Modern Database

Systems

Graph databases

Doc. RNDr. Irena Holubova, Ph.D.

Irena.Holubova@matfyz.cuni.cz

mailto:Irena.Holubova@matfyz.cuni.cz

" J
Graph Databases

Basic Characteristics

m To store entities and relationships between these entities
Node is an instance of an object
Nodes have properties
= e.g., hame
Edges have directional significance
Edges have types
m e.g., likes, friend, ...
m Nodes are organized by relationships
Allow to find interesting patterns

e.g., “Get all people employed by Big Co that like NoSQL
Distilled”

" S
Example:

Elizabeth

Databases

C,
Yogs”
2

A o\ - \
|
likes A
likes i
Refactoring

autyor

category

Database
Refactoring

Graph Databases
RDBMS vs. Graph Databases

m When we store a graph-like structure in RDBMS, it is for a single
type of relationship
“Who is my manager”

Adding another relationship usually means schema changes, data
movement etc.

In graph databases relationships can be dynamically created / deleted
m There is no limit for number and kinds
m In RDBMS we model the graph beforehand based on the
we want
If the Traversal changes, the data will have to change
We usually need a lot of join operations
m |n graph databases the relationships are not calculated at query time
but persisted

Shifting the bulk of the work of navigating the graph to inserts, leaving
gueries as fast as possible

" J
Graph Databases

Basic Characteristics

m Nodes can have different types of relationships between
them
To represent relationships between the domain entities

To have secondary relationships

m Category, path, time-trees, quad-trees for spatial indexing, linked
lists for sorted access, ...

m There is no limit to the number and kind of relationships
a node can have

m Relationships have type, start node, end node, own
properties
e.g., since when did they become friends

"
Graph Databases

Representatives

~ Neogyj

0 the graph database

Qﬁen’rDB‘

FlockDB

http://en.wikipedia.org/wiki/File:Neo4j.jpg
http://en.wikipedia.org/wiki/File:Neo4j.jpg

" : 7 Neogj
N e O4J B° the grap4h]database
m Open source graph database AGraph

The most popular

records records

m [nitial release: 2007

m Written in: Java Nodes Relationships
m OS: cross-platform Sttt

m Stores data in nodes connected by S 4

directed, typed relationships
With properties on both
Called

http://www.neo4j.orq/

http://en.wikipedia.org/wiki/File:Neo4j.jpg
http://en.wikipedia.org/wiki/File:Neo4j.jpg
http://www.neo4j.org/

" J
Neo4j

Main Features (according to authors)

Intuitive — a graph model for data representation
reliable — with full ACID transactions
durable and fast — disk-based, native storage engine

massively scalable — up to several billions of nodes /
relationships / properties

highly-available — when distributed across multiple
machines

expressive — powerful, human readable graph query
language

fast — powerful traversal framework

embeddable

simple — accessible by REST interface / object-oriented
Java AP

"
RDBMS vs. Neo4j

O IS optimized for aggregated data
m Neo4j is optimized for highly connected data

' Al ' (Bl 3
A2 B2

B3 []

B4

N

Bé6

B7
C3 N

" S
Key-Value (Column Family) Store
vS. Neo4;

N model is for lookups of simple values or lists

store can be considered as a step in evolution of
keyl/value stores

m The value contains a list of columns

m Neo4j lets you elaborate the simple data structures into more
complex data

Interconnected
i Kl \
TR

K3

@
Kl
———

Document Store vs. Neo4;

[} D1 D2
database

accommodates

S3
Cacly bo "
. D282 Vi D151 V4 V3 V2
easily be

represented as

a tree
Schema-free

m Referencesto
other
documents
within the tree =
more
expressive
representation

"
Neo4j

Data Model — Node, Relationship, Property

m Fundamental units: + relationships

m Both can contain
Key-value pairs where the key is a string
Value can be primitive or an array of one
primitive type
m €.0., String, int, int[], ...
null is not a valid property value
= nulls can be modelled by the absence of a key

Directed (incoming and outgoing edge)
m Equally well traversed in either direction = no need to add both
directions to increase performance
m Direction can be ignored when not needed by applications

