
MDS miniHive
Winter Term 2024/25
Lab 1 (last updated 20-Oct-2024)

As a course project, you will develop “miniHive”, a minimalist version of the SQL-on-Hadoop
system Hive. This worksheet introduces the miniHive Docker container, our standardized
development environment.

1 Prerequisites

We expect you to have the following skills:

• Basic programming skills in Python.
• Familiarity with Docker: Understanding its basic functionality.
• Understanding Docker Images: Basic knowledge of what a Docker image is and
how to use it.

• Understanding Docker Containers: Basic knowledge of what a Docker container
is and how to use it.

• Distinction Between Docker Image and Container: Understanding the differ-
ence between these two concepts.

• Basic Bash Command Line Skills in Linux, since the miniHive Docker container
does not have a graphical user interface.

• Familiarity with Git: Understanding the very basics of version control using Git.
• Basic SSH Usage: Knowledge of how to connect to a remote machine via SSH.

For a refresher, we recommend the following free courses and manuals:

• Python: https://learn.udacity.com/courses/ud1110
• Docker: https://docs.docker.com/get-started/overview/
• Bash: https://www.udacity.com/course/linux-command-line-basics--ud595
• Git: https://www.udacity.com/course/version-control-with-git--ud123
• SSH: https://www.openssh.com/manual.html

2 Hardware Resources

To run the miniHive Docker container effectively, have a minimum of 4 GiB of RAM available.
For optimal performance, have at least 8 GiB of RAM on your machine. This will ensure
smooth operation and allow you to manage larger datasets without performance issues.

https://learn.udacity.com/courses/ud1110
https://docs.docker.com/get-started/overview/
https://www.udacity.com/course/linux-command-line-basics--ud595
https://www.udacity.com/course/version-control-with-git--ud123
https://www.openssh.com/manual.html

MDS miniHive Lab 1 (last updated 20-Oct-2024) - Page 2 of 8

3 Installing Docker

Install the Docker environment on your machine according to https://docs.docker.com/

get-docker/. Ensure a correctly running Docker environment.

4 The miniHive Docker Container

We will use the following notation for command-line tasks. Do not copy the prefixes to the
command line, they are just an indicator of where to execute the command.

• user@host$: Execute the command on your local machine.
• minihive@container$: Execute the command inside the miniHive Docker container.

4.1 Pulling the miniHive Docker Image

Have Docker up and running. Pull the pre-built Docker image from ghcr.io to your local
machine:

user@host$ docker pull ghcr.io/sdbs-uni-p/minihive-docker:v1.1.2

If successful, the command

user@host$ docker image ls

will list the miniHive image among the available images.

4.2 Tagging the Image

Once the Docker image has been pulled, create a tag for more convenient use:

user@host$ docker tag ccaf5278d567 minihive-docker:latest

If successful, the command

user@host$ docker image ls

will list the miniHive image with its new tag.

https://docs.docker.com/get-docker/
https://docs.docker.com/get-docker/

MDS miniHive Lab 1 (last updated 20-Oct-2024) - Page 3 of 8

4.3 Running the miniHive Docker Container

The following command will create and run a container and name it minihive. This com-
mand will also redirect the connections on your local port 2222 to the container’s port 22:

user@host$ docker run -d --name minihive -p 2222:22 minihive-docker

If successful, the system shows the unique container ID assigned to the created container.

At this point, the docker container is running in the background. You can also verify that
the container is running with the following command:

user@host$ docker ps -a

Now, minihive-docker should be listed with a status like Up 10 seconds.

The container comes with various software packages installed (an SSH server, as well as
Hadoop, HDFS, Hive, and Spark). Thus, it may take a few seconds to start up.

4.4 The miniHive User Account

The user name and password for the miniHive Docker container are:

• username: minihive
• password: minihive

The minihive user has sudo rights.

