
Modern Database

Systems

Graph databases

Doc. RNDr. Irena Holubova, Ph.D.
Irena.Holubova@matfyz.cuni.cz

mailto:Irena.Holubova@matfyz.cuni.cz

Graph Databases
Basic Characteristics

 To store entities and relationships between these entities
 Node is an instance of an object

 Nodes have properties

 e.g., name

 Edges have directional significance

 Edges have types

 e.g., likes, friend, …

 Nodes are organized by relationships
 Allow to find interesting patterns

 e.g., “Get all people employed by Big Co that like NoSQL
Distilled”

Example:

Graph Databases
RDBMS vs. Graph Databases

 When we store a graph-like structure in RDBMS, it is for a single
type of relationship
 “Who is my manager”

 Adding another relationship usually means schema changes, data
movement etc.

 In graph databases relationships can be dynamically created / deleted
 There is no limit for number and kinds

 In RDBMS we model the graph beforehand based on the Traversal
we want
 If the Traversal changes, the data will have to change

 We usually need a lot of join operations

 In graph databases the relationships are not calculated at query time
but persisted
 Shifting the bulk of the work of navigating the graph to inserts, leaving

queries as fast as possible

Graph Databases
Basic Characteristics

 Nodes can have different types of relationships between
them
 To represent relationships between the domain entities

 To have secondary relationships

 Category, path, time-trees, quad-trees for spatial indexing, linked
lists for sorted access, …

 There is no limit to the number and kind of relationships
a node can have

 Relationships have type, start node, end node, own
properties
 e.g., since when did they become friends

Graph Databases
Representatives

FlockDB

http://en.wikipedia.org/wiki/File:Neo4j.jpg
http://en.wikipedia.org/wiki/File:Neo4j.jpg

Neo4j

 Open source graph database
 The most popular

 Initial release: 2007

 Written in: Java

 OS: cross-platform

 Stores data in nodes connected by
directed, typed relationships
 With properties on both

 Called property graph

http://www.neo4j.org/

http://en.wikipedia.org/wiki/File:Neo4j.jpg
http://en.wikipedia.org/wiki/File:Neo4j.jpg
http://www.neo4j.org/

Neo4j
Main Features (according to authors)

 intuitive – a graph model for data representation

 reliable – with full ACID transactions

 durable and fast – disk-based, native storage engine

 massively scalable – up to several billions of nodes /
relationships / properties

 highly-available – when distributed across multiple
machines

 expressive – powerful, human readable graph query
language

 fast – powerful traversal framework

 embeddable

 simple – accessible by REST interface / object-oriented
Java API

RDBMS vs. Neo4j

 RDBMS is optimized for aggregated data

 Neo4j is optimized for highly connected data

Key-Value (Column Family) Store

vs. Neo4j
 Key-Value model is for lookups of simple values or lists

 Column family store can be considered as a step in evolution of
key/value stores

 The value contains a list of columns

 Neo4j lets you elaborate the simple data structures into more
complex data
 Interconnected

Document Store vs. Neo4j

 Document
database
accommodates
data that can
easily be
represented as
a tree
 Schema-free

 References to
other
documents
within the tree =
more
expressive
representation

Neo4j
Data Model – Node, Relationship, Property

 Fundamental units: nodes + relationships

 Both can contain properties
 Key-value pairs where the key is a string

 Value can be primitive or an array of one

primitive type
 e.g., String, int, int[], …

 null is not a valid property value
 nulls can be modelled by the absence of a key

 Relationships
 Directed (incoming and outgoing edge)

 Equally well traversed in either direction = no need to add both
directions to increase performance

 Direction can be ignored when not needed by applications

 Always have start and end node

 Can be recursive

Type Description Value range

boolean true/false

byte 8-bit integer -128 to 127, inclusive

short 16-bit integer -32768 to 32767, inclusive

int 32-bit integer -2147483648 to 2147483647,

inclusive

long 64-bit integer -9223372036854775808 to

9223372036854775807,

inclusive

float 32-bit IEEE 754 floating-point

number

double 64-bit IEEE 754 floating-point

number

char 16-bit unsigned integers

representing Unicode

characters

u0000 to uffff (0 to 65535)

