
MDS Self-Study
Winter Term 2024/25
Optimization of MapReduce workflows

This unit is based on the book chapter “Chain Folding” from the O’Reilly book “MapReduce
Design Patterns” by Donald Miner and Adam Shook.

1. The book mentions a number of patterns for chain folding. One says: If multiple Map
phases are adjacent, merge them into one phase.

Complete the following sketches of how this pattern may be applied:



MDS Self-Study Optimization of MapReduce workflows - Page 2 of 3

2. Another pattern says: If a job ends with a Map phase (combined or otherwise), push
that phase into the Reducer right before it. Complete the following sketch of how this
pattern may be applied:

3. What are the benefits of applying these patterns?

4. We consider the following SQL query.

SELECT DISTINCT p.name

FROM Eats e, Person p

WHERE e.name = p.name AND p.age <= 18

We assume that the following input file Person.txt resides in HDFS:

Person {"Person.name": "Amy", "Person.age": 16, "Person.gender": "female"}

Person {"Person.name": "Ben", "Person.age": 21, "Person.gender": "male"}

Person {"Person.name": "Cal", "Person.age": 33, "Person.gender": "male"}

Person {"Person.name": "Dan", "Person.age": 13, "Person.gender": "male"}

Person {"Person.name": "Eli", "Person.age": 45, "Person.gender": "male"}

Person {"Person.name": "Fay", "Person.age": 21, "Person.gender": "female"}

Person {"Person.name": "Gus", "Person.age": 24, "Person.gender": "male"}

Person {"Person.name": "Hil", "Person.age": 30, "Person.gender": "female"}

Person {"Person.name": "Ian", "Person.age": 18, "Person.gender": "male"}



MDS Self-Study Optimization of MapReduce workflows - Page 3 of 3

Further, there is the file Eats.txt:

Eats {"Eats.name": "Amy", "Eats.pizza": "mushroom"}

Eats {"Eats.name": "Amy", "Eats.pizza": "pepperoni"}

Eats {"Eats.name": "Ben", "Eats.pizza": "cheese"}

Eats {"Eats.name": "Ben", "Eats.pizza": "pepperoni"}

Eats {"Eats.name": "Cal", "Eats.pizza": "supreme"}

Eats {"Eats.name": "Dan", "Eats.pizza": "cheese"}

Eats {"Eats.name": "Dan", "Eats.pizza": "mushroom"}

Eats {"Eats.name": "Dan", "Eats.pizza": "pepperoni"}

Eats {"Eats.name": "Dan", "Eats.pizza": "sausage"}

Eats {"Eats.name": "Dan", "Eats.pizza": "supreme"}

Eats {"Eats.name": "Eli", "Eats.pizza": "cheese"}

Eats {"Eats.name": "Eli", "Eats.pizza": "supreme"}

Eats {"Eats.name": "Fay", "Eats.pizza": "mushroom"}

Eats {"Eats.name": "Gus", "Eats.pizza": "cheese"}

Eats {"Eats.name": "Gus", "Eats.pizza": "mushroom"}

Eats {"Eats.name": "Gus", "Eats.pizza": "supreme"}

Eats {"Eats.name": "Hil", "Eats.pizza": "cheese"}

Eats {"Eats.name": "Hil", "Eats.pizza": "supreme"}

Eats {"Eats.name": "Ian", "Eats.pizza": "pepperoni"}

Eats {"Eats.name": "Ian", "Eats.pizza": "supreme"}

Perform the following steps:

1. Canonical translation into relational algebra, just like in Milestone 1.
2. Logical optimization, just like in Milestone 2: Selection pushing and joins.
3. Translation into a physical query plan with MapReduce-based operators, like in

Milestone 3. Use the graphical notation familiar from questions 1 and 2 above.
4. Chain folding according to the patterns discussed earlier.
5. Compare the number of tuples written into HDFS when evaluating the physical

query plans before and after chain folding. Discuss briefly.
6. Can the physical plan be folded any further?

5. We consider the following SQL query:

SELECT *

FROM (SELECT gender, age, count(*) as count

FROM Person

GROUP BY gender, age) T

WHERE T.count > 1

Perform the same steps as in the exercise before.