Always have start and end node
Can be recursive - loop

can be an array of

hasz a can have Primitive long
float
(Relationship type) Properties double
char
uniguely identified by :
HEE g l'\._ String

Name

Type Description Value range
boolean true/false
byte 8-bit integer -128 to 127, inclusive
short 16-bit integer -32768 to 32767, inclusive
int 32-bit integer -2147483648 to 2147483647,
Inclusive
long 64-bit integer -9223372036854775808 to
9223372036854775807,
iInclusive
float 32-bit IEEE 754 floating-point
number
double | 64-bit IEEE 754 floating-point
number
char 16-bit unsigned integers u0000 to uffff (O to 65535)

representing Unicode
characters

String

sequence of Unicode characters

" JE
Node Labels/Edge Types

title: 'Forrest Gump'
released: 1994

m Later extension

m Nodes can have O
or more labels
For logical
grouping
m Edges must have a
single type

"
Neo4j

“Hello World” Graph — Java AP

// enum of types of relationships:
private static enum RelTypes
{

KNOWS

};

GraphDatabaseService graphDb;
Node firstNode;

Node secondNode;

Relationship relationship;

// starting a database (directory is created if not exists):

graphDb = new
GraphDatabaseFactory () . (DB_PATH) ;

/] ..

" J
Neo4|

“Hello World” Graph

// create a small graph:

firstNode = graphDb. ()

firstNode. ("message", "Hello, ");
secondNode = graphDb.createNode () ;

secondNode. setProperty("message", "World!") ;

relationship = firstNode.
(secondNode,) ;

relationship.
("message", "brave Neo4dj "); message = 'Hello, "

// .. ENOWS

zszge = 'brave Meod) '

[me&sage = "World! j

Neo4j
“Hello World” Graph

// print the result:

System.out.print(firstNode. ("message"));
System.out.print(relationship. ("message"));
System.out.print(secondNode.getProperty("message"));

// remove the data:
firstNode.getSingleRelationship

(RelTypes .KNOWS, Direction.OUTGOING) . ();
firstNode. ()
secondNode. ()

// shut down the database:
()

"
Neo4|

“Hello World” Graph — Transactions

// all (creating, deleting and updating any data)
// have to be performed ,
// otherwise

Transaction = graphDb. ()
try
{
// updating operations go here
0 // transaction is committed on close

}

catch (Exception e)

{

(), // transaction is rolled back on close

}
finally

{
() // or deprecated tx.finish()

}

"
Neo4j

Data Model — Path, Traversal

m Path = one or more nodes
with connecting
relationships

Typically retrieved as a
guery or traversal result

.
m Traversing a graph =

visiting its nodes, following accompanied by 2
relationships according to
some rules

Mostly a subgraph is visited

Neo4j: Traversal framework
+ Java API, Cypher, Gremlin

has an

can contain one of more

Eelationship

" J
Neo4j

Traversal Framework

m Atraversal is influenced by

— define what to traverse
m i.e., relationship direction and type

— depth-first / breadth-first

— visit nodes (relationships, paths) only
once

— what to return and whether to stop or
continue traversal beyond a current position

where the traversal will begin

"

Dreprthy First Breadth First Incheds Exchade Tikigrue Falationships Unigue Paths Mione Tntqus Mades Diraction

what to Taverze

Eelzttonzhip Type

Neo4j

Traversal Framework — Java API

m TraversalDescription

The main interface used for defining and initializing traversals
Not meant to be implemented by users

= Just used
Can specify branch ordering

m breadthFirst () / depthFirst ()

m Relationships

Adds a relationship to traverse

m Empty (default) = traverse all relationships

m At least one in the list = traverse the specified ones
Two methods: including / excluding

m Direction.BOTH

m Direction.INCOMING

m Direction.OUTGOING

" J
Neo4j

Traversal Framework — Java API

m Evaluator

Used for deciding at each position: should the traversal continue,
and/or should the node be included in the result

Actions:

= Evaluation.INCLUDE AND CONTINUE: Include this node in the
result and continue the traversal

= Evaluation.INCLUDE AND PRUNE: Include this node in the
result, but do not continue the traversal

= Evaluation.EXCLUDE AND CONTINUE: Exclude this node from
the result, but continue the traversal

s Evaluation.EXCLUDE AND PRUNE: Exclude this node from the
result and do not continue the traversal
Pre-defined evaluators:
m Evaluators.excludeStartPosition ()

m Evaluators.toDepth(int depth) /
Evaluators. fromDepth (int depth)

Neo4j

Traversal Framework — Java API

m Uniqueness
Can be supplied to the TraversalDescription

Indicates under what circumstances a traversal may revisit the
same position in the graph

= NONE: Any position in the graph may be revisited.

