
Modern Database

Systems

Polystores

Doc. RNDr. Irena Holubova, Ph.D.
Irena.Holubova@matfyz.cuni.cz

Based on the tutorial “Multi-model Databases and Tightly Integrated

Polystores: Current Practices, Comparisons, and Open Challenges”,

Jiaheng Lu, Irena Holubova, Bogdan Cautis, CIKM’18, Turin, Italy.

mailto:Irena.Holubova@matfyz.cuni.cz

A Grand Challenge on Variety

 Big data: Volume, Variety,
Velocity, Veracity, …

 Variety:
 Hierarchical data

 XML, JSON

 Graph data
 RDF, property graphs, networks

 Tabular data
 CSV

 …

Motivation

 One application to include multi-model

data

Relational data: customer databases

Graph data: social networks

Hierarchical data: catalogue, product

Text data: customer review

…

Two Solutions

1. Multi-model databases

 Using one single, integrated backend

2. Polystores

 Using jointly multiple data storage

technologies, chosen based upon the way

data is being used by individual applications

Multi-model Database

 One unified database for multi-model data

Table

RDFXML

Spatial

Text

Multi-model

DB
JSON

Polystore

 Use the right tool for (each part of) the job…
 If you have structured data with some differences

 Use a document store

 If you have relations between entities and want to
efficiently query them
 Use a graph database

 If you manage the data structure yourself and do not
need complex queries
 Use a key-value store

 …and glue everything together

An example of multi-model data

{ "Order_no":"0c6df508",

"Orderlines": [

{ "Product_no":"2724f"

"Product_Name":"Toy",

"Price":66 },

{ "Product_no":"3424g",

"Product_Name":"Book",

"Price":40 }]

}

Marry (1)

John (2)

knowsknows

William (3)

Social network graph

Key/value pairs
(Customer_ID , Order_no)

Order JSON document
Customer relation"1" -- > "34e5e759"

"2"-- > "0c6df508" Customer_ID Name Credit_limits

1 Mary 5,000

2 John 3,000

3 William 2,000

Pros and Cons of Polystores

 Handle multi-model data

 Help your applications to

scale well

 A rich experience of the

single-model stores

 Requires the company to

hire people to integrate

different databases

 Developers need to learn

different databases

 It is a challenge to

handle cross-model query

and transaction

Three Types of Polystore Systems

 Loosely-coupled systems
 Similar to mediator-wrapper

architecture

 Common interfaces

 Autonomy of local stores

 Tightly-coupled systems
 Exploit directly local

interfaces

 Trade autonomy for
performance
 Materialized views,

indexes

 Hybrid

Bondiombouy, Carlyna, and Patrick Valduriez. "Query processing in multistore systems: an

overview." International Journal of Cloud Computing 5.4 (2016): 309-346

An overview of polystores https://slideplayer.com/slide/13365730/

https://slideplayer.com/slide/13365730/

No „one size fits all“…

 Heterogeneous data analytics: data processing
frameworks (Map/Reduce, Spark, Flink), NoSQL, …

 Polystore idea:
 Package together multiple query engines

 Union (federation) of different specialized stores, each with distinct
(native) data model, internal capabilities, language, and semantics

 Holy grail: platform agnostic data analytics

 Use the right store for (parts of) each specialized
scenario

 Possibly rely on middleware layer to integrate data from
different sources

Dimensions of Polystores

 Heterogeneity
 Different data models, query models, expressiveness, query engines

 Autonomy
 Association with the polystore, execution (support of native applications

+ federation), evolution of own models and schemas

 Transparency
 Location (data may even span multiple storage engines, user does not

know that), transformation / migration of data

 Flexibility
 User-defined schemata and interfaces (functions), modular architecture

 Optimality
 Federated plans, data placement

Tan et al. “Enabling query processing across heterogeneous data models: A survey”. BigData

2017

Tightly Integrated Polystores
(TIPs)

 Examples: Polybase, HadoopDB, Estocada

 Trade autonomy for efficient querying of diverse kinds of data for Big
Data analytics
 Data stores can only be accessed through the multi-store system

 Less uncertainty with extended control over the various stores

 Stores accessed directly through their local language

 Efficient / adaptive data movement across data stores

 Number of data stores that can be interfaced is typically limited

 Extensibility
 Good to have…

Arguably the closest we can get

to multi-model DBs, while having

several native stores “under the hood”.

Comparison of MMDs and TIPs

 Common features:
 Support for multiple data models

 Global query processing

 Cloud support

MMDs TIPs

Engine single engine, backend multiple databases (native)

Maturity lower higher

Usability read, write and update read-only

Transactions global transaction supported unsupported

Holistic query optimizations open problem more challenging

Community industry-driven academia-driven

Data migration difficult simple

???

