
Big Data and Data Science

Doc. RNDr. Irena Holubová, Ph.D. &

https://www.ksi.mff.cuni.cz/~holubova/NDBI048/

NDBI048

https://www.ksi.mff.cuni.cz/~holubova/NDBI048/

 Big Data

 MapReduce

 Apache Spark

I. Business Understanding

II. Data Understanding

III. Data Preparation

IV. Modeling

V. Evaluation

VI. Deployment

https://www.datascience-pm.com/crisp-dm-2/

https://www.datascience-pm.com/crisp-dm-2/

 No standard definition

 First occurrence of the term: High Performance Computing (HPC)

Gartner: “Big Data” is high volume,

high velocity, and/or high variety

information assets that require new

forms of processing to enable

enhanced decision making, insight

discovery and process optimization.

3 (4, 5)

Vs

Volume

Variety Velocity

Big Data

 Information technology research and advisory company

Founded in 1979 by Gideon Gartner

HQ in Stanford, Connecticut, USA
 > 5,300 employees

 > 12,400 client organizations

Provides: competitive analysis reports, industry overviews,
market trend data, product evaluation reports, …

http://www.gartner.com/

http://www.gartner.com/
http://en.wikipedia.org/wiki/File:Gartner136.png
http://en.wikipedia.org/wiki/File:Gartner136.png

IBM: Depending on the industry and organization, Big Data encompasses

information from internal and external sources such as transactions, social

media, enterprise content, sensors, and mobile devices.

Companies can leverage data to adapt their products and services to better

meet customer needs, optimize operations and infrastructure, and find new

sources of revenue.

http://www.ibmbigdatahub.com/

Social media and networks

(all of us are generating data)

Scientific instruments

(collecting all sorts of data)

Mobile devices

(tracking all objects all the time)

Sensor technology and networks

(measuring all kinds of data)

http://www.ibmbigdatahub.com/

2.5 billion monthly active users

5 billion comments are left on Facebook pages monthly

55 million status updates are made every day

Every 60 seconds
 317,000 status updates

 147,000 photos uploaded

 54,000 shared links

https://www.omnicoreagency.com/facebook-statistics/

https://www.omnicoreagency.com/facebook-statistics/

 2.91 billion monthly active users

Facebook has over 10 million advertisers
 A Facebook user clicks on 12 ads on average every month

On average, users spend 34 minutes on Facebook every
day

There were over 3.5 billion live feeds on Facebook
towards the end of 2018

 500 million people use Facebook Stories daily

https://www.omnicoreagency.com/facebook-statistics/

https://www.omnicoreagency.com/facebook-statistics/

 Association rule learning – discovering interesting relationships, i.e., “association
rules,” among variables in large databases
 e.g., market basket analysis

 Classification – to identify the categories in which new data points belong, based
on a training set containing data points that have already been categorized
 Supervised learning

 e.g., buying decisions

 Cluster analysis – classifying objects that split a diverse group into smaller groups
of similar objects
 Unsupervised learning

 Data fusion and data integration

 Signal processing

 Crowdsourcing - collecting data submitted by a large group of people or
community

 Data mining - extract patterns from large datasets
 Involves association rule learning, cluster analysis, classification, regression, …

 Time series analysis and forecasting
 e.g., hourly value of a stock market index

 Sentiment analysis - identifying the feature/aspect/product about which a
sentiment is being expressed,
 Determining the type (i.e., positive, negative, or neutral)

 Determining the degree and strength of the sentiment

 Visualization

 …

Vertical Scaling (scaling up)

 Traditional choice has been in favour of
strong consistency
 System architects have in the past gone in

favour of scaling up (vertical scaling)

 Involves larger and more powerful machines

 Works in many cases but…

 Vendor lock-in
 Not everyone makes large and powerful

machines

 Who do, often use proprietary formats

 Makes a customer dependent on a vendor
for products and services

 Unable to use another vendor

Horizontal Scaling (scaling out)