String sequence of Unicode characters

Node Labels/Edge Types

 Later extension

 Nodes can have 0

or more labels

For logical

grouping

 Edges must have a

single type

Neo4j
“Hello World” Graph – Java API

// enum of types of relationships:

private static enum RelTypes implements RelationshipType

{

KNOWS

};

GraphDatabaseService graphDb;

Node firstNode;

Node secondNode;

Relationship relationship;

// starting a database (directory is created if not exists):

graphDb = new
GraphDatabaseFactory().newEmbeddedDatabase(DB_PATH);

// …

Neo4j
“Hello World” Graph

// create a small graph:

firstNode = graphDb.createNode();

firstNode.setProperty("message", "Hello, ");

secondNode = graphDb.createNode();

secondNode.setProperty("message", "World!");

relationship = firstNode.createRelationshipTo

(secondNode, RelTypes.KNOWS);

relationship.setProperty

("message", "brave Neo4j ");

// …

Neo4j
“Hello World” Graph

// print the result:

System.out.print(firstNode.getProperty("message"));

System.out.print(relationship.getProperty("message"));

System.out.print(secondNode.getProperty("message"));

// remove the data:

firstNode.getSingleRelationship

(RelTypes.KNOWS, Direction.OUTGOING).delete();

firstNode.delete();

secondNode.delete();

// shut down the database:

graphDb.shutdown();

Neo4j
“Hello World” Graph – Transactions

// all writes (creating, deleting and updating any data)

// have to be performed in a transaction,

// otherwise NotInTransactionException

Transaction tx = graphDb.beginTx();

try

{

// updating operations go here

tx.success(); // transaction is committed on close

}

catch (Exception e)

{

tx.failure(); // transaction is rolled back on close

}

finally

{

tx.close(); // or deprecated tx.finish()

}

Neo4j
Data Model – Path, Traversal

 Path = one or more nodes
with connecting
relationships
 Typically retrieved as a

query or traversal result

 Traversing a graph =
visiting its nodes, following
relationships according to
some rules
 Mostly a subgraph is visited

 Neo4j: Traversal framework
+ Java API, Cypher, Gremlin

Neo4j
Traversal Framework

 A traversal is influenced by

 Expanders – define what to traverse

 i.e., relationship direction and type

 Order – depth-first / breadth-first

 Uniqueness – visit nodes (relationships, paths) only

once

 Evaluator – what to return and whether to stop or

continue traversal beyond a current position

 Starting nodes where the traversal will begin

Neo4j
Traversal Framework – Java API

 TraversalDescription
 The main interface used for defining and initializing traversals

 Not meant to be implemented by users
 Just used

 Can specify branch ordering
 breadthFirst() / depthFirst()

 Relationships
 Adds a relationship type to traverse

 Empty (default) = traverse all relationships

 At least one in the list = traverse the specified ones

 Two methods: including / excluding direction
 Direction.BOTH

 Direction.INCOMING

 Direction.OUTGOING

Neo4j
Traversal Framework – Java API

 Evaluator
 Used for deciding at each position: should the traversal continue,

and/or should the node be included in the result

 Actions:
 Evaluation.INCLUDE_AND_CONTINUE: Include this node in the

result and continue the traversal

 Evaluation.INCLUDE_AND_PRUNE: Include this node in the
result, but do not continue the traversal

 Evaluation.EXCLUDE_AND_CONTINUE: Exclude this node from
the result, but continue the traversal

 Evaluation.EXCLUDE_AND_PRUNE: Exclude this node from the
result and do not continue the traversal

 Pre-defined evaluators:
 Evaluators.excludeStartPosition()

 Evaluators.toDepth(int depth) /
Evaluators.fromDepth(int depth)

 …

Neo4j
Traversal Framework – Java API

 Uniqueness
 Can be supplied to the TraversalDescription

 Indicates under what circumstances a traversal may revisit the
same position in the graph

 NONE: Any position in the graph may be revisited.

