
Modern Database

Systems

Advanced Aspects of Big Data Management

Doc. RNDr. Irena Holubova, Ph.D.
Irena.Holubova@matfyz.cuni.cz

mailto:Irena.Holubova@matfyz.cuni.cz

CAP Theorem

CAP Theorem
Recapitulation

 Consistency
 Consistent reads and writes

 Concurrent operations see the same valid and consistent data state

 Availability
 The system is available to serve at the time when it is needed

 Node failures do not prevent survivors from continuing to operate

 Partition tolerance
 The ability of a system to continue to service in the event a few of its cluster members

become unavailable

 Theorem: In systems that are distributed or scaled out it is impossible to achieve all
three.
 First appeared in 1998, published in 1999

 Established as theorem and proved in:

Lynch, Nancy and Gilbert, Seth. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. ACM SIGACT News, volume 33 issue 2, 2002,
pages 51-59.

CAP Theorem
Recapitulation

 Consistency + Availability
 Single-site databases, cluster databases, …

 Consistency + Partition Tolerance
 Distributed databases, distributed locking, majority protocols, …

 Availability + Partition Tolerance
 Web caching, DNS

 Examples:
 RDBMS: CA

 Apache Cassandra (column): AP

 Google BigTable (column): CA

 Apache CouchDB (document): AP

CAP Theorem
Proof

 Formalization of the notion of consistency, availability
and partition tolerance:
 Atomic Consistency, Atomic Data Object

 There must exist a total order on all operations such that each
operation looks as if it were completed at a single instant

 i.e., any read operation that begins after a write operation completes
must return that value

 Equivalent to requiring requests of the distributed shared memory to act
as if they were executing on a single node, responding to operations
one at a time

 Available Data Object
 Every request received by a non-failing node in the system must

result in a response
 i.e., any algorithm must eventually terminate

 Although we do not say how long it will take

 Partition Tolerance
 The network is allowed to lose arbitrarily many messages sent from

one node to another

CAP Theorem
Proof

Theorem 1. It is impossible in the asynchronous network model to implement a
read/write data object that guarantees the following properties:
 Availability

 Atomic consistency

in all fair executions (including those in which messages are lost).

Proof (by contradiction). Assume an algorithm A exists that meets the three
criteria: atomicity, availability, and partition tolerance. We construct an
execution of A in which there exists a request that returns an inconsistent
response.

 Assume that the network consists of at least two nodes it can be divided
into two disjoint, non-empty sets G1 and G2.

 Assume that all messages between G1 and G2 are lost.

 If a write occurs in G1, and later a read occurs in G2, then the read operation
cannot return the results of the earlier write operation.

More formally…

No clock, nodes make decisions

on the basis of messages and

local computations

CAP Theorem
Proof

 Let v0 be the initial value of the atomic object.

 Let 1 be the prefix of an execution of A in which a single write of a value not equal to
v0 occurs in G1, ending with the termination of the write operation.

 Assume that no other client requests occur in either G1 or G2, no messages from G1
are received in G2 and vice versa.

 We know that this write completes, by the availability requirement.

 Let 2 be the prefix of an execution in which a single read occurs in G2, and no other
client requests occur, ending with the termination of the read operation.

 During 2 no messages from G2 are received in G1 and vice versa.

 Again we know that the read returns a value by the availability requirement. The
value returned by this execution must be v0, as no write operation has occurred in 2.

 Let be an execution beginning with 1 and continuing with 2.

 To the nodes in G2, is indistinguishable from 2, as all the messages from G1 to G2
are lost, and 1 does not include any client requests to nodes in G2. Therefore in the
 execution, the read request (from 2) must still return v0.

 However the read request does not begin until after the write request (from 1) has
completed. This therefore contradicts the atomicity property, proving that no such
algorithm exists.

CAP Theorem
Proof

Corollary. It is impossible in the asynchronous network model to implement
a read/write data object that guarantees the following properties:
 Availability, in all fair executions,
 Atomic consistency, in fair executions in which no messages are lost.

Proof. Main idea: In the asynchronous model an algorithm has no way of
determining whether a message has been lost, or has been arbitrarily
delayed (atomic consistency when no messages are lost => atomic
consistency in all executions => violation of Theorem 1).

 For the sake of contradiction assume that there exists an algorithm A that
always terminates, and guarantees atomic consistency in fair executions
in which all messages are delivered.

