
Big Data and Data Science

Doc. RNDr. Irena Holubová, Ph.D. &

https://www.ksi.mff.cuni.cz/~holubova/NDBI048/

NDBI048

https://www.ksi.mff.cuni.cz/~holubova/NDBI048/

 Big Data

 MapReduce

 Apache Spark

I. Business Understanding

II. Data Understanding

III. Data Preparation

IV. Modeling

V. Evaluation

VI. Deployment

https://www.datascience-pm.com/crisp-dm-2/

https://www.datascience-pm.com/crisp-dm-2/

 No standard definition

 First occurrence of the term: High Performance Computing (HPC)

Gartner: “Big Data” is high volume,

high velocity, and/or high variety

information assets that require new

forms of processing to enable

enhanced decision making, insight

discovery and process optimization.

3 (4, 5)

Vs

Volume

Variety Velocity

Big Data

 Information technology research and advisory company

Founded in 1979 by Gideon Gartner

HQ in Stanford, Connecticut, USA
 > 5,300 employees

 > 12,400 client organizations

Provides: competitive analysis reports, industry overviews,
market trend data, product evaluation reports, …

http://www.gartner.com/

http://www.gartner.com/
http://en.wikipedia.org/wiki/File:Gartner136.png
http://en.wikipedia.org/wiki/File:Gartner136.png

IBM: Depending on the industry and organization, Big Data encompasses

information from internal and external sources such as transactions, social

media, enterprise content, sensors, and mobile devices.

Companies can leverage data to adapt their products and services to better

meet customer needs, optimize operations and infrastructure, and find new

sources of revenue.

http://www.ibmbigdatahub.com/

Social media and networks

(all of us are generating data)

Scientific instruments

(collecting all sorts of data)

Mobile devices

(tracking all objects all the time)

Sensor technology and networks

(measuring all kinds of data)

http://www.ibmbigdatahub.com/

2.5 billion monthly active users

5 billion comments are left on Facebook pages monthly

55 million status updates are made every day

Every 60 seconds
 317,000 status updates

 147,000 photos uploaded

 54,000 shared links

https://www.omnicoreagency.com/facebook-statistics/

https://www.omnicoreagency.com/facebook-statistics/

 2.91 billion monthly active users

Facebook has over 10 million advertisers
 A Facebook user clicks on 12 ads on average every month

On average, users spend 34 minutes on Facebook every
day

There were over 3.5 billion live feeds on Facebook
towards the end of 2018

 500 million people use Facebook Stories daily

https://www.omnicoreagency.com/facebook-statistics/

https://www.omnicoreagency.com/facebook-statistics/

 Association rule learning – discovering interesting relationships, i.e., “association
rules,” among variables in large databases
 e.g., market basket analysis

 Classification – to identify the categories in which new data points belong, based
on a training set containing data points that have already been categorized
 Supervised learning

 e.g., buying decisions

 Cluster analysis – classifying objects that split a diverse group into smaller groups
of similar objects
 Unsupervised learning

 Data fusion and data integration

 Signal processing

 Crowdsourcing - collecting data submitted by a large group of people or
community

 Data mining - extract patterns from large datasets
 Involves association rule learning, cluster analysis, classification, regression, …

 Time series analysis and forecasting
 e.g., hourly value of a stock market index

 Sentiment analysis - identifying the feature/aspect/product about which a
sentiment is being expressed,
 Determining the type (i.e., positive, negative, or neutral)

 Determining the degree and strength of the sentiment

 Visualization

 …

Vertical Scaling (scaling up)

 Traditional choice has been in favour of
strong consistency
 System architects have in the past gone in

favour of scaling up (vertical scaling)

 Involves larger and more powerful machines

 Works in many cases but…

 Vendor lock-in
 Not everyone makes large and powerful

machines

 Who do, often use proprietary formats

 Makes a customer dependent on a vendor
for products and services

 Unable to use another vendor

Horizontal Scaling (scaling out)