 NODE_GLOBAL: No node in the graph may be re-visited (default)

 …

 Traverser
 Traverser which is used to step through the results of a traversal

 Steps can correspond to

 Path (default)

 Node

 Relationship

Neo4j
Example

group

hierarchy

membership

of a group

top level

group

Neo4j
Task 1. Get the Admins

Node admins = getNodeByName("Admins");

TraversalDescription traversalDescription = Traversal.description()

.breadthFirst()

.evaluator(Evaluators.excludeStartPosition())

.relationships(RoleRels.PART_OF, Direction.INCOMING)

.relationships(RoleRels.MEMBER_OF, Direction.INCOMING);

Traverser traverser = traversalDescription.traverse(admins);

String output = "";

for (Path path : traverser)

{

Node node = path.endNode();

output += "Found: "

+ node.getProperty(NAME) + " at depth: "

+ (path.length() - 1) + "\n";

}

Found: HelpDesk at depth: 0

Found: Ali at depth: 0

Found: Engin at depth: 1

Found: Demet at depth: 1

Neo4j
Task 2. Get Group Membership of a User

Node jale = getNodeByName("Jale");

traversalDescription = Traversal.description()

.depthFirst()

.evaluator(Evaluators.excludeStartPosition())

.relationships(RoleRels.MEMBER_OF, Direction.OUTGOING)

.relationships(RoleRels.PART_OF, Direction.OUTGOING);

traverser = traversalDescription.traverse(jale);

Found: ABCTechnicians at depth: 0

Found: Technicians at depth: 1

Found: Users at depth: 2

Neo4j
Task 3. Get All Groups

Node referenceNode = getNodeByName("Reference_Node") ;

traversalDescription = Traversal.description()

.breadthFirst()

.evaluator(Evaluators.excludeStartPosition())

.relationships(RoleRels.ROOT, Direction.INCOMING)

.relationships(RoleRels.PART_OF, Direction.INCOMING);

traverser = traversalDescription.traverse(referenceNode);

Found: Admins at depth: 0

Found: Users at depth: 0

Found: HelpDesk at depth: 1

Found: Managers at depth: 1

Found: Technicians at depth: 1

Found: ABCTechnicians at depth: 2

Neo4j
Task 4. Get All Members of a Group

Node referenceNode = getNodeByName("Reference_Node") ;

traversalDescription = Traversal.description()

.breadthFirst()

.evaluator(

Evaluators.includeWhereLastRelationshipTypeIs

(RoleRels.MEMBER_OF));

traverser = traversalDescription.traverse(referenceNode);

Found: Ali at depth: 1

Found: Engin at depth: 1

Found: Burcu at depth: 1

Found: Can at depth: 1

Found: Demet at depth: 2

Found: Gul at depth: 2

Found: Fuat at depth: 2

Found: Hakan at depth: 2

Found: Irmak at depth: 2

Found: Jale at depth: 3

Gremlin

 Gremlin = graph traversal language for
traversing property graphs
 Maintained by TinkerPop

 Open source software development group

 Focuses on technologies related to graph databases

 Implemented by most graph database vendors

 Neo4j Gremlin Plugin

 Scripts are executed on the server database

 Results are returned as Neo4j Node and
Relationship representations

http://gremlindocs.com/

http://gremlindocs.com/

Gremlin
Property Graph

http://www.slideshare.net/sakrsherif/gremlin

http://www.slideshare.net/sakrsherif/gremlin

TinkerPop and Related Stuff

 Blueprints – interface for graph databases

 Like ODBC (JDBC) for graph databases

 Pipes – dataflow framework for evaluating

graph traversals

 Groovy – superset of Java used by

Gremlin as a host language

http://www.tinkerpop.com/http://groovy.codehaus.org/

http://www.tinkerpop.com/
http://blueprints.tinkerpop.com/
http://blueprints.tinkerpop.com/
http://pipes.tinkerpop.com/
http://pipes.tinkerpop.com/
http://groovy.codehaus.org/