= NODE GLOBAL: No node in the graph may be re-visited (default)

m [raverser

Traverser which is used to step through the results of a traversal
Steps can correspond to

m Path (default)

m Node

m Relationship

"

Neo4|

Example .
P membership
of a group
2" |Hakan & |Can
&3 ABCTechnicians
MEM R_OF &~ | Burcu @~ | Demet
MEMBER _ DF
MEMEER_OF M EMﬁ?iLGF
&3 Technicians
& Jale &4 HelpDesk
MWF N)}Eﬁ’
v MEMBER OF
& |Irmak EUE«EE A EMBER _OF _ & |Engin PART OF
F'F'-B]?‘G'F _OF
ﬁua"agem ROPT @ |Ali —MEMBER—OF» | 4 Admins
&~ | Fuat MEMPE’H OF /
5~ | Gul %t Reference Node
group
top level hierarchy

group

" J
Neo4j

Task 1. Get the Admins

Node admins = ("Admins") ;
TraversalDescription traversalDescription = Traversal.description()

()

.evaluator(Evaluators. ())
.relationships(RoleRels. , Direction.)
.relationships(RoleRels. , Direction.)
Traverser traverser = traversalDescription.traverse(admins) ;
String output = ""; Found: HelpDesk at depth: 0
for (Path path : traverser) Found: Ali at depth: O
{ Found: Engin at depth: 1
Node node = path.endNode () ; Found: Demet at depth: 1

output += "Found: "
+ node.getProperty(NAME) + " at depth: "
+ (path.length() - 1) + "\n";

"
Neo4j

Task 2. Get Group Membership of a User

Node jale = getNodeByName("Jale");

traversalDescription = Traversal.description ()

()

.evaluator (Evaluators. ())

.relationships(RoleRels. , Direction.

.relationships(RoleRels. , Direction.)
traverser = traversalDescription.traverse(jale);

Found: ABCTechnicians at depth: 0
Found: Technicians at depth: 1
Found: Users at depth: 2

"
Neo4j

Task 3. Get All Groups

Node referenceNode = getNodeByName("Reference Node") ;
traversalDescription = Traversal.description ()

0

.evaluator (Evaluators. ())

.relationships(RoleRels. , Direction.)

.relationships(RoleRels. , Direction.)
traverser = traversalDescription.traverse(referenceNode) ;

Found: Admins at depth: 0

Found: Users at depth: O

Found: HelpDesk at depth: 1
Found: Managers at depth: 1
Found: Technicians at depth: 1
Found: ABCTechnicians at depth: 2

"
Neo4j

Task 4. Get All Members of a Group

Node referenceNode = getNodeByName("Reference Node") ;
traversalDescription = Traversal.description ()

0

.evaluator (

Evaluators.
(RoleRels.))
traverser = traversalDescription.traverse(referenceNode) ;

Found: Ali at depth: 1
Found: Engin at depth: 1
Found: Burcu at depth: 1
Found: Can at depth: 1
Found: Demet at depth: 2
Found: Gul at depth: 2
Found: Fuat at depth: 2
Found: Hakan at depth: 2
Found: Irmak at depth: 2
Found: Jale at depth: 3

Gremlin

m Gremlin = graph traversal language for
traversing

Maintained by
m Open source software development group
m Focuses on technologies related to graph databases

Implemented by most graph database vendors
Neo4j Gremlin Plugin

m Scripts are executed on the server database

m Results are returned as Neo4j Node and
Relationship representations

http://gremlindocs.com/

http://gremlindocs.com/

" EEE———
Gremlin
Property Graph

PROPERTIES

\ key/value

VERTEX
| . Epge EDGE LABEL
/ ,' : | ID
=‘ r ': ‘1
! |name = "marko" | ' [name = "lop" \
! [age =29] \\‘ [weight = 0.4] /J Lang = "java"] ,

