., a kind of full-text index

 Often many extensions
 MapReduce

 Also “columnar” or “column-oriented”

 Column families = rows that have many columns associated with a
row key

 Column families are groups of related data that is often accessed
together
 e.g., for a customer we access all profile information at the same time, but not

orders

Other column

families /

secondary

indexes for

special queries

 Documents are the main concept
 Stored and retrieved
 XML, JSON, …

 Documents are
 Self-describing
 Hierarchical tree data structures
 Can consist of maps, collections (lists, sets,

…), scalar values, nested documents, …

 Documents in a collection are expected
to be similar
 Their schema can differ

 Document databases store documents in
the value part of the key-value store
 Key-value stores where the value is

examinable

References vs. embedding

 To store entities and relationships
between these entities
 Node is an instance of an object

 Nodes have properties

 e.g., name

 Edges have directional significance

 Edges have types

 e.g., likes, friend, …

http://en.wikipedia.org/wiki/File:Neo4j.jpg
http://en.wikipedia.org/wiki/File:Neo4j.jpg

“Get all people (=

nodes in the graph)

employed by Big Co

that like (book called)

NoSQL Distilled”

{ "Order_no":"0c6df508",

"Orderlines": [

{ "Product_no":"2724f"

"Product_Name":"Toy",

"Price":66 },

{ "Product_no":"3424g",

"Product_Name":"Book",

"Price":40 }] }

Marry (1)

John (2)

knowsknows

William (3)

"1" -- > "34e5e759"

"2"-- > "0c6df508"

Customer_ID Name Credit_limits

1 Mary 5,000

2 John 3,000

3 William 2,000

Relation-graph join

Graph-key/value join

Key/value-JSON join

Recommendation query:
Return all product_no-s which are ordered by a
friend of a customer whose credit_limit>3000

LET CustomerIDs = (

FOR Customer IN Customers

FILTER Customer.CreditLimit > 3000

RETURN Customer.id)

LET FriendIDs = (

FOR CustomerID IN CustomerIDs

FOR Friend IN 1..1 OUTBOUND CustomerID Knows

RETURN Friend.id)

FOR Friend in FriendIDs

FOR Order in 1..1 OUTBOUND Friend Customer2Order

RETURN Order.orderlines[*].Product_no

SELECT

expand(out("Knows").Orders.

orderlines.Product_no)

FROM Customers

WHERE CreditLimit > 3000

 Jeffrey Dean and Sanjay Ghemawat: MapReduce: Simplified Data Processing on Large
Clusters, Google, Inc.
 http://labs.google.com/papers/mapreduce.html

 Google Code: Introduction to Parallel Programming and MapReduce
 code.google.com/edu/parallel/mapreduce-tutorial.html

 Apache Hadoop: http://hadoop.apache.org/

 Hadoop Map/Reduce Tutorial
 http://hadoop.apache.org/docs/r0.20.2/mapred_tutorial.html

 Open Source MapReduce
 http://lucene.apache.org/hadoop/

 Hadoop: The Definitive Guide, by Tom White, 2nd edition, Oreilly’s, 2010

 David DeWitt and Michael Stonebraker: Relational Database Experts Jump The
MapReduce Shark

http://labs.google.com/papers/mapreduce.html
http://code.google.com/edu/parallel/mapreduce-tutorial.html
http://hadoop.apache.org/
http://hadoop.apache.org/docs/r0.20.2/mapred_tutorial.html
http://lucene.apache.org/hadoop/

 Spark Overview https://spark.apache.org/docs/latest/index.html

 Apache Spark Examples https://spark.apache.org/examples.html

 Mastering Apache Spark 2.3.2 https://jaceklaskowski.gitbooks.io/mastering-
apache-spark/

 A Tale of Three Apache Spark APIs: RDDs, DataFrames, and Datasets
https://databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-apis-rdds-
dataframes-and-datasets.html

https://spark.apache.org/docs/latest/index.html
https://spark.apache.org/examples.html
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/
https://databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-apis-rdds-dataframes-and-datasets.html

 http://nosql-database.org/

 Pramod J. Sadalage – Martin Fowler: NoSQL Distilled: A Brief Guide to the Emerging World of
Polyglot Persistence

 Eric Redmond – Jim R. Wilson: Seven Databases in Seven Weeks: A Guide to Modern Databases
and the NoSQL Movement

 Sherif Sakr – Eric Pardede: Graph Data Management: Techniques and Applications

 Shashank Tiwari: Professional NoSQL

 Neither Fish Nor Fowl: the Rise of Multi-model Databases. The 451 Group, 2013.

 D. Feinberg, M. Adrian, N. Heudecker, A. M. Ronthal, and T. Palanca. Gartner Magic Quadrant for
Operational Database Management Systems, 12 October 2015.

 J. Lu, Z. H. Liu, P. Xu, and C. Zhang. UDBMS: road to unification for multi-model data management.
CoRR, abs/1612.08050, 2016

 J. Lu: Towards Benchmarking Multi-model Databases. CIDR 2017

 S. Abiteboul et al: Research Directions for Principles of Data Management, Dagstuhl Perspectives
Workshop 16151 (2017)

http://nosql-database.org/