 Systems are distributed across multiple
machines/nodes (horizontal scaling)
 Commodity machines (cost effective)
 Often surpasses scalability of vertical

approach

 But…

 Fallacies of distributed computing:
 The network is reliable
 Latency is zero
 Bandwidth is infinite
 The network is secure
 Topology does not change
 There is one administrator
 Transport cost is zero
 The network is homogeneous

2012

2021

 A programming model + implementation

 Developed by Google in 2008
 To replace old, centralized index structure

 Distributed, parallel computing on large data

Google: “A simple and powerful interface that enables automatic
parallelization and distribution of large-scale computations,
combined with an implementation of this interface that achieves
high performance on large clusters of commodity PCs.”

 Programming model in general:
 Mental model a programmer has about execution of application

 Purpose: improve programmer's productivity

 Evaluation: expressiveness, simplicity, performance

Example: Von

Neumann’s

model =

sequence of

instructions

 Divide-and-conquer paradigm
 Map breaks down a problem into sub-problems

 Processes a key/value pair to generate a set of intermediate key/value pairs

 Reduce receives and combines the sub-solutions to solve the problem

 Processes intermediate values associated with the same intermediate key

 Many real-world tasks can be expressed this way
 Programmer focuses on map/reduce code

 Framework cares about data partitioning, scheduling execution across
machines, handling machine failures, managing inter-machine
communication, …

Map
 Input: a key/value pair

 Output: a set of intermediate key/value pairs
 Usually different domain

 (k1,v1) → list(k2,v2)

Reduce
 Input: an intermediate key and a set of all values for that key

 Output: a possibly smaller set of values
 The same domain

 (k2,list(v2)) → (k2,possibly smaller list(v2))

map(String key, String value):

// key: document name

// value: document contents

for each word w in value:

EmitIntermediate(w, "1");

reduce(String key, Iterator values):

// key: a word

// values: a list of counts

int result = 0;

for each v in values:

result += ParseInt(v);

Emit(key, AsString(result));

 distributed grep
 Map: emits <word, line number> if it matches a supplied pattern

 Reduce: identity

 URL access frequency
 Map: processes web logs, emits <URL, 1>

 Reduce: sums values and emits <URL, sum>

 reverse web-link graph
 Map: <target, source> for each link to a target URL found in a page named

source

 Reduce: concatenates the list of all source URLs associated with a given target
URL <target, list(source)>

 term vector per host
 “Term vector” summarizes the most important words that occur in a

document or a set of documents

 Map: emits <hostname, term vector> for each input document

 The hostname is extracted from the URL of the document

 Reduce: adds the term vectors together, throws away infrequent terms

 inverted index
 Map: parses each document, emits <word, document ID>

 Reduce: sorts the corresponding document IDs, emits <word,
list(document ID)>

 distributed sort
 Map: extracts the key from each record, and emits <key, record>

 Reduce: emits all pairs unchanged

 Input reader
 Divides the input into appropriate size 'splits'

 Each assigned to a single Map function

 Reads data from stable storage
 e.g., a distributed file system

 Generates key/value pairs

 Map function
 User-specified processing of key/value pairs

 Partition function
 Map function output is allocated to a reducer
 Partition function is given the key (output of Map) and the number of

reducers and returns the index of the desired reducer
 Default is to hash the key and use the hash value modulo the number of

reducers

 Compare function
 Sorts the input for the Reduce function

 Reduce function
 User-specified processing of key/values

 Output writer
 Writes the output of the Reduce function to stable storage

 e.g., a distributed file system

GOOGLE STEP 1

1. MapReduce library in the user program splits the input files into M pieces

 Typically 16 – 64 MB per piece

 Controllable by the user via optional parameter

2. It starts copies of the program on a cluster of machines

STEP 2

 Master = a special copy of the program

 Workers = other copies that are assigned work by master

 M Map tasks and R Reduce tasks to assign

 Master picks idle workers and assigns each one a Map task (or a Reduce task)