\\) ,
9 created >

http://www.slideshare.net/sakrsherif/gremlin

http://www.slideshare.net/sakrsherif/gremlin

TinkerPop and Related Stuff

— Interface for graph databases
Like ODBC (JDBC) for graph databases

— dataflow framework for evaluating
graph traversals

— superset of Java used by
Gremlin as a host language

http://groovy.codehaus.orqg/ http://www.tinkerpop.com/

http://www.tinkerpop.com/
http://blueprints.tinkerpop.com/
http://blueprints.tinkerpop.com/
http://pipes.tinkerpop.com/
http://pipes.tinkerpop.com/
http://groovy.codehaus.org/

"
Gremlin = -,;‘3;:'

Exam p I eS name = "markou Welght B 0 4
agamed created = ht =
Q 4 @z
1

created
8 created
7 W ‘
knows
Knows \ 1 name e oaler]
‘ age 35

name = "josh"

[name = "vadas"] 10
e weight = 1.0
created
5
name = "ripple"
|ang - "java"

https://github.com/tinkerpop/gremlin/wiki/Basic-Graph-Traversals

https://github.com/tinkerpop/gremlin/wiki/Basic-Graph-Traversals

Gremlin
Examples

gremlin> g = new Neo4jGraph('I:\\tmp\\myDB.graphdb')
==> neo4jgraph[EmbeddedGraphDatabase[I:\tmp\myDB.graphdb]]
gremlin> v =

==>v[1] Z Gremlin steps:

gremlin> v. - adjacency: outE, inE, bothE, outV,
==>e[7] [1-knows->2] inV, bothV

==>e[9] [1-created->3] |, 4 skip edges: out, in, and both

==>e[8] [1-knows->4]
gremlin> v. e soutveriox -
==>v[2] ‘ edge 9 id
==>v[3] b :
==>v[4]

gremlin> v.outE.inV.outE.inV
==>v[5]

==>v[3]

vertex 1 out edges venex 3,"”‘ edges

edge 9 label
’ edge 9 in vertex

vertex 4 properties vertex 4 id

Gremlin
Examples

the same using for iteration

[v];;;Zi////,

gremlin> for(i in 1..2)
list = list. () .out.collect{it}

gremlin> list =

gremlin> list

==>v[5]
==>v[3] the same using loop

—

gremlin> v.as('x') .outE.inV.loop('x') {it.loops < 3}

==>v[5]

==>v[3] it component of the loop step closure has three properties:
* it.object : the current object of the traverser

* it.path : the current path of the traverser
* it.loops : the number of times the traverser has looped

through the loop section

"
Gremlin
Example) variable

gremlin> v = g.v(1)
==>v[1l]
gremlin>

==>marko
gremlin> v. .inV. .name
==>josh

gremlin> v.out('knows') .filter{it.age > 21}.

as('x') .name.filter{it. ('jo.{2}1J0.{2}")}.
back ('x') .age N\

==>32 regular expression

Gremlin
Examples

gremlin> g.v(l) .note= "my friend"

==> my friend

gremlin> g.v(1l) .map

==> {name=marko, age=29, note=my friend}

gremlin> vl= g. ([name: "irena'"])
==> v[7]

gremlin> v2 = g.v (1)

==> v[1l]

gremlin> g. (vl, v2, 'knows')

==> e[7] [7T-knows->1]

Cypher e I

m Neodj graph query language
For querying and updating
m Declarative — we describe what we want, not
how to get it
Not necessary to express traversals

m Human-readable
Inspired by SQL and SPARQL

http://docs.neo4dj.org/chunked/stable/cypher-query-lang.html

http://docs.neo4j.org/chunked/stable/cypher-query-lang.html
http://en.wikipedia.org/wiki/File:Neo4j.jpg
http://en.wikipedia.org/wiki/File:Neo4j.jpg

Cypher Clauses

START: In the graph, obtained via index
lookups or by element IDs.

MATCH: The , bound to the
starting points in START.

WHERE: criteria.

RETURN: What to .

CREATE: nodes and relationships.

