Modern Database

Systems

Polystores

Doc. RNDr. Irena Holubova, Ph.D.

Irena.Holubova@matfyz.cuni.cz

Based on the tutorial “Multi-model Databases and Tightly Integrated
Polystores: Current Practices, Comparisons, and Open Challenges”,
Jiaheng Lu, Irena Holubova, Bogdan Cautis, CIKM’18, Turin, Italy.

mailto:Irena.Holubova@matfyz.cuni.cz

" J
A Grand Challenge on Variety

m Big data: Volume, Variety,
Velocity, Veracity, ...

m Variety:
Hierarchical data
= XML, JSON

Graph data
s RDF, property graphs, networks

Tabular data Volume
m CSV

Big Data: 4V definition

Variety

Motivation

m One application to include multi-model
data
Relational data: customer databases
Graph data: social networks
Hierarchical data: catalogue, product
Text data: customer review

" A
Two Solutions

1. Multi-model databases
Using one single, integrated backend
2. Polystores

Using jointly multiple data storage
technologies, chosen based upon the way
data is being used by individual applications

'_
Multi-model Database

m One unified database for multi-model data

XML RDF

Table

Multi-model Spatial

DB

JSON Text

" J
Polyglo
Polystore

m Use the right tool for (each part of) the job...

If you have structured data with some differences
m Use a document store
If you have relations between entities and want to
efficiently query them
m Use a graph database

If you manage the data structure yourself and do not
need complex queries
m Use a key-value store

m ...and glue everything together

"
An example of multi-model data

Marry (1) { "Order no": "0c6df508"
knows knows "Oorderlin
{ 11} PrOd " " '7 1]
W'"'a"meMJ "Prod mé go DB
_ "Price":66 },
Social network graph { "Product no":"3424g",

"Product_Name":"Book",
"Price":40 }]

}
Han " " Order JSON do
1" --> 3f1.e5e359 ' | er relation
Key/value pairs 1 Mary 5,000
(Customer_ID, Order_no) 2 John 3,000

3 William 2,000

Pros and Cons of Polystores

@ e

m Handle multi-model data = Requires the company to

= Help your applications to hire people to integrate
scale well different databases

m Arich experience ofthe =~ ® Developers need to learn
single-model stores different databases

m Itis achallenge to
handle cross-model query
and transaction

Three Types of Polystore Systems

m Loosely-coupled systems

Similar to mediator-wrapper
architecture

Common interfaces
Autonomy of local stores
m Tightly-coupled systems

Exploit directly local
Interfaces

Trade autonomy for
performance

= Materialized views,
indexes

m Hybrid

Query Processor

SQL query Query decomposition and sty

UserAppaii | kad Global Catalog

Query result | | Query execution
I Common Interface I
Wrapper 1 Wrapper n
- i 5 e~

Query translation Query translation

Result transformation

Result transformation

Interface 1
‘

Local Catalog

Interface n

RDBMS

Mediator

SQL query | [Query decomposition and
User/App/GUI|_ optimization Global Catal
Query result obal Laialog
Query execution
Interface 1 Interface 2 | Interface 3 I
Data Processing
Mongodb RDBMS Framework

b @

&)

Loosely-coupled

Biglntegrator Querying relational Relational SQL-like
(Uppsala L) and cloud data

Forward Unyfing relational JSON-based SQL++
(UC San Diego) and NoSOQL

QoX (HP labs) Analytic data flows Graph XML based

Tightly-coupled

Polybase Querying Hadoop Relational SQL
(Microsoft) from RDBMS
HadoopDBE Querying RDBMS Relational SQL-live (HiveQL)
(Yale U.) from Hadoop
Estocada (Inna) Self-tuning No common Mative query languages
model
Hybrid
SparkSQL (UCB) SQL atop Spark Nested SQL-like
BigDAWG (MIT) Unifying relational No common Island query languages,
and NoSQL madel with CAST and SCOPE
operators