STEP 3

 A worker who is assigned a Map task:

 Reads the contents of the corresponding input split

 Parses key/value pairs out of the input data

 Passes each pair to the user-defined Map function

 Intermediate key/value pairs produced by the Map function are buffered in memory

STEP 4

 Periodically, the buffered pairs are written to local disk

 Partitioned into R regions by the partitioning function

 Locations of the buffered pairs on the local disk are passed back to the master

 It is responsible for forwarding the locations to the Reduce workers

STEP 5

 Reduce worker is notified by the master about data locations

 It uses remote procedure calls to read the buffered data from local
disks of the Map workers

 When it has read all intermediate data, it sorts it by the
intermediate keys
 Typically many different keys map to the same Reduce task

 If the amount of intermediate data is too large, an external sort is used

STEP 6
 A Reduce worker iterates over the sorted intermediate

data

 For each intermediate key encountered:
 It passes the key and the corresponding set of intermediate

values to the user's Reduce function

 The output is appended to a final output file for this Reduce
partition

COMBINE

After a map phase, the mapper transmits over the network
the entire intermediate data file to the reducer

 Sometimes this file is highly compressible

User can specify function combine
 Like a reduce function
 It is run by the mapper before passing the job to the reducer

 Over local data

COUNTERS
 Can be associated with any action that a mapper or a reducer does

 In addition to default counters

 e.g., the number of input and output key/value pairs processed

 User can watch the counters in real time to see the progress of a job

FAULT TOLERANCE

A large number of machines process a large number of data →
fault tolerance is necessary

Worker failure
 Master pings every worker periodically

 If no response is received in a certain amount of time, master marks the
worker as failed

 All its tasks are reset back to their initial idle state → become eligible for
scheduling on other workers

Master failure
 Strategy A:

 Master writes periodic checkpoints of the master data structures

 If it dies, a new copy can be started from the last checkpointed state

 Strategy B:

 There is only a single master → its failure is unlikely

 MapReduce computation is simply aborted if the master fails

 Clients can check for this condition and retry the MapReduce operation if they
desire

Straggler = a machine that takes an unusually long time to
complete one of the map/reduce tasks in the computation
 Example: a machine with a bad disk

Solution:
 When a MapReduce operation is close to completion, the master

schedules backup executions of the remaining in-progress tasks

 A task is marked as completed whenever either the primary or the
backup execution completes

 M pieces of Map phase and R pieces of Reduce phase
 Ideally both much larger than the number of worker machines

 How to set them?

 Master makes O(M + R) scheduling decisions

 Master keeps O(M * R) status information in memory
 For each Map/Reduce task: state (idle/in-progress/completed)

 For each non-idle task: identity of worker machine

 For each completed Map task: locations and sizes of the R intermediate file
regions

 R is often constrained by users
 The output of each Reduce task ends up in a separate output file

 Practical recommendation (Google):
 Choose M so that each individual task is roughly 16 – 64 MB of input data

 Make R a small multiple of the number of worker machines we expect to use

1. MapReduce is a step backwards in database access based on
 Schema describing data structure

 Separating schema from the application

 Advanced query languages

2. MapReduce is a poor implementation
 Instead of indices it uses brute force

3. MapReduce is not novel (ideas more than 20 years old and overcome)

4. MapReduce is missing features common in DBMSs
 Indices, transactions, integrity constraints, views, …

5. MapReduce is incompatible with applications implemented over
DBMSs

 Data mining, business intelligence, …

 *1943

 Computer scientist – database researcher

 Academic prototypes form the core of various
databases
 Ingres, Postgres, C-store (Vertica), H-store (VoltDB), SciDB, …

