
Modern Database

Systems

Document stores

Doc. RNDr. Irena Holubova, Ph.D.
Irena.Holubova@matfyz.cuni.cz

mailto:Irena.Holubova@matfyz.cuni.cz

Document Databases
Basic Characteristics

 Documents are the main concept
 Stored and retrieved

 XML, JSON, …

 Documents are
 Self-describing

 Hierarchical tree data structures

 Can consist of maps, collections, scalar values, nested
documents, …

 Documents in a collection are expected to be similar
 Their schema can differ

 Document databases store documents in the value part
of the key-value store
 Key-value stores where the value is examinable

Document Databases
Representatives

Lotus Notes

Storage Facility

http://en.wikipedia.org/wiki/File:Lotus_Notes_8_icon.png
http://en.wikipedia.org/wiki/File:Lotus_Notes_8_icon.png

Document Databases
Suitable Use Cases

Event Logging

 Many different applications want to log events
 Type of data being captured keeps changing

 Events can be sharded by the name of the application or type of event

Content Management Systems, Blogging Platforms

 Managing user comments, user registrations, profiles, web-facing
documents, …

Web Analytics or Real-Time Analytics

 Parts of the document can be updated

 New metrics can be easily added without schema changes

E-Commerce Applications

 Flexible schema for products and orders

 Evolving data models without expensive data migration

Document Databases
When Not to Use

Complex Transactions Spanning Different Operations

 Atomic cross-document operations
 Some document databases do support (e.g., RavenDB)

Queries against Varying Aggregate Structure

 Design of aggregate is constantly changing → we need
to save the aggregates at the lowest level of granularity
 i.e., to normalize the data

mongoDB

 Initial release: 2009

 Written in C++
 Open-source

 Cross-platform

 JSON documents
 Dynamic schemas

 Features:
 High performance – indices

 High availability – replication + eventual consistency + automatic
failover

 Automatic scaling – automatic sharding across the cluster

 MapReduce support

http://www.mongoDB.org/

http://www.mongodb.org/

mongoDB
Terminology

Terminology in Oracle and mongoDB

 Each mongoDB
instance has
multiple
databases

 Each database
can have multiple
collections

 When we store a
document, we
have to choose
database and
collection

mongoDB
Documents

 Use JSON

 Stored as BSON
 Binary representation of JSON

 Have maximum size: 16MB (in BSON)
 Not to use too much RAM

 GridFS tool divides larger files into fragments

 Restrictions on field names:
 _id is reserved for use as a primary key

 Unique in the collection

 Immutable

 Any type other than an array

 The field names cannot start with the $ character
 Reserved for operators

 The field names cannot contain the . character
 Reserved for accessing fields

mongoDB
Data Model

 Documents have flexible schema
 Collections do not enforce structure of data

 In practice the documents are similar

 Challenge: Balancing
 the needs of the application

 the performance characteristics of database engine

 the data retrieval patterns

 Key decision: references vs. embedded documents
 Structure of data

 Relationships between data

mongoDB
Data Model – References

 Including links / references from one document to
another

 Normalized data models

mongoDB
Data Model – References

 References provide more flexibility than embedding

 Use normalized data models:
 When embedding would result in duplication of data not

outweighted by read performance

 To represent more complex many-to-many relationships

 To model large hierarchical data sets

 Disadvantages:
 Can require more roundtrips to the server (follow up queries)

mongoDB
Data Model – Embedded Data

 Related data in a single document structure
 Documents can have subdocuments (in a field of array)

 Applications may need to issue less queries

 Denormalized data models

 Allow applications

to retrieve and

manipulate related

data in a single

database operation

mongoDB
Data Model – Embedded Data

 Use embedded data models:
 When we have “contains” relationships between entities

 One-to-one relationships

 In one-to-many relationships, where child documents always appear
with one parent document

 Provides:
 Better performance for read operations

 Ability to retrieve/update related data in a single database operation

 Disadvantages:
 Documents may significantly grow after creation

 Impacts write performance
 The document must be relocated on disk if the size exceeds allocated space

 May lead to data fragmentation

BSON (Binary JSON)

 Binary-encoded serialization of JSON documents
 Allows embedding of documents, arrays, JSON simple data

types + other types (e.g., date)

http://bsonspec.org/

http://bsonspec.org/

BSON Basic Types

 byte – 1 byte (8-bits)

 int32 – 4 bytes (32-bit signed integer)

 int64 – 8 bytes (64-bit signed integer)

 double – 8 bytes (64-bit IEEE 754

floating point)

BSON Grammar

document ::= int32 e_list "\x00"

 BSON document

 int32 = total number of bytes

e_list ::= element e_list | ""

 Sequence of elements

BSON Grammar

element ::= "\x01" e_name double

| "\x02" e_name string

| "\x03" e_name document

| "\x04" e_name document

| "\x05" e_name binary

| …

 Floating point

 UTF-8 string

 Embedded document

 Array

 Binary data

 …

e_name ::= cstring

 Key name

cstring ::= (byte*) "\x00"

string ::= int32 (byte*) "\x00"

 String = int32 bytes And so on…

mongoDB
Data Modification

 Operations: create, update, delete

Modify the data of a single collection of

documents

 For update / delete: criteria to select the

documents to update / remove

mongoDB
Data Insertion

db.inventory.insert({ _id: 10, type: "misc", item:
"card", qty: 15 })

