This unit is based on content from Jens Dittrich's book "Patterns in Data Management: A Flipped Textbook" from 2016.

- 1. What is the task of the query optimizer in a database system?
 - Parsing queries
 - \bigcirc Answering queries
 - \bigcirc Defining a plan to efficiently answer a query
 - $\bigcirc\,$ Gathering statistics about the database
- 2. What is the output of the query optimizer?
 - $\bigcirc\,$ The result of the given query
 - \bigcirc The parse-tree of the query
 - \bigcirc A plan that tells you how a query should be executed efficiently
 - \bigcirc Statistics of the tables touched by the query
- 3. What kind of information do you think is useful to the query optimizer?
 - \bigcirc Distribution of attribute values
 - \bigcirc Record count for each table
 - $\bigcirc\,$ The number of user accounts in the database
 - The available size of the main memory ("buffers" in database terms)
- 4. What is the main task of the rule-based optimizer?
 - \bigcirc To apply certain pre-defined rules that could optimize the query plan
 - $\bigcirc\,$ To analyze the current workload and optimize the query plans based on that information
 - \bigcirc To efficiently parse the queries
- 5. Given two queries Q1 and Q2. Assume a rule-based optimizer is called on Q1 and then Q2. The result of the calls may lead to different plans, even though
 - $\bigcirc\,$ the strings of Q1 and Q2 are equal
 - \bigcirc the strings of Q1 and Q2 are equal, except: some constants in the WHERE-clauses differ
 - \bigcirc Q1 is semantically equivalent to Q2, i.e. it returns the same set of results for any instance of the database that has the same schema.

6. Could the rule-based optimizer actually have a negative impact on query performance, rather than a positive one?

 \bigcirc Yes \bigcirc No

7. When performing a join operation in a relational database management system, does the order of the operands have anyimpact on the performance of the join in general?

 \bigcirc Yes \bigcirc No

8. When the query optimizer is trying to decide how to perform a join operation, what kind of operation fits better?

 \bigcirc Cost-based optimization

 \bigcirc Rule-based optimization

9. You are given the following SQL query:

SELECT DISTINCT A.b, B.c, C.d, D.e
FROM A, B, C, D
WHERE A.x=B.x AND A.a<24 AND A.c=C.d AND B.d=D.b
AND D.a>24 AND C.d=D.c AND C.b>45 AND B.x=23

Write down the canonical translation of this query into relational algebra.

Use rule-based optimization to improve the logical plan. Explain what you did and draw the new plan as a relational algebra tree.

- 10. What is the rough idea of a cost-based query optimizer?
 - Explore the search space to obtain a good way of performing the given operation under a given cost model.
 - $\bigcirc\,$ Apply certain predefined rules that are known to potentially give good performance.
- 11. What is the number of possible left-deep plans for n input relations?