Gremlin
Examples

https://github.com/tinkerpop/gremlin/wiki/Basic-Graph-Traversals

https://github.com/tinkerpop/gremlin/wiki/Basic-Graph-Traversals

Gremlin
Examples

gremlin> g = new Neo4jGraph('I:\\tmp\\myDB.graphdb')

==> neo4jgraph[EmbeddedGraphDatabase[I:\tmp\myDB.graphdb]]

gremlin> v = g.v(1)

==>v[1]

gremlin> v.outE

==>e[7][1-knows->2]

==>e[9][1-created->3]

==>e[8][1-knows->4]

gremlin> v.outE.inV

==>v[2]

==>v[3]

==>v[4]

gremlin> v.outE.inV.outE.inV

==>v[5]

==>v[3]

Gremlin steps:

• adjacency: outE, inE, bothE, outV,

inV, bothV

• to skip edges: out, in, and both

Gremlin
Examples

gremlin> list = [v]

gremlin> for(i in 1..2)

list = list._().out.collect{it}

gremlin> list

==>v[5]

==>v[3]

gremlin> v.as('x').outE.inV.loop('x'){it.loops < 3}

==>v[5]

==>v[3]

the same using for iteration

the same using loop

it component of the loop step closure has three properties:

• it.object : the current object of the traverser

• it.path : the current path of the traverser

• it.loops : the number of times the traverser has looped

through the loop section

Gremlin
Examples

gremlin> v = g.v(1)

==>v[1]

gremlin> v.name

==>marko

gremlin> v.outE('knows').inV.filter{it.age > 30}.name

==>josh

gremlin> v.out('knows').filter{it.age > 21}.

as('x').name.filter{it.matches('jo.{2}|JO.{2}')}.

back('x').age

==>32 regular expression

variable

Gremlin
Examples

gremlin> g.v(1).note= "my friend" // set a property

==> my friend

gremlin> g.v(1).map // get property map

==> {name=marko, age=29, note=my friend}

gremlin> v1= g.addVertex([name: "irena"])

==> v[7]

gremlin> v2 = g.v(1)

==> v[1]

gremlin> g.addEdge(v1, v2, 'knows')

==> e[7][7-knows->1]

Cypher

 Neo4j graph query language

 For querying and updating

 Declarative – we describe what we want, not

how to get it

 Not necessary to express traversals

 Human-readable

 Inspired by SQL and SPARQL

http://docs.neo4j.org/chunked/stable/cypher-query-lang.html

http://docs.neo4j.org/chunked/stable/cypher-query-lang.html
http://en.wikipedia.org/wiki/File:Neo4j.jpg
http://en.wikipedia.org/wiki/File:Neo4j.jpg

Cypher Clauses

 START: Starting points in the graph, obtained via index
lookups or by element IDs.

 MATCH: The graph pattern to match, bound to the
starting points in START.

 WHERE: Filtering criteria.

 RETURN: What to return.

 CREATE: Creates nodes and relationships.

 DELETE: Removes nodes, relationships and properties.

 SET: Set values to properties.

 FOREACH: Performs updating actions once per element
in a list.

 WITH: Divides a query into multiple, distinct parts.

Cypher Examples
Creating Nodes

CREATE (n);

0 rows available after 8 ms, consumed after another 0 ms

Added 1 nodes

CREATE (a {name : 'Andres'}) RETURN a;

+--------------------+

| a |

+--------------------+

| ({name: "Andres"}) |

+--------------------+

1 row available after 13 ms, consumed after another 0 ms

Added 1 nodes, Set 1 properties

CREATE (n {name : 'Andres', title : 'Developer'});

0 rows available after 13 ms, consumed after another 0 ms

Added 1 nodes, Set 2 properties

Cypher Examples
Creating Relationships

MATCH (a {name:"Andres"})