 2015 – Turing award (ACM)
 “Nobel Prize of computing”
 For concepts and practices underlying modern database

systems
 2016 – Tim Berners Lee

 For inventing the WWW

http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiol7SV2bPTAhXCKJoKHZXPD8EQjRwIBw&url=http://www.heidelberg-laureate-forum.org/blog/awards/turing-award/&psig=AFQjCNEz_Xc0wa42RSnRHJPwQ5_9Zo0Lrg&ust=1492800435375030
http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiol7SV2bPTAhXCKJoKHZXPD8EQjRwIBw&url=http://www.heidelberg-laureate-forum.org/blog/awards/turing-award/&psig=AFQjCNEz_Xc0wa42RSnRHJPwQ5_9Zo0Lrg&ust=1492800435375030

MapReduce requires:
 Distributed file system

 HDFS = Hadoop distributed file system

 Engine that can distribute, coordinate, monitor and gather the results

Hadoop: HDFS + JobTracker + TaskTracker
 JobTracker (master) = scheduler

 TaskTracker (slave per node) – is assigned a Map or Reduce (or other
operations)
 Map or Reduce run on a node → so does the TaskTracker

 Each task is run on its own JVM

JOBTRACKER

 Like a scheduler:
1. A client application is sent to the JobTracker

2. It “talks” to the NameNode (= HDFS master) and locates
the TaskTracker (Hadoop client) near the data

3. It moves the work to the chosen TaskTracker node

TASKTRACKER

 Accepts tasks from JobTracker
 Map, Reduce, Combine, …

 Input, output paths

 Has a number of slots for the tasks
 Execution slots available on the machine (or machines on the same rack)

 Spawns a separate JVM for execution of a task

 Indicates the number of available slots through the hearbeat
message to the JobTracker
 A failed task is re-executed by the JobTracker

 For launching program:
1. Create a Job to define a job

 Using class Configuration

2. Submit Job to the cluster and wait for completion

 Job involves:
 Classes implementing Mapper and Reducer interfaces

 Job.setMapperClass()

 Job.setReducerClass()

 Job outputs
 Job.setOutputKeyClass()

 Job.setOutputValueClass()

 Other options:
 Job.setNumReduceTasks()

 …

 waitForCompletion()– waits (blocks) until the job finishes

 submit() – does not block

 monitorAndPrintJob() – monitor a job and print status in real-time as
progress is made and tasks fail

 The user provides an instance of Mapper
 Implements interface Mapper

 Overrides function map

 Emits (k2,v2) using context.write(k2, v2)

 Exists in separate process from all other instances of Mapper
 No data sharing

void map (Object key,

Text value,

Context context)

input key

input value

collects output

keys and values

public static class TokenizerMapper

extends Mapper<Object, Text, Text, IntWritable>{

private final static IntWritable one = new IntWritable(1);

private Text word = new Text();

public void map (Object key, Text value, Context context)

throws IOException, InterruptedException {

StringTokenizer itr

= new StringTokenizer(value.toString());

while (itr.hasMoreTokens()) {

word.set(itr.nextToken());

context.write(word, one);

}

}

}

REDUCER

reduce(Text key,

Iterable<IntWritable> values,

Context context)

 Keys & values sent to one partition all go to the same reduce task

 Calls are sorted by key

public static class IntSumReducer

extends Reducer<Text,IntWritable,Text,IntWritable> {

private IntWritable result = new IntWritable();

public void reduce (Text key,

Iterable<IntWritable> values,

Context context

)

throws IOException, InterruptedException {

int sum = 0;

for (IntWritable val : values) {

sum += val.get();

}

result.set(sum);

context.write(key, result);

}

}

 Free and open source

 Crossplatform

 Pure Java

 Has bindings for non-Java programming languages

 Fault-tolerant

 Highly scalable

 Hierarchical file system

 Directories and files

 Operations: Create, remove, move, rename, ...

http://hadoop.apache.org/hdfs/
http://hadoop.apache.org/hdfs/

 Idea: “failure is the norm rather than exception”
 A HDFS instance may consist of thousands of machines

