
Modern Database

Systems

Polystores

Doc. RNDr. Irena Holubova, Ph.D.
Irena.Holubova@matfyz.cuni.cz

Based on the tutorial “Multi-model Databases and Tightly Integrated

Polystores: Current Practices, Comparisons, and Open Challenges”,

Jiaheng Lu, Irena Holubova, Bogdan Cautis, CIKM’18, Turin, Italy.

mailto:Irena.Holubova@matfyz.cuni.cz

A Grand Challenge on Variety

 Big data: Volume, Variety,
Velocity, Veracity, …

 Variety:
 Hierarchical data

 XML, JSON

 Graph data
 RDF, property graphs, networks

 Tabular data
 CSV

 …

Motivation

 One application to include multi-model

data

Relational data: customer databases

Graph data: social networks

Hierarchical data: catalogue, product

Text data: customer review

…

Two Solutions

1. Multi-model databases

 Using one single, integrated backend

2. Polystores

 Using jointly multiple data storage

technologies, chosen based upon the way

data is being used by individual applications

Multi-model Database

 One unified database for multi-model data

Table

RDFXML

Spatial

Text

Multi-model

DB
JSON

Polystore

 Use the right tool for (each part of) the job…
 If you have structured data with some differences

 Use a document store

 If you have relations between entities and want to
efficiently query them
 Use a graph database

 If you manage the data structure yourself and do not
need complex queries
 Use a key-value store

 …and glue everything together

An example of multi-model data

{ "Order_no":"0c6df508",

"Orderlines": [

{ "Product_no":"2724f"

"Product_Name":"Toy",

"Price":66 },

{ "Product_no":"3424g",

"Product_Name":"Book",

"Price":40 }]

}

Marry (1)

John (2)

knowsknows

William (3)

Social network graph

Key/value pairs
(Customer_ID , Order_no)

Order JSON document
Customer relation"1" -- > "34e5e759"

"2"-- > "0c6df508" Customer_ID Name Credit_limits

1 Mary 5,000

2 John 3,000

3 William 2,000

Pros and Cons of Polystores

 Handle multi-model data

 Help your applications to

scale well

 A rich experience of the

single-model stores

 Requires the company to

hire people to integrate

different databases

 Developers need to learn

different databases

 It is a challenge to

handle cross-model query

and transaction

Three Types of Polystore Systems

 Loosely-coupled systems
 Similar to mediator-wrapper

architecture

 Common interfaces

 Autonomy of local stores

 Tightly-coupled systems
 Exploit directly local

interfaces

 Trade autonomy for
performance
 Materialized views,

indexes

 Hybrid

Bondiombouy, Carlyna, and Patrick Valduriez. "Query processing in multistore systems: an

overview." International Journal of Cloud Computing 5.4 (2016): 309-346

An overview of polystores https://slideplayer.com/slide/13365730/

https://slideplayer.com/slide/13365730/

No „one size fits all“…

 Heterogeneous data analytics: data processing
frameworks (Map/Reduce, Spark, Flink), NoSQL, …

 Polystore idea:
 Package together multiple query engines

 Union (federation) of different specialized stores, each with distinct
(native) data model, internal capabilities, language, and semantics

 Holy grail: platform agnostic data analytics

 Use the right store for (parts of) each specialized
scenario

 Possibly rely on middleware layer to integrate data from
different sources

Dimensions of Polystores

 Heterogeneity
 Different data models, query models, expressiveness, query engines

 Autonomy
 Association with the polystore, execution (support of native applications

+ federation), evolution of own models and schemas

 Transparency
 Location (data may even span multiple storage engines, user does not

know that), transformation / migration of data

 Flexibility
 User-defined schemata and interfaces (functions), modular architecture

 Optimality
 Federated plans, data placement

Tan et al. “Enabling query processing across heterogeneous data models: A survey”. BigData

2017

Tightly Integrated Polystores
(TIPs)

 Examples: Polybase, HadoopDB, Estocada

 Trade autonomy for efficient querying of diverse kinds of data for Big
Data analytics
 Data stores can only be accessed through the multi-store system

 Less uncertainty with extended control over the various stores

 Stores accessed directly through their local language

 Efficient / adaptive data movement across data stores

 Number of data stores that can be interfaced is typically limited

 Extensibility
 Good to have…

Arguably the closest we can get

to multi-model DBs, while having

several native stores “under the hood”.

Comparison of MMDs and TIPs

 Common features:
 Support for multiple data models

 Global query processing

 Cloud support

MMDs TIPs

Engine single engine, backend multiple databases (native)

Maturity lower higher

Usability read, write and update read-only

Transactions global transaction supported unsupported

Holistic query optimizations open problem more challenging

Community industry-driven academia-driven

Data migration difficult simple

???