CREATE (a)-[r:FRIEND]->(b {name:"Jana"})

RETURN r;

+-----------+

| r |

+-----------+

| [:FRIEND] |

+-----------+

1 row available after 27 ms, consumed after another 1 ms

Added 1 node, Created 1 relationship, Set 1 property

MATCH (a {name:"Andres"})

MATCH (b {name:"Jana"})

CREATE (a)-[r:RELTYPE {name : a.name + '<->' + b.name }]->(b)

RETURN r;

1 row available after 18 ms, consumed after another 1 ms

Created 1 relationship, Set 1 property

Cypher Examples
Creating Paths

CREATE p = (andres {name:'Andres'})-[:WORKS_AT]->(neo)<-[:WORKS_AT]-

(michael {name:'Michael'})

RETURN p;

+---+

| p |

+---+

| ({name: "Andres"})-[:WORKS_AT]->()<-[:WORKS_AT]-({name: "Michael"}) |

+---+

1 row available after 188 ms, consumed after another 22 ms

Added 3 nodes, Created 2 relationships, Set 2 properties

all parts of the pattern not

already in scope are created

Cypher Examples
Changing Properties

MATCH (n { name: 'Andres' })

SET n.surname = 'Taylor'

RETURN n

| n |

+--+

| Node[0]{surname:"Taylor",name:"Andres",age:36,hungry:true} |

+--+

1 row

Properties set: 1

MATCH (n { name: 'Andres' })

SET n.name = NULL RETURN n

+-----------------------------+

| n |

+-----------------------------+

| Node[0]{hungry:true,age:36} |

+-----------------------------+

1 row

Properties set: 1

Cypher Examples
Delete

MATCH (n { name: 'Andres' })

DETACH DELETE n

+-------------------+

| No data returned. |

+-------------------+

Nodes deleted: 1

Relationships deleted: 2

MATCH (n { name: 'Andres' })-[r:KNOWS]->()

DELETE r

+-------------------+

| No data returned. |

+-------------------+

Relationships deleted: 2

Cypher Examples
Foreach

MATCH p =(begin)-[*]->(END)

WHERE begin.name = 'A' AND END.name = 'D'

FOREACH (n IN nodes(p)| SET n.marked = TRUE)

+-------------------+

| No data returned. |

+-------------------+

Properties set: 4

Cypher Examples
Querying

MATCH (john {name: 'John'})-[:friend]->()-[:friend]->(fof)

RETURN john.name, fof.name

+----------------------+

| john.name | fof.name |

+----------------------+

| "John" | "Maria" |

| "John" | "Steve" |

+----------------------+

2 rows

Cypher Examples
Querying

MATCH (user)-[:friend]->(follower)

WHERE user.name IN ['Joe', 'John', 'Sara', 'Maria', 'Steve'] AND

follower.name =~ 'S.*'

RETURN user.name, follower.name

+---------------------------+

| user.name | follower.name |

+---------------------------+

| "Joe" | "Steve" |

| "John" | "Sara" |

+---------------------------+

2 rows

Cypher Examples
Order by

MATCH (n)

RETURN n.name, n.age

ORDER BY n.name

We can use:

• multiple properties

• asc/desc

Cypher Examples
Count

MATCH (n { name: 'A' })-[r]->()

RETURN type(r), count(*)

Cypher

 And there are many other features
 Other aggregation functions

 Count, sum, avg, max, min

 LIMIT n - returns only subsets of the total result
 SKIP n = trimmed from the top

 Often combined with order by

 Predicates ALL and ANY

 Functions
 LENGTH of a path, TYPE of a relationship, ID of node/relationship,

NODES of a path, RELATIONSHIPS of a path, …

 Operators

 …

More on

Internals

http://en.wikipedia.org/wiki/File:Neo4j.jpg
http://en.wikipedia.org/wiki/File:Neo4j.jpg