 Each storing a part of the file system’s data

 Each component has non-trivial probability of failure

→ Assumption: “There is always some component that is
non-functional.”
 Detection of faults

 Quick, automatic recovery

 Initial release : 2014

 Unified analytics engine for large-scale data processing
 Runs on a cluster of nodes

 Contains:
 High-level APIs in Java, Scala, Python and R

 Optimized engine that supports general execution graphs (DAGs)

 MapReduce has only 2 levels

 Higher-level tools

 Spark SQL (SQL and structured data processing)

 MLlib (machine learning)

 GraphX (graph processing)

 Spark Streaming

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiT9YvnoafeAhVoxYUKHYQjBWYQjRx6BAgBEAU&url=https://spark.apache.org/&psig=AOvVaw0HbVIAuxowpR7J9O3rhH8o&ust=1540751780140608
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiT9YvnoafeAhVoxYUKHYQjBWYQjRx6BAgBEAU&url=https://spark.apache.org/&psig=AOvVaw0HbVIAuxowpR7J9O3rhH8o&ust=1540751780140608

 Spark application = driver program
 Runs the user’s main function

 Executes parallel operations on a cluster

 Independent set of processes

 Coordinated by SparkContext object in the driver program

 SparkContext can connect to several types of cluster managers
 They allocate resources across applications

 When connected:
1. Spark acquires executors on nodes in the cluster

 Processes that run computations and store data for the application

2. Sends the application code to the executors

 Defined by JAR or Python files passed to SparkContext

3. Sends tasks to the executors to run

 Each application gets its own executor processes which run tasks in
multiple threads
 Pros: isolating of applications

 Scheduling + executing

 Cons: data cannot be shared across different Spark applications (instances of
SparkContext) without writing it to an external storage system

 Driver program
 Must listen for and accept incoming connections from its executors throughout its

lifetime

 Should be run close to the worker nodes

 Preferably on the same local area network

 Has a web UI

 Displays information about running tasks, executors, and storage usage

1. Build a SparkConf object
 Contains information about application

 appName = application name to show on the cluster UI

 master = Spark/Mesos/YARN cluster URL or string “local” to run in
local mode

2. Create a JavaSparkContext object
 Tells Spark how to access a cluster

SparkConf conf =

new SparkConf().setAppName(appName).setMaster(master);

JavaSparkContext sc =

new JavaSparkContext(conf);

 Immutable collection of elements partitioned across the nodes of
the cluster
 Can be operated on in parallel

 Can be persisted in memory

 Automatically recover from node failures

 Ways to create RDDs:
1. Parallelizing an existing collection in a driver program

2. Referencing a dataset in an external storage system

 e.g., HDFS, HBase, …

 In general: any offering a Hadoop InputFormat

PARALLELIZED COLLECTIONS

 Parallelized collections are created by calling SparkContext’s
parallelize method
 Elements of the collection are copied to form a distributed dataset

 The distributed dataset (distData) can be operated on in parallel

 See later

List<Integer> data = Arrays.asList(1, 2, 3, 4, 5);

JavaRDD<Integer> distData = sc.parallelize(data);

 Spark can create distributed datasets from any storage source supported
by Hadoop
 Local file system, HDFS, Cassandra, HBase, …

 Supports text files, SequenceFiles, and any other Hadoop InputFormat

 Example:
 Text file RDDs can be created using SparkContext’s textFile method

 Takes an URI for the file (local, HDFS, …)

 Reads it as a collection of lines

 Optional argument: number of partitions of the file

 Default: one partition for each block of the file (128MB by default in HDFS)

 Once created, distFile can be acted on by dataset operations

JavaRDD<String> distFile = sc.textFile("data.txt");

1. Transformations = create (lazily)

a new dataset from an existing one
 e.g., map = passes each dataset element through

a function and returns a new RDD representing the results

2. Actions = return a value to the driver program after running a
computation on the dataset

 e.g., reduce = aggregates all the elements of the RDD using some function
and returns the final result to the driver program