 Systems are distributed across multiple
machines/nodes (horizontal scaling)
 Commodity machines (cost effective)
 Often surpasses scalability of vertical

approach

 But…

 Fallacies of distributed computing:
 The network is reliable
 Latency is zero
 Bandwidth is infinite
 The network is secure
 Topology does not change
 There is one administrator
 Transport cost is zero
 The network is homogeneous

2012

2021

 A programming model + implementation

 Developed by Google in 2008
 To replace old, centralized index structure

 Distributed, parallel computing on large data

Google: “A simple and powerful interface that enables automatic
parallelization and distribution of large-scale computations,
combined with an implementation of this interface that achieves
high performance on large clusters of commodity PCs.”

 Programming model in general:
 Mental model a programmer has about execution of application

 Purpose: improve programmer's productivity

 Evaluation: expressiveness, simplicity, performance

Example: Von

Neumann’s

model =

sequence of

instructions

 Divide-and-conquer paradigm
 Map breaks down a problem into sub-problems

 Processes a key/value pair to generate a set of intermediate key/value pairs

 Reduce receives and combines the sub-solutions to solve the problem

 Processes intermediate values associated with the same intermediate key

 Many real-world tasks can be expressed this way
 Programmer focuses on map/reduce code

 Framework cares about data partitioning, scheduling execution across
machines, handling machine failures, managing inter-machine
communication, …

Map
 Input: a key/value pair

 Output: a set of intermediate key/value pairs
 Usually different domain

 (k1,v1) → list(k2,v2)

Reduce
 Input: an intermediate key and a set of all values for that key

 Output: a possibly smaller set of values
 The same domain

 (k2,list(v2)) → (k2,possibly smaller list(v2))

map(String key, String value):

// key: document name

// value: document contents

for each word w in value:

EmitIntermediate(w, "1");

reduce(String key, Iterator values):

// key: a word

// values: a list of counts

int result = 0;

for each v in values:

result += ParseInt(v);

Emit(key, AsString(result));

 distributed grep
 Map: emits <word, line number> if it matches a supplied pattern

 Reduce: identity

 URL access frequency
 Map: processes web logs, emits <URL, 1>

 Reduce: sums values and emits <URL, sum>

 reverse web-link graph
 Map: <target, source> for each link to a target URL found in a page named

source

 Reduce: concatenates the list of all source URLs associated with a given target
URL <target, list(source)>

 term vector per host
 “Term vector” summarizes the most important words that occur in a

document or a set of documents

 Map: emits <hostname, term vector> for each input document

 The hostname is extracted from the URL of the document

 Reduce: adds the term vectors together, throws away infrequent terms

 inverted index
 Map: parses each document, emits <word, document ID>

 Reduce: sorts the corresponding document IDs, emits <word,
list(document ID)>

 distributed sort
 Map: extracts the key from each record, and emits <key, record>

 Reduce: emits all pairs unchanged

 Input reader
 Divides the input into appropriate size 'splits'

 Each assigned to a single Map function

 Reads data from stable storage
 e.g., a distributed file system

 Generates key/value pairs

 Map function
 User-specified processing of key/value pairs

 Partition function
 Map function output is allocated to a reducer
 Partition function is given the key (output of Map) and the number of

reducers and returns the index of the desired reducer
 Default is to hash the key and use the hash value modulo the number of

reducers

 Compare function
 Sorts the input for the Reduce function

 Reduce function
 User-specified processing of key/values

 Output writer
 Writes the output of the Reduce function to stable storage

 e.g., a distributed file system

GOOGLE STEP 1

1. MapReduce library in the user program splits the input files into M pieces

 Typically 16 – 64 MB per piece

 Controllable by the user via optional parameter

2. It starts copies of the program on a cluster of machines

STEP 2

 Master = a special copy of the program

 Workers = other copies that are assigned work by master

 M Map tasks and R Reduce tasks to assign

 Master picks idle workers and assigns each one a Map task (or a Reduce task)