Loosely Integrated Polystores

 Examples: BigIntegrator, Forward/SQL++, QoX
 Data mediation SQL engines: Apache Drill, Spark SQL, SQL++

 Allow different sources to be plugged in by wrappers, then queried via SQL

 Reminiscent of multi-database systems

 Follow mediator-wrapper architecture (one wrapper per datastore)
 One global common language

 General approach
 Split a query into subqueries

 Per datastore, still in common

language

 Send to wrapper

 Translate

 Get results

 Translate to common format

 Integrate

Hybrid Polystores

 Examples: BigDawg, SparkSQL, CloudMdsQL

 Rely on tight coupling for some stores, loose coupling for
others

 Following the mediator-wrapper architecture
 But the query processor can also directly access some data

stores

BigDAWG

https://bigdawg.mit.edu/

 A collection of data stores accessed with a single query language

 Key abstraction: island of information
 Data model + operations + storage engine(s)

 Cross-island queries

 Relies on a variety of data islands
 Relational, array, NoSQL, streaming, …

 Currently: PostgreSQL, SciDB, Accumulo

 No common data model, query language / processor
 Each island has its own

 Shim connects an island to one or more storage engines
 Maps queries from island language to the native query language of a

particular storage engine (or engines)

 Cast = operators for moving datasets between islands
 Processing in the storage engine best suited to the features of the data

Sorted, distributed

key/value store

https://bigdawg.mit.edu/
http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjyh-DV9eHfAhVF6qQKHaRGAcoQjRx6BAgBEAU&url=http%3A%2F%2Fcs.brown.edu%2Fpeople%2Ftkraska%2Fresearch.html&psig=AOvVaw2---JyfQxuSZK6crdDTxUx&ust=1547165189709810
http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjyh-DV9eHfAhVF6qQKHaRGAcoQjRx6BAgBEAU&url=http%3A%2F%2Fcs.brown.edu%2Fpeople%2Ftkraska%2Fresearch.html&psig=AOvVaw2---JyfQxuSZK6crdDTxUx&ust=1547165189709810

BigDAWG

Openly available

health data

BigDAWG

 At its core middleware that supports a common API to a
collection of storage engines

 Key elements:
 Optimizer: parses the input query and creates a set of viable

query plan trees with possible engines for each subquery

 Monitor: uses performance data from prior queries to determine
the query plan tree with the best engine for each subquery

 Executor: figures out how to best join the collections of objects
and then executes the query

 Migrator: moves data from engine to engine when the plan calls
for such data motion

http://bigdawg-documentation.readthedocs.io/en/latest/_images/bigdawgmiddleware.png
http://bigdawg-documentation.readthedocs.io/en/latest/_images/bigdawgmiddleware.png

Another Classification

 Federated systems:
 Collection of homogeneous data stores

 Features a single standard query interface

 Polyglot systems:
 Collection of homogeneous data stores

 Exposes multiple query interfaces to the users

 Multistore systems:
 Data across heterogeneous data stores

 Supporting a single query interface

 Polystore systems:
 Query processing across heterogeneous data stores

 Supports multiple query interfaces

Tan et al. “Enabling query processing across heterogeneous data models: A

survey”. BigData 2017

Open Problems and Challenges

 Many challenges: query optimization, query execution,
extensibility, interfaces, cross-platform transactions, self-
tuning, data placement / migration, benchmarking, …
 High degree of uncertainty

 Transparency: do not require users to specify where to
get / store data, where to run queries / subqueries
 Explain and allow user hints

 More than ever need for automation, adaptiveness,
learning on the fly

References

 Kolev, B. et al.: Benchmarking Polystores: the CloudMdsQL
Experience
 https://hal-lirmm.ccsd.cnrs.fr/lirmm-01415582/file/CloudMdsQL-

IEEE_v.0.4.1.pdf

 Kharlamov, E. et al.: A Semantic Approach to Polystores
 http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/2016/Kharla

movMBBBJL16.pdf

 Karimov, J. et al.: PolyBench: The First Benchmark for Polystores
 http://www.redaktion.tu-berlin.de/fileadmin/fg131/dima-

feed/polystore_benchmark_TPCTC-1028_crv.pdf

 Meehan, J. et al.: Integrating Real-Time and Batch Processing in a
Polystore
 https://cs.brown.edu/courses/cs227/papers/bigdawg-integration.pdf

 Bondiombouy,C. et al.: Query Processing in Multistore Systems: an
overview
 https://hal.inria.fr/hal-01289759v2/document

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01415582/file/CloudMdsQL-IEEE_v.0.4.1.pdf
http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/2016/KharlamovMBBBJL16.pdf
http://www.redaktion.tu-berlin.de/fileadmin/fg131/dima-feed/polystore_benchmark_TPCTC-1028_crv.pdf
https://cs.brown.edu/courses/cs227/papers/bigdawg-integration.pdf
https://hal.inria.fr/hal-01289759v2/document