DELETE: nodes, relationships and properties.
SET: to properties.

FOREACH: Performs updating actions once per element
In a list.

WITH: Divides a query into multiple, distinct parts.

"
Cypher Examples

Creating Nodes

CREATE (n) ;
0 rows available after 8 ms, consumed after another 0 ms
Added 1 nodes

CREATE (a {name : 'Andres'}) RETURN a;

e atalat -
| a I
e atalat -
| ({name: "Andres"}) |
e -

1l row available after 13 ms, consumed after another 0 ms
Added 1 nodes, Set 1 properties

CREATE (n {name : 'Andres', title : 'Developer'});
0O rows available after 13 ms, consumed after another 0 ms
Added 1 nodes, Set 2 properties

" S
Cypher Examples

Creating Relationships

MATCH (a {name:"Andres"})
CREATE (a)-[r:FRIEND]->(b {name:"Jana"})

RETURN r;
dmmmmmm————— +
| r I
dmmmmmm————— +
| [:FRIEND] |
. +

1l row available after 27 ms, consumed after another 1 ms
Added 1 node, Created 1 relationship, Set 1 property

MATCH (a {name:"Andres'"})

MATCH (b {name:"Jana'"})

CREATE (a)-[r:RELTYPE {name : a.name + '<->' + b.name }]->(b)
RETURN r;

1l row available after 18 ms, consumed after another 1 ms
Created 1 relationship, Set 1 property

Cypher Examples

Creating Paths

CREATE p = (andres {name:'Andres'})-[:WORKS AT]->(neo)<-[:WORKS AT]-
(michael {name: 'Michael’'})

RETURN p;

+ ___

| P
i +
| ({name: "Andres"})-[:WORKS AT]->()<-[:WORKS AT]-({name: "Michael"})
i +

1l row available after 188 ms, consumed after another 22 ms
Added 3 nodes, Created 2 relationships, Set 2 properties

all parts of the pattern not
already in scope are created

"
Cypher Examples

Changing Properties

MATCH (n { name: 'Andres' })
SET n.surname = 'Taylor'

RETURN n

| n I

o - +

| Node[0O] {surname:"Taylor" , name:"Andres",6 age:36,hungry:true} |

o o + name = "Stefan’

1l row

Properties set: 1 OWs

MATCH (n { name: 'Andres' }) (r Swedish *\
SET n.name = NULL RETURN n name = Emil name = ‘Andres’
O + age =238
hungry = true
| n I
tommT T + NOWS
| Node[O] {hungry:true,age:36} |
o +
1l row

Properties set: 1

"
Cypher Examples (s)

Delete

OwWs MOWS

name = "Tobias'
age =25

MATCH (n { name: 'Andres' })
DETACH DELETE n

name = "Peter
age =34

Nodes deleted: 1
Relationships deleted: 2

MATCH (n { name: 'Andres' })-[r:KNOWS]->()

DELETE r

e e L L P et +
| No data returned. |
e e L e e P e +

Relationships deleted: 2

Cypher Examples

Foreach

MATCH p =(begin)-[*]->(END)

WHERE begin.name = 'A' AND END.name = 'D'
FOREACH (n IN nodes(p)| SET n.marked = TRUE)
e =

| No data returned. |

o - +

Properties set: 4

name = '4'

FMNOWS

OWs

FKNOWS

L J
(name =T)

"
Cypher Examples

Querying
MATCH (john {name: 'John'})-[:friend]->()-[:friend]->(fof)
RETURN john.name, fof.name

name = "John'

name = "Sara’

name = "Jog'

friend lﬁiem:l
E‘name='9te1.re' j Qame='l‘u13ria‘ j

" S
Cypher Examples

Querying

MATCH (user)-[:friend]->(follower)

WHERE user.name IN ['Joe', 'John', 'Sara',
follower.name =~ 'S.*'

RETURN user.name, follower.name

'Maria', 'Steve'] AND

name = "John'

friend

E‘name='9te1.re' j Qame='l‘u13ria‘ j

" S
Cypher Examples (=,)

length = 170
Order by
We can use: HOWS
MATCH (n) * multiple properties
RETURN n.name, n.age e asc/desc name = 'B'
ORDER BY n.name age = 34
n.name n.age MNOWS

