MDS miniHive
Winter Term 2024 /25
Lab 2

1 Practicing Relational Algebra with RADB

In this lab session, we practice writing queries in relational algebra. We familiarize ourselves
with the specific RADB syntax, a simple relational algebra interpreter. We will rely on this
syntax when building miniHive.

1.1 Getting Started

RADB is available in the miniHive Docker container, in the radb directory:
minihive@container$ cd radb

This directory contains the “pizza” scenario by Jennifer Widom. Load the data. ..
minihive@container:~/radb$ radb -i pizza.ra pizza.db

...and start the RADB console:

minihive@container:~/radb$ radb pizza.db

The RADB console wraps SQLite, so SQLite commands are available. To list all available
relations, write:

radb: A relational algebra interpreter over relational databases
Version 3.0.4 by Jun Yang <junyang@cs.duke.edu>
https://github.com/junyang/radb
ra>\list;
databaserelations:
Eats(name:string, pizza:string)
Frequents(name:string, pizzeria:string)
Person(name:string, age:number, gender:string)
Serves(pizzeria:string, pizza:string, price:number)

MDS miniHive Lab 2 - Page 2 of 7

To list all tuples in relation Person, to only list persons older than 30, and to finally quit
the console, write:

ra> Person;
(name:string, age:number, gender:string)
Amy, 16, female
Ben, 21, male
Cal, 33, male
Dan, 13, male
Eli, 45, male
Fay, 21, female
Gus, 24, male
Hil, 30, female
Ian, 18, male

9 tuples returned

ra> \select_{age>30} Person;
(name:string, age:number, gender:string)
Cal, 33, male

Eli, 45, male

2 tuples returned

ra>

ra> \quit;

Observe that the RADB syntax mimics the syntax familiar from LaTeX math formulas,
writing “\select_{\phi}” for the selection operator o.

1.2 Writing RADB Queries

For the following tasks, you are asked to write queries in relational algebra using RADB
syntax, and evaluate them against the pizza scenario. The documentation and syntax of
RADB can be found here: https://users.cs.duke.edu/~junyang/radb/.

1. Ben plans a date with Amy. To which pizzeria can he take her? It should be a pizzeria
that she already frequents.

2. Ben considers inviting Amy to Pizza Hut. He wants to know how much money to bring
with him. How much do pizzas cost there? List the prices so that Ben can form an idea.

3. Is there a pizzeria that Ben and Amy both frequent? What is its name?

4. Find all pizzas eaten by at least one female over the age of 20.

Hint: 3 tuples are returned.

https://users.cs.duke.edu/~junyang/radb/

MDS miniHive Lab 2 - Page 3 of 7

5. Find the names of all females who eat at least one pizza served by Straw Hat.
Note: The pizza need not be eaten at Straw Hat.
Hint: 2 tuples are returned.

6. Find all pizzerias that serve at least one pizza for less than $10 that either Amy or Fay
(or both) eat.

Hint: 3 tuples are returned.

7. Find the age of the oldest person (or persons) who eats mushroom pizza.

Hint: This is easiest to do using an aggregation function, but aggregation is not required.

2 Registration with the Praktomat Submission System

We manage submissions for miniHive milestones using the online submission system Prak-
tomat, available here: https://praktomat-cu.sdbs.fim.uni-passau.de/. Let’s make
sure everybody can log on.

2.1 Logging On

Self-registration in Praktomat is not possible. If you are enrolled in the course, an account
should have been created for you. For the first login, reset your password, using the e-mail
address you used to enroll in the course. Upon login, you are asked to confirm to the Data
Privacy Statement.

If you do not receive an e-mail to reset your password within a few minutes, contact technical
support: praktomat-sdbs@uni-passau.de.

2.2 Uploading a Dummy Submission for Milestone 1

Create an non-empty file named sql2ra.py (it can just contain a comment) and upload it
as a dummy submission for the first miniHive milestone. The system will run unit tests and
should inform you that all tests have failed (as may be expected).

3 Interacting with Luigi

Luigi is a Python-based workflow management system that is used to build complex pipelines
of tasks. It helps define tasks, dependencies between tasks, and ensures that tasks are

https://praktomat-cu.sdbs.fim.uni-passau.de/
praktomat-sdbs@uni-passau.de

MDS miniHive Lab 2 - Page 4 of 7

executed in the correct order, handling issues like failure recovery and reruns. We make use
of Luigi in the miniHive project.

Luigi supports different modes of execution:

e Local: Data is loaded from local disk and results are also stored there.

e HDFS: Data is loaded from HDFS and results are also stored there.

e Mock: Data is mocked, i.e. hard-coded dummy data is embedded in the script and
used. This mode is used specifically for unit testing.