Neo4j
Transaction Management

 Support for ACID properties

 All write operations that work with the graph must be
performed in a transaction

 Can have nested transactions

 Rollback of nested transaction  rollback of the whole
transaction

 Required steps:
1. Begin a transaction

2. Operate on the graph performing write operations

3. Mark the transaction as successful or not

4. Finish the transaction
 Memory + locks are released (= necessary step)

Neo4j
Transaction Example

// all writes (creating, deleting and updating any data)

// have to be performed in a transaction,

// otherwise NotInTransactionException

Transaction tx = graphDb.beginTx();

try

{

// updating operations go here

tx.success(); // transaction is committed on close

}

catch (Exception e)

{

tx.failure(); // transaction is rolled back on close

}

finally

{

tx.close(); // or deprecated tx.finish()

}

Neo4j
Transaction Management – Read

 Default:

 Read operation reads the last committed value

 Reads do not block or take any locks

 Non-repeatable reads can occur

 A row is retrieved twice and the values within the row differ

between reads

 Higher level of isolation: read locks can be

acquired explicitly

Neo4j
Transaction Management – Write

 All modifications performed in a transaction are kept in
memory
 Very large updates have to be split

 Default locking:
 Adding/changing/removing a property of a node/relationship 

write lock on the node/relationship

 Creating/deleting a node  write lock on the specific node

 Creating/deleting a relationship  write lock on the relationship
+ its nodes

 Deadlocks:
 Can occur

 Are detected and an exception is thrown

Neo4j
Transaction Management – Delete Semantics

 Node/relationship is deleted  all properties are
removed

 Deleted node can have attached relationships
 They are deleted too

 Write operation on a node or relationship after it has
been deleted (but not yet committed)  exception
 It is possible to acquire a reference to a deleted relationship /

node that has not yet been committed

 After commit, trying to acquire new / work with old reference to a
deleted node / relationship  exception

Neo4j
Indexing

 Index
 Has a unique, user-specified name

 Indexed entities = nodes / relationships

 Index = associating any number of key-value
pairs with any number of entities
 We can index a node / relationship with several key-

value pairs that have the same key

 An old value must be deleted to set new (otherwise
we have both)

Neo4j
Indexing – Create / Delete Index

graphDb = new
GraphDatabaseFactory().newEmbeddedDatabase(DB_PATH);

IndexManager index = graphDb.index();

// check existence of an index

boolean indexExists = index.existsForNodes("actors");

// create three indexes

Index<Node> actors = index.forNodes("actors");

Index<Node> movies = index.forNodes("movies");

RelationshipIndex roles = index.forRelationships("roles");

// delete index

actors.delete();

Neo4j
Indexing – Add Nodes

Node reeves = graphDb.createNode();

reeves.setProperty("name", "Keanu Reeves");

actors.add(reeves, "name", reeves.getProperty("name"));

Node bellucci = graphDb.createNode();

bellucci.setProperty("name", "Monica Bellucci");

// multiple index values for a field

actors.add(bellucci, "name", bellucci.getProperty("name"));

actors.add(bellucci, "name", "La Bellucci");

Node matrix = graphDb.createNode();

matrix.setProperty("title", "The Matrix");

matrix.setProperty("year", 1999);

movies.add(matrix, "title", matrix.getProperty("title"));

movies.add(matrix, "year", matrix.getProperty("year"));

Neo4j
Indexing – Add Relationships, Remove

Relationship role1 =

reeves.createRelationshipTo(matrix, ACTS_IN);

role1.setProperty("name", "Neo");

roles.add(role1, "name", role1.getProperty("name"));

// completely remove bellucci from actors index

actors.remove(bellucci);

// remove any "name" entry of bellucci from actors index

actors.remove(bellucci, "name");

// remove the "name" -> "La Bellucci" entry of bellucci

actors.remove(bellucci, "name", "La Bellucci");

3 options

for removal

Neo4j
Indexing – Update

Node fishburn = graphDb.createNode();

fishburn.setProperty("name", "Fishburn");

// add to index

actors.add(fishburn, "name", fishburn.getProperty("name"));