STEP 3

 A worker who is assigned a Map task:

 Reads the contents of the corresponding input split

 Parses key/value pairs out of the input data

 Passes each pair to the user-defined Map function

 Intermediate key/value pairs produced by the Map function are buffered in memory

STEP 4

 Periodically, the buffered pairs are written to local disk

 Partitioned into R regions by the partitioning function

 Locations of the buffered pairs on the local disk are passed back to the master

 It is responsible for forwarding the locations to the Reduce workers

STEP 5

 Reduce worker is notified by the master about data locations

 It uses remote procedure calls to read the buffered data from local
disks of the Map workers

 When it has read all intermediate data, it sorts it by the
intermediate keys
 Typically many different keys map to the same Reduce task

 If the amount of intermediate data is too large, an external sort is used

STEP 6
 A Reduce worker iterates over the sorted intermediate

data

 For each intermediate key encountered:
 It passes the key and the corresponding set of intermediate

values to the user's Reduce function

 The output is appended to a final output file for this Reduce
partition

COMBINE

After a map phase, the mapper transmits over the network
the entire intermediate data file to the reducer

 Sometimes this file is highly compressible

User can specify function combine
 Like a reduce function
 It is run by the mapper before passing the job to the reducer

 Over local data

COUNTERS
 Can be associated with any action that a mapper or a reducer does

 In addition to default counters

 e.g., the number of input and output key/value pairs processed

 User can watch the counters in real time to see the progress of a job

FAULT TOLERANCE

A large number of machines process a large number of data →
fault tolerance is necessary

Worker failure
 Master pings every worker periodically

 If no response is received in a certain amount of time, master marks the
worker as failed

 All its tasks are reset back to their initial idle state → become eligible for
scheduling on other workers

Master failure
 Strategy A:

 Master writes periodic checkpoints of the master data structures

 If it dies, a new copy can be started from the last checkpointed state

 Strategy B:

 There is only a single master → its failure is unlikely

 MapReduce computation is simply aborted if the master fails

 Clients can check for this condition and retry the MapReduce operation if they
desire

Straggler = a machine that takes an unusually long time to
complete one of the map/reduce tasks in the computation
 Example: a machine with a bad disk

Solution:
 When a MapReduce operation is close to completion, the master

schedules backup executions of the remaining in-progress tasks

 A task is marked as completed whenever either the primary or the
backup execution completes

 M pieces of Map phase and R pieces of Reduce phase
 Ideally both much larger than the number of worker machines

 How to set them?

 Master makes O(M + R) scheduling decisions

 Master keeps O(M * R) status information in memory
 For each Map/Reduce task: state (idle/in-progress/completed)

 For each non-idle task: identity of worker machine

 For each completed Map task: locations and sizes of the R intermediate file
regions

 R is often constrained by users
 The output of each Reduce task ends up in a separate output file

 Practical recommendation (Google):
 Choose M so that each individual task is roughly 16 – 64 MB of input data

 Make R a small multiple of the number of worker machines we expect to use

1. MapReduce is a step backwards in database access based on
 Schema describing data structure

 Separating schema from the application

 Advanced query languages

2. MapReduce is a poor implementation
 Instead of indices it uses brute force

3. MapReduce is not novel (ideas more than 20 years old and overcome)

4. MapReduce is missing features common in DBMSs
 Indices, transactions, integrity constraints, views, …

5. MapReduce is incompatible with applications implemented over
DBMSs

 Data mining, business intelligence, …

 *1943

 Computer scientist – database researcher

 Academic prototypes form the core of various
databases
 Ingres, Postgres, C-store (Vertica), H-store (VoltDB), SciDB, …