4.5 Accessing the Container via SSH

When connecting to the container via

user@host$ ssh -p 2222 minihive@localhost

and after entering the password, you should see a welcome message:

Welcome to Ubuntu 21.04 (GNU/Linux 5.10.0-6-amd64 x86_64)

* Documentation: https://help.ubuntu.com

* Management: https://landscape.canonical.com

* Support: https://ubuntu.com/advantage

This system has been minimized by removing packages and content that are

not required on a system that users do not log into.

To restore this content, you can run the 'unminimize' command.

MDS miniHive Lab 1 (last updated 20-Oct-2024) - Page 4 of 8

_ _ _ _ _

_ __ ___ (_)_ __ (_) | | (_)_ _____

| '_ ` _ \| | '_ \| | |_| | \ \ / / _ \

| | | | | | | | | | | _ | |\ V / __/

|_| |_| |_|_|_| |_|_|_| |_|_| _/ ___|

miniHive Docker

5 HDFS Basics

Let us get hands-on with the Hadoop Distributed File System (HDFS). You have been
assigned to help the Trick-or-Treat Candy Warehouse x (TTCW) manage their collection
of Halloween candy.

Using HDFS, you will store, organize and fetch candy data. The HDFS commands are
syntactically similar to the commands you are familiar with from the Linux command line.
This makes them easier to use and remember. However, while they appear similar, these
commands operate very differently under the hood. In HDFS, the commands interact with
a distributed file system, managing data across multiple machines.

As you work through this exercise, it is important to understand the difference between your
local file system on the host machine, in the miniHive Docker container, and HDFS running
inside the miniHive Docker container.

Thus, each of the commands “user@host$ ls”, “minihive@container$ ls”, and further
“minihive@container$ hdfs dfs -ls” targets a different location.

5.1 Store Candy Data in HDFS

The TTCW has received candy from various towns. We need to store the records in HDFS,
where each file represents a shipment from a given town:

File candy town1.csv:

Candy Corn

Snickers

Reese's

Candy Corn

Snickers

MDS miniHive Lab 1 (last updated 20-Oct-2024) - Page 5 of 8

File candy town2.csv:

M&Ms

Butterfinger

Milky Way

M&Ms

Butterfinger

File candy town3.csv:

Reese's

Almond Joy

Butterfinger

KitKat

Butterfinger

Create the files inside the data directory inside your miniHive Docker container. For conve-
nience, you may install a command-line editor (such as nano, emacs, or vi).

5.1.1 Creating a directory in HDFS

minihive@container$ hdfs dfs -mkdir /candy_warehouse

Use hdfs dfs -ls / to confirm that the directory has been created.

5.1.2 Upload candy data for each town into HDFS

Upload the files candy town1.csv, candy town2.csv, and candy town3.csv into HDFS,
e.g. for the first file:

minihive@container$ hdfs dfs -put data/candy_town1.csv /candy_warehouse/

5.2 Check the Inventory

Now that the candy data has been stored in HDFS, inspect the contents.

minihive@container$ hdfs dfs -ls /candy_warehouse

minihive@container$ hdfs dfs -cat /candy_warehouse/*

MDS miniHive Lab 1 (last updated 20-Oct-2024) - Page 6 of 8

5.3 Clean Up the Warehouse

Let’s remove the inventory:

minihive@container$ hdfs dfs -rm -r /candy_warehouse/

Verify that the directory has been removed:

minihive@container$ hdfs dfs -ls /

6 Running MapReduce Jobs on Hadoop

A famous MapReduce example is the WordCount problem. The goal is to count the occur-
rences of each word in a given dataset. In the context of Hadoop MapReduce running on
HDFS, the input data is split across multiple nodes, and the map function processes each
chunk of text by breaking it into individual words. The reduce function then aggregates the
results by adding the occurrences of each word, providing a final count for each unique word
across the entire dataset.

This problem serves as a classic demonstration of the ability of the MapReduce framework
to handle large-scale data processing tasks in parallel.