 Theorem 1 implies that A does not guarantee atomic consistency in all fair
executions, so there exists some fair execution of A in which some
response is not consistent. I.e., at some finite point in execution the
algorithm A returns a response that is not atomic consistent.

 Let ’ be the prefix of ending with the invalid response. Next, extend ’ to
a fair execution ’’, in which all messages are delivered. The execution ’’
is now a fair execution in which all messages are delivered. However this
execution is not atomic. Therefore no such algorithm A exists.

CAP Theorem
Proof

 In the real world, most networks are not purely
asynchronous

 Partially Synchronous Networks
 Each node in the network has a clock

 All clocks increase at the same rate

 The clocks are not synchronized

 Clocks = timers = can measure how much time has
passed
 Can be used for scheduling

 Every message is either delivered within a given, known time tmsg

or it is lost

CAP Theorem
Proof

Theorem 2. It is impossible in the partially synchronous network model
to implement a read/write data object that guarantees the following
properties:
 Availability

 Atomic consistency

in all executions (even those in which messages are lost).

Proof (similar to Theorem 1). We divide the network into two
components G1 and G2, and construct an admissible execution in
which a write happens in one component, followed by a read
operation in the other component. This read operation can be shown
to return inconsistent data.

 More formally…

CAP Theorem
Proof

 We will construct execution 1 as in Theorem 1: a single write
request and acknowledgment in G1, whereas all messages between
G1 and G2 are lost.

 We will construct the second execution ’2 slightly differently: Let ’2
be an execution that begins with a long interval of time during which
no client requests occur. This interval must be at least as long as the
entire duration of 1.

 Then append to ’2 the events of 2, as defined in Theorem 1: a
single read request and response in G2, again assuming all
messages between the two components are lost.

 Finally, construct by superimposing the two executions 1 and ’2.

 The long interval of time in 2 ensures that the write request in 1
completes before the read request in ’2 begins.

 However, as in Theorem 1, the read request returns the initial value,
rather than the new value written by the write request, violating
atomic consistency.

CAP Theorem
Proof

 Analogue of corollary does not hold in

partially synchronous model

The proof depends on nodes being unaware

of when a message is lost

Managing

Transactions

Managing Transactions

 Critics of NoSQL databases focus on the lack of support
for transactions

 Business transaction
 e.g., browsing a product catalogue, choosing a bottle of Talisker

at a good price, filling in credit card information, and confirming
the order

 System transaction
 At the end of the interaction with the user

 Locks are only held for a short period of time

 Business transaction = a series of system transactions

Managing Transactions

 Offline concurrency involves manipulating data for a business
transaction that spans multiple data requests
 Having a system transaction open for the whole business transaction is

not usually possible
 Long system transactions are not supported

 Problems:
 Overwriting uncommitted data

 More transactions select the same row and then update the row based on
the value originally selected unaware of the other

 Reading uncommitted data
 A transaction accesses the same row several times and reads different data

each time

 i.e., calculations and decisions may be made based on data that is
changed
 e.g., price list may be updated, someone may update the customer’s

address, changing the shipping charges, …

overwriting uncommitted data

(blind write)

reading uncommitted data

(dirty read)

Managing Transactions
Optimistic Offline Lock

 Assumes that the chance of conflict is low

 A form of conditional update
 Ensures that changes about to be committed by one session do

not conflict with the changes of another session

 Pre-commit validation
1. Client operation re-reads any information that the business

transaction relies on

2. It checks that it has not changed since it was originally read and
displayed to the user

 Obtaining a lock indicating that it is okay to go ahead
with the changes to the record data

Managing Transactions
Pessimistic Offline Lock

 Problems of optimistic approach:
 There might be many conflicts

 The conflict can be detected at the end of a lengthy business transaction

 Pessimistic solution: allows only one business transaction at a time to
access data

 Forces a business transaction to acquire a lock on each piece of data
before it starts to use it
 Once a business transaction begins, it surely completes

 Lock manager
 Simple, single (for all business transactions), centralized (or based on the

database in the distributed system)