 By default: each transformed RDD may be recomputed each time we
run an action on it

 We may also persist an RDD in memory using the persist (or cache) method

 Much faster access the next time we query it

 There is also support for persisting RDDs on disk or replicated across
multiple nodes

 map(func) Returns a new distributed dataset formed by passing each element of
the source through a function func.

 union(otherDataset) Returns a new dataset that contains the union of the elements
in the source dataset and the argument.
 intersection, distinct

 filter(func) Returns a new dataset formed by selecting those elements of the source
on which func returns true.

 reduceByKey(func, [numPartitions]) When called on a dataset of (K, V) pairs,
returns a dataset of (K, V) pairs where the values for each key are aggregated using
the given reduce function func, which must be of type (V,V) => V. The number of
reduce tasks is configurable through an optional second argument.

 sortByKey([ascending], [numPartitions]) When called on a dataset of (K, V) pairs
where K implements Ordered, returns a dataset of (K, V) pairs sorted by keys in
ascending or descending order, as specified in the Boolean ascending argument.

 …

 reduce(func) Aggregates the elements of the dataset using a function func
(which takes two arguments and returns one). The function should be
commutative and associative so that it can be computed correctly in
parallel.

 count() Returns the number of elements in the dataset.

 first() Returns the first element of the dataset.

 take(n) Returns an array with the first n elements of the dataset.

 takeOrdered(n, [ordering]) Returns the first n elements of the RDD using
either their natural order or a custom comparator.

 …

1. Defines a base RDD from an external file
 Not loaded in memory or otherwise acted on, due to laziness

 lines is merely a pointer to the file

2. Defines lineLengths as the result of a map transformation
 Not immediately computed, due to laziness

3. Runs reduce = action
 Spark breaks the computation into tasks to run on separate machines

 Each machine runs both its part of the map and a local reduction, returning its
answer to the driver program

JavaRDD<String> lines = sc.textFile("data.txt");

JavaRDD<Integer> lineLengths = lines.map(s -> s.length());

int totalLength = lineLengths.reduce((a, b) -> a + b);

Spark module for structured data processing

More information about the structure of both the data and
the computation being performed
 Internally, Spark SQL uses this extra information to perform extra

optimizations

 Interact with Spark SQL: SQL, Dataset API, ...

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiSoYaipq_eAhUGC-wKHWPbDTIQjRx6BAgBEAU&url=https://medium.com/@manuelmourato25/how-spark-dataframe-shuffling-can-hurt-your-partitioning-28d05fdcb6fa&psig=AOvVaw0bF8BG3DJbHj2WUfZc2ZdA&ust=1541027852658508
https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiSoYaipq_eAhUGC-wKHWPbDTIQjRx6BAgBEAU&url=https://medium.com/@manuelmourato25/how-spark-dataframe-shuffling-can-hurt-your-partitioning-28d05fdcb6fa&psig=AOvVaw0bF8BG3DJbHj2WUfZc2ZdA&ust=1541027852658508

 RDD = primary API in Spark since its inception
 Since Spark 1.0

 Internally each final computation is still done on RDDs

 DataFrame = data organized into named columns
 Since Spark 1.3

 Distributed collection of data, which is organized into named columns

 Designed to make data processing easier

 Higher level of abstraction

 Similar to a table in a relational database or a data frame in R/Python

 Can be constructed from: structured data files, tables in Hive, external
databases, existing RDDs , …

 API: Scala, Java, Python, R

 Dataset = a distributed collection of data
 Since Spark 1.6

 Provides the benefits of

 RDDs - strong typing, ability to use powerful lambda functions

 Spark SQL - optimized execution engine

 i.e. DataFrame processing

 Can be constructed from: JVM objects

 API: Scala, Java

 Since Spark 2.0: unification of DataFrame and Dataset

 Two distinct APIs:
 Untyped API

 Conceptually: DataFrame ~ collection of generic objects Dataset<Row>,
where a Row is a generic untyped JVM object