8" - name = "C'
- = age = 32
length = 185

3 rows

" S
Cypher Examples

Count

MATCH (n { name: 'A' })-[xr]->()
RETURN type(r), count(¥*)

type(r) count(¥*)

"EMNOWS"

1 row

" J
Cypher

m And there are many other features
Other aggregation functions
= Count, sum, avg, max, min
LIMIT n - returns only subsets of the total result

s SKIP n = trimmed from the top
m Often combined with order by

Predicates ALL and ANY

Functions

s LENGTH of a path, TYPE of a relationship, ID of node/relationship,
NODES of a path, RELATIONSHIPS of a path, ...

Operators

More on

. Neoqj . Internals

http://en.wikipedia.org/wiki/File:Neo4j.jpg
http://en.wikipedia.org/wiki/File:Neo4j.jpg

Neo4j

Transaction Management

m Support for ACID properties
m All write operations that work with the graph must be
performed in a transaction
Can have nested transactions

Rollback of nested transaction = rollback of the whole
transaction

m Required steps:
Begin a transaction

Operate on the graph performing write operations
Mark the transaction as successful or not

Finish the transaction
= Memory + locks are released (= necessary step)

" J
Neo4j

Transaction Example

// all (creating, deleting and updating any data)
// have to be performed
// otherwise

’

Transaction = graphDb. ()
try
{

// updating operations go here

0 // transaction is committed on close

}
catch (Exception e)
{

(), // transaction is rolled back on close

}
finally

{
() // or deprecated tx.finish()
}

Neo4j

Transaction Management —

m Default;

Read operation reads the last committed value

Reads do not block or take any locks
m Non-repeatable reads can occur

A row is retrieved twice and the values within the row differ
between reads

m Higher level of isolation: read locks can be
acquired explicitly

Neo4j

Transaction Management —

m All modifications performed in a transaction are kept in
memory

Very large updates have to be split
m Default locking:

Adding/changing/removing a property of a node/relationship =
write lock on the node/relationship

Creating/deleting a node = write lock on the specific node

Creating/deleting a relationship = write lock on the relationship
+ its nodes

m Deadlocks:
Can occur
Are detected and an exception is thrown

" J
Neo4j

Transaction Management —

m Node/relationship is deleted = all properties are
removed

m Deleted node can have attached relationships
They are deleted too

m \Write operation on a node or relationship after it has
been deleted (but not yet committed) = exception

It is possible to acquire a reference to a deleted relationship /
node that has not yet been committed

After commit, trying to acquire new / work with old reference to a
deleted node / relationship = exception

" J
Neo4|

m Index
Has a unique, user-specified name
Indexed entities = nodes / relationships

m Index = associating any number of key-value
pairs with any number of entities

We can index a node / relationship with several key-
value pairs that have the same key

= An old value must be deleted to set new (otherwise
we have both)

"
Neo4|

Indexing — Create / Delete Index

graphDb = new
GraphDatabaseFactory () .newEmbeddedDatabase (DB_PATH) ;
index = graphDb.index() ;

// check existence of an index
boolean indexExists = index. ("actors") ;

// create three indexes

Index<Node> actors = index. ("actors") ;
Index<Node> movies = index.forNodes ("movies") ;
RelationshipIndex roles = index. ("roles") ;

// delete index
actors. ()

" J
Neo4|

Indexing — Add Nodes

Node reeves = graphDb.createNode() ;
reeves.setProperty ("name", "Keanu Reeves'")
actors. (reeves, "name'", reeves.getProperty('"name"));

Node bellucci = graphDb.createNode () ;
bellucci.setProperty("name", "Monica Bellucci");

// multiple index values for a field
actors. (bellucci, "name", bellucci.getProperty('"name")) ;

actors. (bellucci, "name", "La Bellucci");

Node matrix = graphDb.createNode() ;

matrix.setProperty("title", "The Matrix");
matrix.setProperty("year", 1999);
movies. (matrix, "title", matrix.getProperty("title"));

movies. (matrix, "year", matrix.getProperty("year")):;

Neo4;