// update the index entry when the property value changes

actors.remove

(fishburn, "name", fishburn.getProperty("name"));

fishburn.setProperty("name", "Laurence Fishburn");

actors.add(fishburn, "name", fishburn.getProperty("name"));

Neo4j
Indexing – Search using get()

// get single exact match

IndexHits<Node> hits = actors.get("name", "Keanu Reeves");

Node reeves = hits.getSingle();

Relationship persephone =

roles.get("name", "Persephone").getSingle();

Node actor = persephone.getStartNode();

Node movie = persephone.getEndNode();

// iterate over all exact matches from index

for (Relationship role : roles.get("name", "Neo"))

{

Node reeves = role.getStartNode();

}

iterator

Neo4j
Indexing – Search using query()

for (Node a : actors.query("name", "*e*"))

{

// This will return Reeves and Bellucci

}

for (Node m : movies.query("title:*Matrix* AND year:1999"))

{

// This will return "The Matrix" from 1999 only

}

Neo4j
Indexing – Search for Relationships

// find relationships filtering on start node (exact match)

IndexHits<Relationship> reevesAsNeoHits =

roles.get("name", "Neo", reeves, null);

Relationship reevesAsNeo =

reevesAsNeoHits.iterator().next();

reevesAsNeoHits.close();

// find relationships filtering on end node (using a query)

IndexHits<Relationship> matrixNeoHits =

roles.query("name", "*eo", null, theMatrix);

Relationship matrixNeo = matrixNeoHits.iterator().next();

matrixNeoHits.close();

Neo4j
Automatic Indexing

 One automatic index for nodes and one for

relationships

 Follow property values

 By default off

 We can specify properties of nodes / edges

which are automatically indexed

 We do not need to add them explicitly

 The index can be queried as any other index

Neo4j
Automatic Indexing – Setting (Option 1)

GraphDatabaseService graphDb =

new GraphDatabaseFactory().

newEmbeddedDatabaseBuilder(storeDirectory).

setConfig(GraphDatabaseSettings.node_keys_indexable,

"nodeProp1,nodeProp2").

setConfig(

GraphDatabaseSettings.relationship_keys_indexable,

"relProp1,relProp2").

setConfig(GraphDatabaseSettings.node_auto_indexing,

"true").

setConfig(GraphDatabaseSettings.relationship_auto_indexing,

"true").

newGraphDatabase();

Neo4j
Automatic Indexing – Setting (Option 2)

// start without any configuration

GraphDatabaseService graphDb = new GraphDatabaseFactory()

.newEmbeddedDatabase(storeDirectory);

// get Node AutoIndexer, set nodeProp1, nodeProp2 as auto indexed

AutoIndexer<Node> nodeAutoIndexer =
graphDb.index().getNodeAutoIndexer();

nodeAutoIndexer.startAutoIndexingProperty("nodeProp1");

nodeAutoIndexer.startAutoIndexingProperty("nodeProp2");

// get Relationship AutoIndexer, set relProp1 as auto indexed

AutoIndexer<Relationship> relAutoIndexer = graphDb.index()

.getRelationshipAutoIndexer();

relAutoIndexer.startAutoIndexingProperty("relProp1");

// none of the AutoIndexers are enabled so far - do that now

nodeAutoIndexer.setEnabled(true);

relAutoIndexer.setEnabled(true);

Neo4j
Automatic Indexing – Search

// create the primitives

node1 = graphDb.createNode();

node2 = graphDb.createNode();

rel = node1.createRelationshipTo(node2,

DynamicRelationshipType.withName("DYNAMIC"));

// add indexable and non-indexable properties

node1.setProperty("nodeProp1", "nodeProp1Value");

node2.setProperty("nodeProp2", "nodeProp2Value");

node1.setProperty("nonIndexed", "nodeProp2NonIndexedValue");

rel.setProperty("relProp1", "relProp1Value");

rel.setProperty("relPropNonIndexed",

"relPropValueNonIndexed");