6.1 Counting City Names

Inside the miniHive Docker container, enter the hadoop directory

minihive@container$ cd hadoop

and run ls to list all files.

WordCount.java is a Java-implementation of the WordCount problem. The folder data

contains a file cities.csv with a sequence of city names. These names are unsorted and
contain duplicates.

6.1.1 Compiling the Java Code

Compile the Java code:

minihive@container:~/hadoop$ javac -classpath $(hadoop classpath) \

de/uni_passau/minihive/WordCount.java

MDS miniHive Lab 1 (last updated 20-Oct-2024) - Page 7 of 8

You may have to enter this command as one line, without the “\”.

6.1.2 Creating a JAR

Then, create a JAR (Java ARchive) file from the compiled Java classes:

minihive@container:~/hadoop$ jar cf wordcount.jar -C . de

Use ls -l de/uni_passau/minihive to confirm that .class-files have been generated and
ls -l to confirm that one .jar-file has been generated.

6.1.3 Uploading the Input Data

Upload the file cities.csv into HDFS, as shown below.

minihive@container:~/hadoop$ hdfs dfs -mkdir /user

minihive@container:~/hadoop$ hdfs dfs -mkdir /user/minihive

minihive@container:~/hadoop$ hdfs dfs -put data/cities.csv

minihive@container:~/hadoop$ hdfs dfs -ls

The last command should list the file cities.csv, now uploaded to HDFS.

6.1.4 Running the MapReduce Job

We are now ready to run the MapReduce job.

minihive@container:~/hadoop$ hadoop jar wordcount.jar \

de.uni_passau.minihive.WordCount cities.csv count

Execution may take time, even for small or toy inputs. This is because Hadoop is designed to
handle large-scale, distributed data processing across multiple nodes. As a result, even simple
tasks can incur overhead from initializing the distributed environment, resource allocation,
and other system operations.

If successful, hdfs dfs -ls lists a directory count, which contains the result. Inspect its
contents:

minihive@container:~/hadoop$ hdfs dfs -cat count/part*

When processing large inputs, HDFS will store the results in separate chunks, each prefixed
part. Given our toy input, we expect the result to fit into a single chunk.

MDS miniHive Lab 1 (last updated 20-Oct-2024) - Page 8 of 8

6.1.5 Re-Running the MapReduce Job

If a MapReduce Job fails to run, it is often due to the output directory count having been
generated during an earlier run. In Hadoop, the output directory must not already exist,
as it cannot be overwritten by default. To resolve this, you will need to delete the count

directory before running the command again.

The following command can be used to delete the directory from HDFS:

minihive@container:~/hadoop$ hdfs dfs -rm -r count

This will remove the count directory, allowing you to re-run the process without errors.

6.1.6 Improving the Java Code

Inspecting the output, observe that the Java program can be improved by properly tokeniz-
ing city names. Currently, names such as ‘Ayn al ‘Arab have obviously been processed
incorrectly.

Improve and re-run the Java code, reiterating the steps above, for practice.

6.2 Counting the Halloween Candy Stash

Next, run the WordCount implementation against the Halloween Candy Data. This will
require you to reiterate and adapt the previous steps.

	Prerequisites
	Hardware Resources
	Installing Docker
	The miniHive Docker Container
	Pulling the miniHive Docker Image
	Tagging the Image
	Running the miniHive Docker Container
	The miniHive User Account
	Accessing the Container via SSH

	HDFS Basics
	Store Candy Data in HDFS
	Creating a directory in HDFS
	Upload candy data for each town into HDFS

	Check the Inventory
	Clean Up the Warehouse

	Running MapReduce Jobs on Hadoop
	Counting City Names
	Compiling the Java Code
	Creating a JAR
	Uploading the Input Data
	Running the MapReduce Job
	Re-Running the MapReduce Job
	Improving the Java Code

	Counting the Halloween Candy Stash