Indexing — Add Relationships, Remove

Relationship rolel =

reeves.createRelationshipTo (matrix, ACTS IN);

rolel.setProperty ("name", "Neo");
roles. (rolel, "name", rolel.getProperty("name"))

3 options
// completely remove bellucci from actors index for removal
actors. (bellucci); L

// remove any "name" entry of bellucci from actors index
actors. (bellucci, "name");
// remove the "name" -> "La Bellucci" entry of bellucci

actors. (bellucci, "name", "La Bellucci");

Neo4;

Indexing — Update

Node fishburn = graphDb.createNode() ;

fishburn.setProperty (''name", "Fishburn") ;

// add to index

actors.add (fishburn, "name", fishburn.getProperty('"name'"));

// update the index entry when the property value changes
actors.

(fishburn, '"name", fishburn.getProperty("name")) ;
fishburn.setProperty (''name", "Laurence Fishburn'");

actors. (fishburn, '"name", fishburn.getProperty ('"'name")) ;

Neo4;

Indexing — Search using get ()

// get single exact match
IndexHits<Node> hits = actors. ("name", "Keanu Reeves'");

Node reeves = hits.getSingle();‘Qﬁ

iterator

Relationship persephone =

roles. ("name", "Persephone'") .getSingle()
Node actor = persephone.getStartNode() ;
Node movie = persephone.getEndNode () ;

// iterate over all exact matches from index
for (Relationship role : roles. ("name", '"Neo"))

{

Node reeves = role.getStartNode() ;

Neo4;

Indexing — Search using query ()

for (Node a : actors. ("name", "*e*"))

{

// This will return Reeves and Bellucci

for (Node m : movies. ("title:*Matrix* AND year:1999"))

{
// This will return "The Matrix" from 1999 only

" J
Neo4;

Indexing — Search for Relationships

// find relationships filtering on start node (exact match)
IndexHits<Relationship> reevesAsNeoHits =
roles. ("name", '"Neo", reeves, null);

Relationship reevesAsNeo =
reevesAsNeoHits.iterator () .next () ;

reevesAsNeoHits.close() ;

// find relationships filtering on end node (using a query)
IndexHits<Relationship> matrixNeoHits =
roles. ("name", "*eo", null, theMatrix);

Relationship matrixNeo = matrixNeoHits.iterator () .next() ;

matrixNeoHits.close() ;

Neo4;

Automatic Indexing

@ One automatic index for nodes and one for
relationships

Follow property values
By default off

m \We can specify properties of nodes / edges
which are automatically indexed

We do not need to add them explicitly
m The index can be queried as any other index

Neo4;

Automatic Indexing — Setting (Option 1)

GraphDatabaseService graphDb =
new GraphDatabaseFactory() .
newEmbeddedDatabaseBuilder (storeDirectory) .

setConfig (GraphDatabaseSettings.
"nodePropl ,nodeProp2") .

setConfig (
GraphDatabaseSettings.
"relPropl,relProp2").

setConfig (GraphDatabaseSettings.
"true") .

setConfig (GraphDatabaseSettings.
"true") .

newGraphDatabase () ;

" J
Neo4;

Automatic Indexing — Setting (Option 2)

// start without any configuration
GraphDatabaseService graphDb = new GraphDatabaseFactory ()
.newEmbeddedDatabase (storeDirectory) ;

// get Node AutoIndexer, set nodePropl, nodeProp2 as auto indexed
AutoIndexer<Node> nodeAutoIndexer =

graphDb.index () . ()
nodeAutoIndexer. ("nodePropl") ;
nodeAutolIndexer. ("nodeProp2") ;

// get Relationship AutoIndexer, set relPropl as auto indexed
AutoIndexer<Relationship> relAutoIndexer = graphDb.index ()
0

relAutoIndexer. ("relPropl") ;

// none of the AutoIndexers are enabled so far - do that now
nodeAutoIndexer. (true) ;
relAutoIndexer. (true) ;

Neo4;

Automatic Indexing — Search

// create the primitives

nodel = graphDb.createNode() ;

node2 = graphDb.createNode() ;

rel = nodel.createRelationshipTo (node2,
DynamicRelationshipType.withName ("DYNAMIC")) ;