 Standard issue: deadlock
 Timeout for an application

 Automatically rolled-back after a period of time of non responding

 Timestamp attribute for a lock
 Automatically released after a period of time

Managing Transactions
Coarse-grained Lock

 When objects are edited as a
group
 Logically related objects

 e.g., a customer and its set of
addresses
 We want to lock any one of them

 A separate lock for individual
objects presents a number of
challenges
 We need to find them all in order

to lock them
 Gets tricky as we get more

locking groups

 When the groups get complicated
 Nested groups

 Idea: a single lock that covers
many objects
 A sophisticated lock manager

Managing Transactions
Implicit Lock

 Problem: forgetting to write a single line of code that
acquires a lock entire offline locking scheme is
useless
 Failing to retrieve a read lock other transactions use write

locks not getting up-to-date session data

 Failing to use a version count unknowingly writing over
someone's changes

 Not releasing locks bring productivity to a halt

 Fact: If an item might be locked anywhere it must be
locked everywhere

 Idea: locks are automatically acquired
 Not explicitly by developers but implicitly by the application

Performance

Tuning

Performance Tuning
Goals

 MapReduce creates a bottleneck-free way of scaling out

 To reduce latency
 Latency:

 Non-parallel systems: time taken to execute the entire program

 Parallel systems: time taken to execute the smallest atomic sub-task

 Strategies:
 Reducing the execution time of a program

 Choosing the most optimal algorithms for producing the output

 Parallelizing the execution of sub-tasks

 To increase throughput
 Throughput = the amount of input that can be manipulated to generate

output within a process

 Non-parallel systems:
 Constrained by the available resources (amount of RAM, number of CPUs)

 Parallel systems:
 “No” constraints

 Parallelization allows for any amount of commodity hardware

Example from 2010: Tweets

add up to 12 Terabytes per day.

This amount of data needs

around 48 hours to be written to

a disk at a speed of about 80

Mbps.

Performance Tuning
Linear Scalability

 Typical horizontally scaled MapReduce-based model:
linear scalability
 “One node of a cluster can process x MBs of data every second
 n nodes can process x n amounts of data every second.”

 Time taken to process y amounts of data on a single node = t
seconds

 Time taken to process y amounts of data on n nodes = t / n seconds

 Assumption: tasks can be parallelized into equally
balanced units

Performance Tuning
Amdahl’s Law

 Formula for finding the maximum improvement in performance of a
system when a part is improved
 P = the proportion of the program that is parallelized

 1 – P = the proportion of the program that cannot be parallelized

 N = the times the parallelized part performs as compared to the non-
parallelized one
 i.e., how many times faster it is

 e.g., the number of processors

 Tends to infinity in the limit

 Example: a process that runs for 5 hours (300 minutes); all but a
small part of the program that takes 25 minutes to run can be
parallelized
 Percentage of the overall program that can be parallelized: 91.6%

 Percentage that cannot be parallelized: 8.4%

 Maximum increase in speed: 1 / (1 – 0.916) = ~11.9 times faster
 N tends to infinity

Performance Tuning
Little’s Law

 Origins in economics and queuing theory (mathematics)

 Analyzing the load on stable systems
 Customer joins the queue and is served (in a finite time)

 “The average number of customers (L) in a stable system is the
product of the average arrival rate (k) and the time each customer
spends in the system (W).”
 Intuitive but remarkable result

 i.e., the relationship is not influenced by the arrival process distribution,
the service distribution, the service order, or practically anything else

 Example: a gas station with cash-only payments over a single
counter
 4 customers arrive every hour

 Each customer spends about 15 minutes (0.25 hours) at the gas station

 There should be on average 1 customer at any point in time

 If more than 4 customers arrive at the same station, it would lead to a
bottleneck

L = kW

Performance Tuning
Message Cost Model

 Breaks down the cost of sending a message from one end to the
other in terms of its fixed and variable costs
 C = cost of sending the message from one end to the other

 a = the upfront cost for sending the message

 b = the cost per byte of the message

 N = number of bytes of the message

 Example: gigabit Ethernet
 a is about 300 microseconds = 0.3 milliseconds

 b is 1 second per 125 MB
 Implies a transmission rate of 125 MBps.

 100 messages of 10 KB => take 100 (0.3 + 10/125) ms = 38 ms

 10 messages of 100 KB => take 10 (0.3 + 100/125) ms = 11 ms

 A way to optimize message cost is to send as big

packet as possible each time

C = a + bN

0,08

0,8

initialization

linear dependence

on size

References

 Pramod J. Sadalage - Martin Fowler: NoSQL
Distilled: A Brief Guide to the Emerging World of
Polyglot Persistence

 Eric Redmond - Jim R. Wilson: Seven Databases in
Seven Weeks: A Guide to Modern Databases and
the NoSQL Movement

 Sherif Sakr - Eric Pardede: Graph Data
Management: Techniques and Applications

 Shashank Tiwari: Professional NoSQL

 http://martinfowler.com/