 2015 – Turing award (ACM)
 “Nobel Prize of computing”
 For concepts and practices underlying modern database

systems
 2016 – Tim Berners Lee

 For inventing the WWW

http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiol7SV2bPTAhXCKJoKHZXPD8EQjRwIBw&url=http://www.heidelberg-laureate-forum.org/blog/awards/turing-award/&psig=AFQjCNEz_Xc0wa42RSnRHJPwQ5_9Zo0Lrg&ust=1492800435375030
http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiol7SV2bPTAhXCKJoKHZXPD8EQjRwIBw&url=http://www.heidelberg-laureate-forum.org/blog/awards/turing-award/&psig=AFQjCNEz_Xc0wa42RSnRHJPwQ5_9Zo0Lrg&ust=1492800435375030

MapReduce requires:
 Distributed file system

 HDFS = Hadoop distributed file system

 Engine that can distribute, coordinate, monitor and gather the results

Hadoop: HDFS + JobTracker + TaskTracker
 JobTracker (master) = scheduler

 TaskTracker (slave per node) – is assigned a Map or Reduce (or other
operations)
 Map or Reduce run on a node → so does the TaskTracker

 Each task is run on its own JVM

JOBTRACKER

 Like a scheduler:
1. A client application is sent to the JobTracker

2. It “talks” to the NameNode (= HDFS master) and locates
the TaskTracker (Hadoop client) near the data

3. It moves the work to the chosen TaskTracker node

TASKTRACKER

 Accepts tasks from JobTracker
 Map, Reduce, Combine, …

 Input, output paths

 Has a number of slots for the tasks
 Execution slots available on the machine (or machines on the same rack)

 Spawns a separate JVM for execution of a task

 Indicates the number of available slots through the hearbeat
message to the JobTracker
 A failed task is re-executed by the JobTracker

 For launching program:
1. Create a Job to define a job

 Using class Configuration

2. Submit Job to the cluster and wait for completion

 Job involves:
 Classes implementing Mapper and Reducer interfaces

 Job.setMapperClass()

 Job.setReducerClass()

 Job outputs
 Job.setOutputKeyClass()

 Job.setOutputValueClass()

 Other options:
 Job.setNumReduceTasks()

 …

 waitForCompletion()– waits (blocks) until the job finishes

 submit() – does not block

 monitorAndPrintJob() – monitor a job and print status in real-time as
progress is made and tasks fail

 The user provides an instance of Mapper
 Implements interface Mapper

 Overrides function map

 Emits (k2,v2) using context.write(k2, v2)

 Exists in separate process from all other instances of Mapper
 No data sharing

void map (Object key,

Text value,

Context context)

input key

input value

collects output

keys and values

public static class TokenizerMapper

extends Mapper<Object, Text, Text, IntWritable>{

private final static IntWritable one = new IntWritable(1);

private Text word = new Text();

public void map (Object key, Text value, Context context)

throws IOException, InterruptedException {

StringTokenizer itr

= new StringTokenizer(value.toString());

while (itr.hasMoreTokens()) {

word.set(itr.nextToken());

context.write(word, one);

}

}

}

REDUCER

reduce(Text key,

Iterable<IntWritable> values,

Context context)

 Keys & values sent to one partition all go to the same reduce task

 Calls are sorted by key

public static class IntSumReducer

extends Reducer<Text,IntWritable,Text,IntWritable> {

private IntWritable result = new IntWritable();

public void reduce (Text key,

Iterable<IntWritable> values,

Context context

)

throws IOException, InterruptedException {

int sum = 0;

for (IntWritable val : values) {

sum += val.get();

}

result.set(sum);

context.write(key, result);

}

}

 Free and open source

 Crossplatform

 Pure Java

 Has bindings for non-Java programming languages

 Fault-tolerant

 Highly scalable

 Hierarchical file system

 Directories and files

 Operations: Create, remove, move, rename, ...

http://hadoop.apache.org/hdfs/
http://hadoop.apache.org/hdfs/

 Idea: “failure is the norm rather than exception”
 A HDFS instance may consist of thousands of machines

