
MDS
Winter Term 2024/25
Translating SQL to MapReduce Workflows

You work with the following relational schema (the primary key is underlined):

Students(sid, s name, street, city, age)

We consider the following cardinalities (just toy numbers, for the sake of this exercise):
• The Students relation has 10,000 tuples.
• |πcity(Students)| = 200, i.e. there are 200 distinct values for city.
• |πage(Students)| = 50.
Let’s assume that 200 tuples from Students fit into one HDFS chunk.

We now consider the following SQL query:

SELECT count(*)

FROM Students

WHERE city IN ('Springfield', 'Los Angeles', 'Annapolis')

AND age >= 30;

1. Sketch the physical query plan obtained by (1) the canonical translation to relational
algebra, (2) selection pushing, (3) mapping each relational operator to a MapReduce
job. It is enough to provide the result of step (3).

How many Map tasks will be started by Hadoop to execute the first stage in the bottom-
up evaluation of this plan? Give a simple estimate and briefly justify your answer.

MDS Translating SQL to MapReduce Workflows - Page 2 of 3

Next, provide the MapReduce function code that computes the aggregation. If you don’t
need a Reducer, simply cross out the respective code.

The input data is available in HFDS as key-value pairs, as shown below. The key is the
identifier of the HDFS chunk that this tuple is stored in, the value is a JSON-encoding
of the tuple:

part-000 {"sid": 42, "s_name": "Lisa", "street": "742 Evergreen Terr.", "city": "Springfield", ...}

part-000 {"sid": 23, "s_name": "Alf", "street": "16 Hemdale Street", "city": "Los Angeles", ...}

part-000 {"sid": 52, "s_name": "Dana", "street": "3170 W. 53 Rd. #35", "city": "Annapolis", ...}

part-000 {"sid": 53, "s_name": "Bob", "street": "3170 W. 53 Rd. #35", "city": "Annapolis", ...}

The output data should be formatted like this if the result were “5”.

result 5

For simplicity, we assume that the aggregation can be performed within a single MapRe-
duce job (rather than two chained MapReduce stages). Complete the Python skeleton
code. Refer to the appendix to see the “wordcount” example with luigi code.

class CountAggr(luigi.contrib.hadoop.JobTask):

...

def mapper(self, line):

partid, tuple = line.split('\t')

json_tuple = json.loads(tuple) # Python dictionary encoding 1 tuple.

e.g. yield(partid, json.dumps(json_tuple)) outputs the input

''' fill in your code above'''

def reduce(self, key, values):

''' fill in your code below'''

e.g. yield("result", 5)

MDS Translating SQL to MapReduce Workflows - Page 3 of 3

In your implementation, does it make sense to re-use the Reducer function code un-
changed for a Combiner? Briefly justify your answer.

2. Let’s consider class CountAggr just implemented (not using a combiner).

What is the communication cost of the implemented algorithm? Measure the cost in
number of tuples.

Appendix

The WordCount example as a luigi MapReduce job:

class WordCount(luigi.contrib.hadoop.JobTask):

Not shown: Declaring dependencies and output of this task.

....

def mapper(self, line):

for word in line.strip().split():

yield word, 1

def reducer(self, key, values):

yield key, sum(values)