Neo4j
Automatic Indexing – Search

// Get the Node auto index

ReadableIndex<Node> autoNodeIndex = graphDb.index()

.getNodeAutoIndexer().getAutoIndex();

// node1 and node2 both had auto indexed properties, get them

assertEquals(node1,

autoNodeIndex.get("nodeProp1", "nodeProp1Value")

.getSingle());

assertEquals(node2,

autoNodeIndex.get("nodeProp2", "nodeProp2Value")

.getSingle());

// node2 also had a property that should be ignored.

assertFalse(autoNodeIndex.get("nonIndexed",

"nodeProp2NonIndexedValue").hasNext());

Neo4j
Data Size

nodes 2
35

(∼ 34 billion)

relationships 2
35

(∼ 34 billion)

properties 2
36

to 2
38

depending on property types

(maximum ∼ 274 billion, always at

least ∼ 68 billion)

relationship types 2
15

(∼ 32 000)

 Since version 3.0.0 (2016) no limits in Neo4j Enterprise
Edition

Neo4j
High Availability (HA)

 Provides the following features:
 Enables a fault-tolerant database architecture

 Several Neo4j slave databases can be configured to be exact
replicas of a single Neo4j master database

 Enables a horizontally scaling read-mostly
architecture
 Enables the system to handle more read load than a single

Neo4j database instance can handle

 Transactions are still atomic, isolated and
durable, but eventually propagated to other
slaves

Neo4j
High Availability

 Transition from single machine to multi machine operation
is simple
 No need to change existing applications

 Switch from GraphDatabaseFactory to
HighlyAvailableGraphDatabaseFactory

 Both implement the same interface

 Always one master and zero or more slaves
 Write on master: eventually propagated to slaves

 All other ACID properties remain the same

 Write on slave: (immediate) synchronization with master

 Slave has to be up-to-date with master

 Operation must be performed on both

Neo4j
High Availability

 Each database instance contains the logic needed in
order to coordinate with other members

 On startup Neo4j HA database instance will try to
connect to an existing cluster specified by configuration
 If the cluster exists, it becomes a slave

 Otherwise, it becomes a master

 Failure:
 Slave – other nodes recognize it

 Master – a slave is elected as a new master

 Recovery:
 Slave – synchronizes with the cluster

 Old master – becomes a slave

Neo4j
Data on Disk

 Note: Neo4j is a schema-less database

Fixed record lengths + offsets in files

 Several types of files to store the data

File Record

size

Contents

neostore.nodestore.db 15 B Nodes

neostore.relationshipstore.db 34 B Relationships

neostore.propertystore.db 41 B Properties for nodes and relationships

neostore.propertystore.db.strings 128 B Values of string properties

neostore.propertystore.db.arrays 128 B Values of array properties

Indexed Property 1/3 *

AVG(X)

Each index entry is approximately 1/3 of the

average property value size

https://neo4j.com/developer/kb/understanding-data-on-disk/

https://neo4j.com/developer/kb/understanding-data-on-disk/

Neo4j
Data on Disk

 Data = linked lists of (fixed size) records

 Properties

Stored as a linked list of property records

 Key + value + reference to the next property

 Node - references

The first property in its property chain

The first relationship in its relationship chain

Neo4j
Data on Disk

 Relationship - references

The first property in its property chain

The start and end node

The previous and next relationship record for

the start and end node respectively

References

 Neo4j http://www.neo4j.org/

 Neo4j Manual http://docs.neo4j.org/chunked/stable/

 Neo4j Download http://www.neo4j.org/download

 Pramod J. Sadalage - Martin Fowler: NoSQL Distilled:
A Brief Guide to the Emerging World of Polyglot
Persistence

 Eric Redmond - Jim R. Wilson: Seven Databases in
Seven Weeks: A Guide to Modern Databases and the
NoSQL Movement

 Sherif Sakr - Eric Pardede: Graph Data Management:
Techniques and Applications

http://www.neo4j.org/
http://docs.neo4j.org/chunked/stable/
http://www.neo4j.org/download