An overview of polystores https://slideplayer.com/slide/13365730/

BigTable, RDBMS

RDBMS, NoSQL

RDBMS, ETL

HDFS, RDBMS
HDFS, RDEMS

RDBMS, NoSQL

HDFS, RDEBMS

RDBMS, NoSQL,
Array DBMS, DSMSs

https://slideplayer.com/slide/13365730/

" A
No ,one size fits all”...

m Heterogeneous . data processing
frameworks (Map/Reduce, Spark, Flink), NoSQL, ...

m Polystore idea:

Package together multiple guery engines

= Union (federation) of different specialized stores, each with distinct
(native) data model, internal capabilities, language, and semantics

Holy grail: platform agnostic data analytics

m Use the right store for (parts of) each specialized
scenario

m Possibly rely on middleware layer to integrate data from
different sources

" J
Dimensions of Polystores

m Heterogeneity
Different data models, query models, expressiveness, query engines
m Autonomy

Association with the polystore, execution (support of native applications
+ federation), evolution of own models and schemas

m Transparency

Location (data may even span multiple storage engines, user does not
know that), transformation / migration of data

m Flexibility

User-defined schemata and interfaces (functions), modular architecture
m Optimality

Federated plans, data placement

Tightly Integrated Polystores

(TIPs)

m Examples: Polybase, HadoopDB, Estocada
m Trade autonomy for efficient querying of diverse kinds of data for Big

Data analytics

Data stores can only be accessed through the multi-store system
Less uncertainty with extended control over the various stores
Stores accessed directly through their local language

m Efficient / adaptive data movement across data stores

m Number of data stores that can be interfaced is typically limited

m Extensibility
Good to have...

User/App/GUI |

Mediator

SQL query

" Query result

»| [Query decomposition and

A -
optimization Global Catalog

Query execution

A
Interface 1 !

Mongodb RDBMS F'a"‘?‘”m"

A A
Interface 2 | Interface 3 l

Data Processing

" J
Comparison of MMDs and TIPS

m Common features:
Support for multiple data models
Global query processing
Cloud support

MMDs TIPs
Engine single engine, backend multiple databases (native)
Maturity lower higher 599]
Usability read, write and update read-only
Transactions global transaction supported unsupported
Holistic query optimizations open problem more challenging
Community industry-driven academia-driven

Data migration difficult simple

Loosely Integrated Polystores

m Examples: BigIntegrator, Forward/SQL++, QoX
Data mediation SQL engines: Apache Drill, Spark SQL, SQL++

m Allow different sources to be plugged in by wrappers, then queried via SQL

m Reminiscent of multi-database systems

m Follow mediator-wrapper architecture (one wrapper per datastore)

One global common language

m General approach
Split a query into subqueries
m Per datastore, still in common
language
Send to wrapper

Query Processor

User/App/GUI

SQL query Query decomposition and

optimization

Query result | | Query execution

Global Catalog
A

Translate
Get results

Wrapper 1

Query translation gy
Result transformation o8’ anioy

Translate to common format
Integrate

Interface 1 '

Common Interface

Wrapper n

Query translation
Result transformation Locsl Camicg

A
Interface n

Y
RDBMS

Hybrid Polystores

m Examples: , SparkSQL, CloudMdsQL
m Rely on tight coupling for some stores, loose coupling for

others

m Following the mediator-wrapper architecture
But the query processor can also directly access some data

stores
SQL query
User/App/GUI | Query Processor
" Query result y :
Common Interface Local interface *
A4 h 4
Wrapper 1 Wrapper n Data Processing
Framework

Interface 1

B

v y
NoSQL SYStemI RDBMS

A

BigDAWG R

m A collection of data stores accessed with a single query language
m Key abstraction:
Data model + operations + storage engine(s)

Cross-island queries —
m Relies on a variety of data islands Sorted, distributed
Relational, array, NoSQL, streaming, ... key/value store

Currently: PostgreSQL, SciDB, Accumulo

m No common data model, query language / processor
Each island has its own

0 connects an island to one or more storage engines

Maps queries from island language to the native query language of a
particular storage engine (or engines)