 Strongly-typed API

 Conceptually: Dataset ~ collection Dataset<T> of strongly-typed JVM
objects, dictated by a case class T
 Defined in Scala or a class in Java

SparkSession spark = SparkSession.builder().

appName("Java Spark SQL basic example").

config("spark.some.config.option", "some-value").getOrCreate();

Dataset<Row> df =

spark.read().json("examples/src/main/resources/people.json");

df.show();

// +----+-------+

// | age| name|

// +----+-------+

// |null|Michael|

// | 30| Andy|

// | 19| Justin|

// +----+-------+

df.printSchema();

// root

// |-- age: long (nullable = true)

// |-- name: string (nullable = true)

DataFrame - untyped

// Select only the "name" column

df.select("name").show();

// +-------+

// | name|

// +-------+

// |Michael|

// | Andy|

// | Justin|

// +-------+

// Select everybody, but increment the age by 1

df.select(col("name"), col("age").plus(1)).show();

// +-------+---------+

// | name|(age + 1)|

// +-------+---------+

// |Michael| null|

// | Andy| 31|

// | Justin| 20|

// +-------+---------+

// Select people older than 21

df.filter(col("age").gt(21)).show();

// +---+----+

// |age|name|

// +---+----+

// | 30|Andy|

// +---+----+

// Count people by age

df.groupBy("age").count().show();

// +----+-----+

// | age|count|

// +----+-----+

// | 19| 1|

// |null| 1|

// | 30| 1|

// +----+-----+

// Register the DataFrame as an SQL temporary view

df.createOrReplaceTempView("people");

Dataset<Row> sqlDF = spark.sql("SELECT * FROM people");

sqlDF.show();

// +----+-------+

// | age| name|

// +----+-------+

// |null|Michael|

// | 30| Andy|

// | 19| Justin|

// +----+-------+

 Temporary views are session-scoped
 Disappear if the session that creates it terminates

 Global temporary view = a temporary view shared
among all sessions
 Keeps alive until the Spark application terminates

 Tied to a system preserved database global_temp

 df.createGlobalTempView("people");

 Must use the qualified name to refer it

 e.g. SELECT * FROM global_temp.people

 Jeffrey Dean and Sanjay Ghemawat: MapReduce: Simplified Data Processing on Large
Clusters, Google, Inc.
 http://labs.google.com/papers/mapreduce.html

 Google Code: Introduction to Parallel Programming and MapReduce
 code.google.com/edu/parallel/mapreduce-tutorial.html

 Apache Hadoop: http://hadoop.apache.org/

 Hadoop Map/Reduce Tutorial
 http://hadoop.apache.org/docs/r0.20.2/mapred_tutorial.html

 Open Source MapReduce
 http://lucene.apache.org/hadoop/

 Hadoop: The Definitive Guide, by Tom White, 2nd edition, Oreilly’s, 2010

 David DeWitt and Michael Stonebraker: Relational Database Experts Jump The
MapReduce Shark

http://labs.google.com/papers/mapreduce.html
http://code.google.com/edu/parallel/mapreduce-tutorial.html
http://hadoop.apache.org/
http://hadoop.apache.org/docs/r0.20.2/mapred_tutorial.html
http://lucene.apache.org/hadoop/

 Spark Overview https://spark.apache.org/docs/latest/index.html

 Apache Spark Examples https://spark.apache.org/examples.html

 Mastering Apache Spark 2.3.2 https://jaceklaskowski.gitbooks.io/mastering-
apache-spark/

 A Tale of Three Apache Spark APIs: RDDs, DataFrames, and Datasets
https://databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-apis-rdds-
dataframes-and-datasets.html

https://spark.apache.org/docs/latest/index.html
https://spark.apache.org/examples.html
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/
https://databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-apis-rdds-dataframes-and-datasets.html