 Each storing a part of the file system’s data

 Each component has non-trivial probability of failure

→ Assumption: “There is always some component that is
non-functional.”
 Detection of faults

 Quick, automatic recovery

 Initial release : 2014

 Unified analytics engine for large-scale data processing
 Runs on a cluster of nodes

 Contains:
 High-level APIs in Java, Scala, Python and R

 Optimized engine that supports general execution graphs (DAGs)

 MapReduce has only 2 levels

 Higher-level tools

 Spark SQL (SQL and structured data processing)

 MLlib (machine learning)

 GraphX (graph processing)

 Spark Streaming

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiT9YvnoafeAhVoxYUKHYQjBWYQjRx6BAgBEAU&url=https://spark.apache.org/&psig=AOvVaw0HbVIAuxowpR7J9O3rhH8o&ust=1540751780140608
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiT9YvnoafeAhVoxYUKHYQjBWYQjRx6BAgBEAU&url=https://spark.apache.org/&psig=AOvVaw0HbVIAuxowpR7J9O3rhH8o&ust=1540751780140608

 Spark application = driver program
 Runs the user’s main function

 Executes parallel operations on a cluster

 Independent set of processes

 Coordinated by SparkContext object in the driver program

 SparkContext can connect to several types of cluster managers
 They allocate resources across applications

 When connected:
1. Spark acquires executors on nodes in the cluster

 Processes that run computations and store data for the application

2. Sends the application code to the executors

 Defined by JAR or Python files passed to SparkContext

3. Sends tasks to the executors to run

 Each application gets its own executor processes which run tasks in
multiple threads
 Pros: isolating of applications

 Scheduling + executing

 Cons: data cannot be shared across different Spark applications (instances of
SparkContext) without writing it to an external storage system

 Driver program
 Must listen for and accept incoming connections from its executors throughout its

lifetime

 Should be run close to the worker nodes

 Preferably on the same local area network

 Has a web UI

 Displays information about running tasks, executors, and storage usage

1. Build a SparkConf object
 Contains information about application

 appName = application name to show on the cluster UI

 master = Spark/Mesos/YARN cluster URL or string “local” to run in
local mode

2. Create a JavaSparkContext object
 Tells Spark how to access a cluster

SparkConf conf =

new SparkConf().setAppName(appName).setMaster(master);

JavaSparkContext sc =

new JavaSparkContext(conf);

 Immutable collection of elements partitioned across the nodes of
the cluster
 Can be operated on in parallel

 Can be persisted in memory

 Automatically recover from node failures

 Ways to create RDDs:
1. Parallelizing an existing collection in a driver program

2. Referencing a dataset in an external storage system

 e.g., HDFS, HBase, …

 In general: any offering a Hadoop InputFormat

PARALLELIZED COLLECTIONS

 Parallelized collections are created by calling SparkContext’s
parallelize method
 Elements of the collection are copied to form a distributed dataset

 The distributed dataset (distData) can be operated on in parallel

 See later

List<Integer> data = Arrays.asList(1, 2, 3, 4, 5);

JavaRDD<Integer> distData = sc.parallelize(data);

 Spark can create distributed datasets from any storage source supported
by Hadoop
 Local file system, HDFS, Cassandra, HBase, …

 Supports text files, SequenceFiles, and any other Hadoop InputFormat

 Example:
 Text file RDDs can be created using SparkContext’s textFile method

 Takes an URI for the file (local, HDFS, …)

 Reads it as a collection of lines

 Optional argument: number of partitions of the file

 Default: one partition for each block of the file (128MB by default in HDFS)

 Once created, distFile can be acted on by dataset operations

JavaRDD<String> distFile = sc.textFile("data.txt");

1. Transformations = create (lazily)

a new dataset from an existing one
 e.g., map = passes each dataset element through

a function and returns a new RDD representing the results

2. Actions = return a value to the driver program after running a
computation on the dataset

 e.g., reduce = aggregates all the elements of the RDD using some function
and returns the final result to the driver program