M = operators for moving datasets between islands
Processing in the storage engine best suited to the features of the data

https://bigdawg.mit.edu/

https://bigdawg.mit.edu/
http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjyh-DV9eHfAhVF6qQKHaRGAcoQjRx6BAgBEAU&url=http%3A%2F%2Fcs.brown.edu%2Fpeople%2Ftkraska%2Fresearch.html&psig=AOvVaw2---JyfQxuSZK6crdDTxUx&ust=1547165189709810
http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjyh-DV9eHfAhVF6qQKHaRGAcoQjRx6BAgBEAU&url=http%3A%2F%2Fcs.brown.edu%2Fpeople%2Ftkraska%2Fresearch.html&psig=AOvVaw2---JyfQxuSZK6crdDTxUx&ust=1547165189709810

"
BigDAWG

Applications

Middleware

Islands

Shims

Engines

MIMIC Il
Data

Openly available
health data

Examples, Tests, Sample Applications

BigDAWG Common Interface/API

Relational Island Array Island Text Island

* Patient History * Patient Timeseries » Doctor/Nurse notes
» Patient Medication Waveform + Test notes

Complete plan
Query Optimizer Executor || Output
BigDAWG

Query Info

Data Transfer
Request

Monitor |+— Migrator
Perf. Info

m At its core middleware that supports a common APl to a
collection of storage engines

m Key elements:

. parses the input query and creates a set of viable
guery plan trees with possible engines for each subquery

. uses performance data from prior queries to determine
the query plan tree with the best engine for each subquery

. figures out how to best join the collections of objects
and then executes the query

. moves data from engine to engine when the plan calls
for such data motion

http://bigdawg-documentation.readthedocs.io/en/latest/_images/bigdawgmiddleware.png
http://bigdawg-documentation.readthedocs.io/en/latest/_images/bigdawgmiddleware.png

" A
Another Classification

m Federated systems:
Collection of homogeneous data stores
Features a single standard query interface
m Polyglot systems:
Collection of homogeneous data stores
Exposes multiple query interfaces to the users
m Multistore systems:
Data across heterogeneous data stores
Supporting a single query interface
m Polystore systems:

Query processing across heterogeneous data stores
Supports multiple query interfaces

" J
Open Problems and Challenges

m Many challenges: query optimization, query execution,
extensibility, interfaces, cross-platform transactions, self-
tuning, data placement / migration, benchmarking, ...

High degree of uncertainty

m Transparency:. do not require users to specify where to

get / store data, where to run gueries / subgueries
Explain and allow user hints

m More than ever need for automation, adaptiveness,
learning on the fly

'_
References

m Koley, B. et al.. Benchmarking Polystores: the CloudMdsQL
Experience

O https://hal-lirmm.ccsd.cnrs.fr/lirmm-01415582/file/CloudMdsOL -
IEEE v.0.4.1.pdf

m Kharlamoy, E. et al.: A Semantic Approach to Polystores

O http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/2016/Kharla
movMBBBJL16.pdf

m Karimov, J. et al.: PolyBench: The First Benchmark for Polystores

O http://www.redaktion.tu-berlin.de/fileadmin/fg131/dima-
feed/polystore benchmark TPCTC-1028 crv.pdf

m Meehan, J. et al.: Integrating Real-Time and Batch Processing in a
Polystore

0 https://cs.brown.edu/courses/cs227/papers/bigdawg-integration.pdf

m Bondiombouy,C. et al.: Query Processing in Multistore Systems: an
overview

0 https://hal.inria.fr/hal-01289759v2/document

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01415582/file/CloudMdsQL-IEEE_v.0.4.1.pdf
http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/2016/KharlamovMBBBJL16.pdf
http://www.redaktion.tu-berlin.de/fileadmin/fg131/dima-feed/polystore_benchmark_TPCTC-1028_crv.pdf
https://cs.brown.edu/courses/cs227/papers/bigdawg-integration.pdf
https://hal.inria.fr/hal-01289759v2/document