In the following, different variants for luigi are shown, using the example of the WordCount
problem:

minihive@container$ cd python-luigi/

Inspect the Python implementation of WordCount, the unit test file, and the scripts for
invoking luigi. Run the scripts and explore their behavior.

minihive@container:~/python-luigi$./run-local # Local
minihive@container:~/python-luigi$./run-hdfs # HDFS
minihive@container:~/python-luigi$./run-test # Mock

4 Interacting with the miniHive Docker Container

We provide a guided tour of the miniHive Docker container. We refer to our GitHub page
at https://github.com/sdbs-uni-p/minihive-docker for details.

4.1 Exploring the Directory Structure

Inside the container, the command
minihive@container$ 1s -1

lists directories of the miniHive Docker. The directories hadoop, hive, spark, and radb
contain sample data and example applications to run on each system. The tpch-hive
directory contains the TPC-H benchmark that can be run on Hive.

4.2 Developing Inside the Container vs. OQutside the Container

You can either develop the miniHive milestones within the Docker container or on your host
system, and merely use the container for testing.

https://github.com/sdbs-uni-p/minihive-docker

MDS miniHive Lab 2 - Page 5 of 7

If you choose to develop locally, make sure to use Python 3.10.0. Also, make sure that you
use the same versions of all Python packages as in the miniHive container. You may inspect
packages and their versions calling minihive@container$ pip freeze.

4.3 Sharing a Directory between Host and Container

To synchronize files on your host machine with the Docker container, you can use directory
volumes which map a host directory inside the container.

You may have to stop and remove a previously set up miniHive Docker container to map a
directory. This can be done by executing:

user@host$ docker stop minihive && docker rm minihive

1. Start the miniHive Docker container with a mapping between a directory on your host
and the container:

user@host$ docker run -d --name minihive -p 2222:22 \
-v /home/user/minihive:/home/minihive/minihive minihive-docker

We assume that the host directory /home/user/minihive is mapped to the container
(this directory may differ on your system).

2. Create a Python file called example.py inside /home/user/minihive (on your host
machine) with the following content:

def hello_world():
return "Hello World"

if __name == "__main__

print (hello_world())

Watch out for whitespaces and indentation during copy-pasting.

3. Execute the Python file locally to make sure that it works as expected:
user@host$ python example.py
Note: You may have to use python3 instead of python, depending on your environment.

If successful, the program should write “Hello World” to standard output.

4. Connect to the container:

user@host$ ssh -p 2222 minihive@localhost

5. Change directory:

minihive@container$ cd ~/minihive

MDS miniHive Lab 2 - Page 6 of 7

6. Check whether the Python file is present:
minihive@container:~/minihive$ 1s -1

It should be listed as a file in this directory.

7. Execute the Python file from inside the container:
minihive@container:~/minihive$ python example.py

Again, the program should write “Hello World” to standard output.

4.4 Transferring Files via scp

To transfer files from your host to the Docker container, you can also use scp.

We provide further instructions at at https://github.com/sdbs-uni-p/minihive-docke
r/blob/main/README.md#copy-files-tofrom-your-local-machine|

4.5 Running Unit Tests

We describe the process of testing the code you have developed on your host machine. You
will copy your code into the miniHive Docker container and run tests within the container
environment.

1. In your shared host directory (e.g. /home/user/minihive), create a file test_example.py
with the following content:

import unittest
import example

Unit tests for the 'example' module, focusing on 'hello_world()'
to familiarize with milestone testing.

class ExampleTests:

def test_example(self):
self._check("Hello World", example.hello_world())

class TestExample(unittest.TestCase, ExampleTests):

def _check(self, expected, current):
self.assertEqual (expected, current)

if __name__ == '__main_

unittest.main()

https://github.com/sdbs-uni-p/minihive-docker/blob/main/README.md#copy-files-tofrom-your-local-machine
https://github.com/sdbs-uni-p/minihive-docker/blob/main/README.md#copy-files-tofrom-your-local-machine

MDS miniHive Lab 2 - Page 7 of 7

2. Switch to the miniHive directory (inside the container):

minihive@container$ cd ~/minihive

3. Execute the unit test:
minihive@container:”/minihive$ python test_example.py

You should see a message indicating that one test has been successfully run.

	Practicing Relational Algebra with RADB
	Getting Started
	Writing RADB Queries

	Registration with the Praktomat Submission System
	Logging On
	Uploading a Dummy Submission for Milestone 1

	Interacting with Luigi
	Interacting with the miniHive Docker Container
	Exploring the Directory Structure
	Developing Inside the Container vs. Outside the Container
	Sharing a Directory between Host and Container
	Transferring Files via scp
	Running Unit Tests