 By default: each transformed RDD may be recomputed each time we
run an action on it

 We may also persist an RDD in memory using the persist (or cache) method

 Much faster access the next time we query it

 There is also support for persisting RDDs on disk or replicated across
multiple nodes

 map(func) Returns a new distributed dataset formed by passing each element of
the source through a function func.

 union(otherDataset) Returns a new dataset that contains the union of the elements
in the source dataset and the argument.
 intersection, distinct

 filter(func) Returns a new dataset formed by selecting those elements of the source
on which func returns true.

 reduceByKey(func, [numPartitions]) When called on a dataset of (K, V) pairs,
returns a dataset of (K, V) pairs where the values for each key are aggregated using
the given reduce function func, which must be of type (V,V) => V. The number of
reduce tasks is configurable through an optional second argument.

 sortByKey([ascending], [numPartitions]) When called on a dataset of (K, V) pairs
where K implements Ordered, returns a dataset of (K, V) pairs sorted by keys in
ascending or descending order, as specified in the Boolean ascending argument.

 …

 reduce(func) Aggregates the elements of the dataset using a function func
(which takes two arguments and returns one). The function should be
commutative and associative so that it can be computed correctly in
parallel.

 count() Returns the number of elements in the dataset.

 first() Returns the first element of the dataset.

 take(n) Returns an array with the first n elements of the dataset.

 takeOrdered(n, [ordering]) Returns the first n elements of the RDD using
either their natural order or a custom comparator.

 …

1. Defines a base RDD from an external file
 Not loaded in memory or otherwise acted on, due to laziness

 lines is merely a pointer to the file

2. Defines lineLengths as the result of a map transformation
 Not immediately computed, due to laziness

3. Runs reduce = action
 Spark breaks the computation into tasks to run on separate machines

 Each machine runs both its part of the map and a local reduction, returning its
answer to the driver program

JavaRDD<String> lines = sc.textFile("data.txt");

JavaRDD<Integer> lineLengths = lines.map(s -> s.length());

int totalLength = lineLengths.reduce((a, b) -> a + b);

Spark module for structured data processing

More information about the structure of both the data and
the computation being performed
 Internally, Spark SQL uses this extra information to perform extra

optimizations

 Interact with Spark SQL: SQL, Dataset API, ...

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiSoYaipq_eAhUGC-wKHWPbDTIQjRx6BAgBEAU&url=https://medium.com/@manuelmourato25/how-spark-dataframe-shuffling-can-hurt-your-partitioning-28d05fdcb6fa&psig=AOvVaw0bF8BG3DJbHj2WUfZc2ZdA&ust=1541027852658508
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiSoYaipq_eAhUGC-wKHWPbDTIQjRx6BAgBEAU&url=https://medium.com/@manuelmourato25/how-spark-dataframe-shuffling-can-hurt-your-partitioning-28d05fdcb6fa&psig=AOvVaw0bF8BG3DJbHj2WUfZc2ZdA&ust=1541027852658508

 RDD = primary API in Spark since its inception
 Since Spark 1.0

 Internally each final computation is still done on RDDs

 DataFrame = data organized into named columns
 Since Spark 1.3

 Distributed collection of data, which is organized into named columns

 Designed to make data processing easier

 Higher level of abstraction

 Similar to a table in a relational database or a data frame in R/Python

 Can be constructed from: structured data files, tables in Hive, external
databases, existing RDDs , …

 API: Scala, Java, Python, R

 Dataset = a distributed collection of data
 Since Spark 1.6

 Provides the benefits of

 RDDs - strong typing, ability to use powerful lambda functions

 Spark SQL - optimized execution engine

 i.e. DataFrame processing

 Can be constructed from: JVM objects

 API: Scala, Java

 Since Spark 2.0: unification of DataFrame and Dataset

 Two distinct APIs:
 Untyped API

 Conceptually: DataFrame ~ collection of generic objects Dataset<Row>,
where a Row is a generic untyped JVM object

