For the upcoming lesson on October 17, 2024, prepare the self-study material in advance and answer the questions under Q&A. Bring your answers to the next lesson.

Self Study Material

We refer to this video playlist "Introduction to Databases - Jennifer Widom - Stanford": https://www.youtube.com/playlist?list=PLroEs25KGvwzmvIxYHRhoGTz9w8LeXek0

- Brush up on the basics of relational databases systems (you should already know this), watch Jennifer Widom's videos 01-01 until 02-02.
- Recap relational algebra, watch Jennifer Widom's videos 05-01, 5-02, and 06-01.

Q&A

What does property?	it mean	ı if a quer	y language is	s "compositional"?	Why is this	s a desirable

t's consider an instance of	relati	ion Stude	ent:		
-		Stu	dent		
-	sID	sName	GPA	sizeHS	
-	123	Amy	3.9	1000	
	234	Bob	3.6	1500	
	345	Craig	3.5	50	
_	677	Amy	4.0	1200	
hat is the result of evaluatin	ng the	e relations	al algeb	ra query 1	$s_{ID,sName} (\sigma_{GPA>3.7} (Stude))$
hat is the result of evaluating	ng the	e relations	al algeb	ra query a	$ \tau_{sName} (\sigma_{GPA>3.7}(Student)) $

5. Let's consider an instance of relation Apply:

		Apply	
sID	cName	major	decision
123	Stanford	CS	Y
123	Stanford	EE	N
123	Berkeley	CS	Y
123	Cornell	EE	Y
234	Berkeley	biology	N
345	MIT	bioengineering	Y
345	Cornell	bioengineering	N
345	Cornell	CS	Y

	345 Cornell CS Y
	How many tuples are in the result of evaluating $Student \times Apply$?
6.	How many tuples are in the result of evaluating $Student \bowtie Apply$?
7.	Is it true that $Student \bowtie (Apply \bowtie College) = (Student \bowtie Apply) \bowtie College?$
8.	Is it true that $Apply \bowtie College = College \bowtie Apply$?
9.	Is it true that $Apply \bowtie Student = \sigma_{Apply.sID=Student.sID}(Apply \times Student)$?
10.	Is it true that $Apply \bowtie Student = Apply \bowtie_{Apply.sID=Student.sID}$ Student?

11.	What does it mean when we say that the \bowtie operator is not part of the core relational algebra?				
12.	What does it mean when we say that SQL is a declarative language?				
13.	How are basic SQL statements and relational algebra connected?				