// add indexable and non-indexable properties

nodel. ("nodePropl", "nodeProplValue") ;

node?2. ("nodeProp2", "nodeProp2Value") ;

nodel. ("nonIndexed", "nodeProp2NonIndexedValue") ;
rel. ("relPropl", "relProplValue");

rel. ("relPropNonIndexed",

"relPropValueNonIndexed") ;

Neo4;

Automatic Indexing — Search

// Get the Node auto index
ReadableIndex<Node> autoNodelIndex = graphDb.index()

(). ()

// nodel and node2 both had auto indexed properties, get them
assertEquals (nodel,
autoNodeIndex. ("nodePropl", "nodeProplValue")
.getSingle());
assertEquals (node2,
autoNodeIndex. ("nodeProp2", "nodeProp2Value")
.getSingle()) ;

// node2 also had a property that should be ignored.
assertFalse (autoNodeIndex. ("nonIndexed",
"nodeProp2NonIndexedValue") .hasNext()) ;

Neo4;

nodes 2> (~ 34 billion)
relationships 2> (~ 34 billion)
properties 2> t0 2 depending on property types

(maximum ~ 274 billion, always at
least ~ 68 billion)

relationship types 2 (~ 32 000)

m Since version 3.0.0 (2016) no limits in Neo4j Enterprise
Edition

Neo4;

(HA)

m Provides the following features:

Enables a database architecture

= Several Neo4j slave databases can be configured to be exact
replicas of a single Neo4j master database

Enables a
architecture

m Enables the system to handle more read load than a single
Neo4j database instance can handle

m [ransactions are still , and
. but to other
slaves

" J
Neo4;

High Avallability

m Transition from single machine to multi machine operation
IS simple
No need to change existing applications

Switch from GraphDatabaseFactory (0
HighlyAvailableGraphDatabaseFactory

= Both implement the same interface

m Always one master and zero or more slaves
Write on master: eventually propagated to slaves
m All other ACID properties remain the same
Write on slave: (immediate) synchronization with master
= Slave has to be up-to-date with master
s Operation must be performed on both

" J
Neo4;

High Avallability

m Each database instance contains the logic needed Iin
order to coordinate with other members

m On startup Neo4) HA database instance will try to
connect to an existing cluster specified by configuration

If the cluster exists, it becomes a slave
Otherwise, it becomes a master

m Failure:
Slave — other nodes recognize it
Master — a slave is elected as a new master

m Recovery:
Slave — synchronizes with the cluster
Old master — becomes a slave

"
Neo4j

Data on Disk

m Note: Neo4j Is a schema-less database
Fixed record lengths + offsets in files

m Several types of files to store the data

neostore.nodestore.db 15B Nodes

neostore.relationshipstore.db 34 B Relationships

neostore.propertystore.db 41 B Properties for nodes and relationships
neostore.propertystore.db.strings 128 B Values of string properties
neostore.propertystore.db.arrays 128 B Values of array properties

Indexed Property 1/3 * Each index entry is approximately 1/3 of the

AVG(X) average property value size

https://neo4j.com/developer/kb/understanding-data-on-disk/

https://neo4j.com/developer/kb/understanding-data-on-disk/

" J
Neo4j

Data on Disk

m Data = linked lists of (fixed size) records

m Properties
Stored as a linked list of property records
m Key + value + reference to the next property
m Node - references
The first property in its property chain
The first relationship in its relationship chain

"
Neo4j

Data on Disk

m Relationship - references
The first property In its property chain
ne start and end node

ne previous and next relationship record for
the start and end node respectively

" A
References

Neod| hitp://www.neo4j.org/
Neo4| Manual http://docs.neo4|.org/chunked/stable/
Neo4| Download http://www.neo4j.org/download

Pramod J. Sadalage - Martin Fowler: NoSQL Distilled:
A Brief Guide to the Emerging World of Polyglot
Persistence

m Eric Redmond - Jim R. Wilson: Seven Databases in
Seven Weeks: A Guide to Modern Databases and the
NoSQL Movement

m Sherif Sakr - Eric Pardede: Graph Data Management:
Techniques and Applications

http://www.neo4j.org/
http://docs.neo4j.org/chunked/stable/
http://www.neo4j.org/download