Loosely Integrated Polystores

 Examples: BigIntegrator, Forward/SQL++, QoX
 Data mediation SQL engines: Apache Drill, Spark SQL, SQL++

 Allow different sources to be plugged in by wrappers, then queried via SQL

 Reminiscent of multi-database systems

 Follow mediator-wrapper architecture (one wrapper per datastore)
 One global common language

 General approach
 Split a query into subqueries

 Per datastore, still in common

language

 Send to wrapper

 Translate

 Get results

 Translate to common format

 Integrate

Hybrid Polystores

 Examples: BigDawg, SparkSQL, CloudMdsQL

 Rely on tight coupling for some stores, loose coupling for
others

 Following the mediator-wrapper architecture
 But the query processor can also directly access some data

stores

BigDAWG

https://bigdawg.mit.edu/

 A collection of data stores accessed with a single query language

 Key abstraction: island of information
 Data model + operations + storage engine(s)

 Cross-island queries

 Relies on a variety of data islands
 Relational, array, NoSQL, streaming, …

 Currently: PostgreSQL, SciDB, Accumulo

 No common data model, query language / processor
 Each island has its own

 Shim connects an island to one or more storage engines
 Maps queries from island language to the native query language of a

particular storage engine (or engines)

 Cast = operators for moving datasets between islands
 Processing in the storage engine best suited to the features of the data

Sorted, distributed

key/value store

https://bigdawg.mit.edu/
http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjyh-DV9eHfAhVF6qQKHaRGAcoQjRx6BAgBEAU&url=http%3A%2F%2Fcs.brown.edu%2Fpeople%2Ftkraska%2Fresearch.html&psig=AOvVaw2---JyfQxuSZK6crdDTxUx&ust=1547165189709810
http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjyh-DV9eHfAhVF6qQKHaRGAcoQjRx6BAgBEAU&url=http%3A%2F%2Fcs.brown.edu%2Fpeople%2Ftkraska%2Fresearch.html&psig=AOvVaw2---JyfQxuSZK6crdDTxUx&ust=1547165189709810

BigDAWG

Openly available

health data

BigDAWG

 At its core middleware that supports a common API to a
collection of storage engines

 Key elements:
 Optimizer: parses the input query and creates a set of viable

query plan trees with possible engines for each subquery

 Monitor: uses performance data from prior queries to determine
the query plan tree with the best engine for each subquery

 Executor: figures out how to best join the collections of objects
and then executes the query

 Migrator: moves data from engine to engine when the plan calls
for such data motion

http://bigdawg-documentation.readthedocs.io/en/latest/_images/bigdawgmiddleware.png
http://bigdawg-documentation.readthedocs.io/en/latest/_images/bigdawgmiddleware.png

Another Classification

 Federated systems:
 Collection of homogeneous data stores

 Features a single standard query interface

 Polyglot systems:
 Collection of homogeneous data stores

 Exposes multiple query interfaces to the users

 Multistore systems:
 Data across heterogeneous data stores

 Supporting a single query interface

 Polystore systems:
 Query processing across heterogeneous data stores

 Supports multiple query interfaces

Tan et al. “Enabling query processing across heterogeneous data models: A

survey”. BigData 2017

Open Problems and Challenges

 Many challenges: query optimization, query execution,
extensibility, interfaces, cross-platform transactions, self-
tuning, data placement / migration, benchmarking, …
 High degree of uncertainty

 Transparency: do not require users to specify where to
get / store data, where to run queries / subqueries
 Explain and allow user hints

 More than ever need for automation, adaptiveness,
learning on the fly

References

 Kolev, B. et al.: Benchmarking Polystores: the CloudMdsQL
Experience
 https://hal-lirmm.ccsd.cnrs.fr/lirmm-01415582/file/CloudMdsQL-

IEEE_v.0.4.1.pdf

 Kharlamov, E. et al.: A Semantic Approach to Polystores
 http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/2016/Kharla

movMBBBJL16.pdf

 Karimov, J. et al.: PolyBench: The First Benchmark for Polystores
 http://www.redaktion.tu-berlin.de/fileadmin/fg131/dima-

feed/polystore_benchmark_TPCTC-1028_crv.pdf

 Meehan, J. et al.: Integrating Real-Time and Batch Processing in a
Polystore
 https://cs.brown.edu/courses/cs227/papers/bigdawg-integration.pdf

 Bondiombouy,C. et al.: Query Processing in Multistore Systems: an
overview
 https://hal.inria.fr/hal-01289759v2/document

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01415582/file/CloudMdsQL-IEEE_v.0.4.1.pdf
http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/2016/KharlamovMBBBJL16.pdf
http://www.redaktion.tu-berlin.de/fileadmin/fg131/dima-feed/polystore_benchmark_TPCTC-1028_crv.pdf
https://cs.brown.edu/courses/cs227/papers/bigdawg-integration.pdf
https://hal.inria.fr/hal-01289759v2/document