 Strongly-typed API

 Conceptually: Dataset ~ collection Dataset<T> of strongly-typed JVM
objects, dictated by a case class T
 Defined in Scala or a class in Java

SparkSession spark = SparkSession.builder().

appName("Java Spark SQL basic example").

config("spark.some.config.option", "some-value").getOrCreate();

Dataset<Row> df =

spark.read().json("examples/src/main/resources/people.json");

df.show();

// +----+-------+

// | age| name|

// +----+-------+

// |null|Michael|

// | 30| Andy|

// | 19| Justin|

// +----+-------+

df.printSchema();

// root

// |-- age: long (nullable = true)

// |-- name: string (nullable = true)

DataFrame - untyped

// Select only the "name" column

df.select("name").show();

// +-------+

// | name|

// +-------+

// |Michael|

// | Andy|

// | Justin|

// +-------+

// Select everybody, but increment the age by 1

df.select(col("name"), col("age").plus(1)).show();

// +-------+---------+

// | name|(age + 1)|

// +-------+---------+

// |Michael| null|

// | Andy| 31|

// | Justin| 20|

// +-------+---------+

// Select people older than 21

df.filter(col("age").gt(21)).show();

// +---+----+

// |age|name|

// +---+----+

// | 30|Andy|

// +---+----+

// Count people by age

df.groupBy("age").count().show();

// +----+-----+

// | age|count|

// +----+-----+

// | 19| 1|

// |null| 1|

// | 30| 1|

// +----+-----+

// Register the DataFrame as an SQL temporary view

df.createOrReplaceTempView("people");

Dataset<Row> sqlDF = spark.sql("SELECT * FROM people");

sqlDF.show();

// +----+-------+

// | age| name|

// +----+-------+

// |null|Michael|

// | 30| Andy|

// | 19| Justin|

// +----+-------+

 Temporary views are session-scoped
 Disappear if the session that creates it terminates

 Global temporary view = a temporary view shared
among all sessions
 Keeps alive until the Spark application terminates

 Tied to a system preserved database global_temp

 df.createGlobalTempView("people");

 Must use the qualified name to refer it

 e.g. SELECT * FROM global_temp.people

 Jeffrey Dean and Sanjay Ghemawat: MapReduce: Simplified Data Processing on Large
Clusters, Google, Inc.
 http://labs.google.com/papers/mapreduce.html

 Google Code: Introduction to Parallel Programming and MapReduce
 code.google.com/edu/parallel/mapreduce-tutorial.html

 Apache Hadoop: http://hadoop.apache.org/

 Hadoop Map/Reduce Tutorial
 http://hadoop.apache.org/docs/r0.20.2/mapred_tutorial.html

 Open Source MapReduce
 http://lucene.apache.org/hadoop/

 Hadoop: The Definitive Guide, by Tom White, 2nd edition, Oreilly’s, 2010

 David DeWitt and Michael Stonebraker: Relational Database Experts Jump The
MapReduce Shark

http://labs.google.com/papers/mapreduce.html
http://code.google.com/edu/parallel/mapreduce-tutorial.html
http://hadoop.apache.org/
http://hadoop.apache.org/docs/r0.20.2/mapred_tutorial.html
http://lucene.apache.org/hadoop/

 Spark Overview https://spark.apache.org/docs/latest/index.html

 Apache Spark Examples https://spark.apache.org/examples.html

 Mastering Apache Spark 2.3.2 https://jaceklaskowski.gitbooks.io/mastering-
apache-spark/

 A Tale of Three Apache Spark APIs: RDDs, DataFrames, and Datasets
https://databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-apis-rdds-
dataframes-and-datasets.html

https://spark.apache.org/docs/latest/index.html
https://spark.apache.org/examples.html
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/
https://databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-apis-rdds-dataframes-and-datasets.html