 Inserts a document with three fields into collection inventory
 User-specified _id field

db.inventory.update(

{ type: "book", item : "journal" },

{ $set : { qty: 10 } },

{ upsert : true }

)

 Creates a new document if no document in the inventory collection
contains { type: "books", item : "journal" }
 mongoDB adds the _id field and assigns as its value a unique

ObjectId

 The result contains fields type, item, qty with the specified values

mongoDB
Data Insertion and Removal

db.inventory.save({ type: "book", item:
"notebook", qty: 40 })

 Creates a new document in collection inventory if _id
is not specified or does not exist in the collection

db.inventory.remove({ type : "food" })

 Removes all documents that have type equal to food
from the inventory collection

db.inventory.remove({ type : "food" }, 1)

 Removes one document that has type equal to food
from the inventory collection

mongoDB
Data Updates

db.inventory.update(

{ type : "book" },

{ $inc : { qty : -1 } },

{ multi: true }

)

 Finds all documents with type equal to book and modifies their
qty field by -1

db.inventory.save(

{

_id: 10,

type: "misc",

item: "placard"

})

 Replaces document with _id equal to 10

mongoDB
Query

 Targets a specific collection of documents

 Specifies criteria that identify the returned documents

 May include a projection that specifies the fields from the
matching

documents

to return

 May impose

limits, sort

orders, …

mongoDB
Query – Basic Queries, Logical Operators

db.inventory.find({})

db.inventory.find()

 All documents in the collection

db.inventory.find({ type: "snacks" })

 All documents where the type field has the value snacks

db.inventory.find({ type: { $in: ['food', 'snacks'] } })

 All documents where value of the type field is either food or snacks

db.inventory.find({ type: 'food', price: { $lt: 9.95 } })

 All documents where the type field has the value food and the value of the
price field is less than ($lt) 9.95

mongoDB
Query – Logical Operators

db.inventory.find(

{ $or: [

{ qty: { $gt: 100 } },

{ price: { $lt: 9.95 } }

] })

 All documents where the field qty has a value greater than ($gt) 100 or
the value of the price field is less than 9.95

db.inventory.find({ type: 'food', $or: [

{ qty: { $gt: 100 } },

{ price: { $lt: 9.95 } }]

})

 All documents where the value of the type field is food and either the qty
has a value greater than ($gt) 100 or the value of the price field is less
than 9.95

mongoDB
Query – Subdocuments

db.inventory.find({

producer: {

company: 'ABC123',

address: '123 Street'

}

})

 All documents where the value of the field producer is a subdocument that
contains only the field company with the value ABC123 and the field
address with the value 123 Street, in the exact order

db.inventory.find({ 'producer.company': 'ABC123' })

 All documents where the value of the field producer is a subdocument that
contains a field company with the value ABC123 and may contain other
fields

dot notation

mongoDB
Query – Arrays

db.inventory.find({ tags: ['fruit', 'food',
'citrus'] })

 All documents where the value of the field tags is an array that
holds exactly three elements, fruit, food, and citrus, in this
order

db.inventory.find({ tags: 'fruit' })

 All documents where value of the field tags is an array that
contains fruit as one of its elements

db.inventory.find({ 'tags.0' : 'fruit' })

 All documents where the value of the tags field is an array whose
first element equals fruit

exact match

mongoDB
Query – Arrays of Subdocuments

db.inventory.find({ 'memos.0.by': 'shipping' })

 All documents where the memos field contains an array whose first element
is a subdocument with the field by with the value shipping

db.inventory.find({ 'memos.by': 'shipping' })

 All documents where the memos field contains an array that contains at
least one subdocument with the field by with the value shipping

db.inventory.find({

'memos.memo': 'on time',

'memos.by': 'shipping'

})

 All documents where the value of the memos field is an array that has at
least one subdocument that contains the field memo equal to on time and
the field by equal to shipping

mongoDB
Query – Limit Fields of the Result

db.inventory.find({ type: 'food' }, { item: 1, qty:
1 })

 Only the item and qty fields (and by default the _id field) return in
the matching documents

db.inventory.find({ type: 'food' }, { item: 1, qty:
1, _id: 0 })

 Only the item and qty fields return in the matching documents

db.inventory.find({ type: 'food' }, { type : 0 })

 The type field does not return in the matching documents

 Note: With the exception of the _id field we cannot combine
inclusion and exclusion statements in projection documents.

or true

or false

mongoDB
Query – Sorting

db.collection.find().sort({ age: -1 })

 Returns all documents in collection sorted by the
age field in descending order

db.bios.find().sort({ 'name.last': 1,

'name.first': 1 })

 Specifies the sort order using the fields from a sub-
document name

 Sorts first by the last field and then by the first field
in ascending order

mongoDB
Indices

 Without indices:
 mongoDB must scan every document in a collection to select

those documents that match the query statement

 Indices store a portion of the collection's data set in an
easy to traverse form
 Stores the value of a specific field or a set of fields ordered by

the value of the field

 B-tree like structures

 Defined at collection level

 Purpose:
 To speed up common queries

 To optimize the performance of other operations in specific
situations

mongoDB
Indices – Example

mongoDB
Indices – Usage for Sorted Results

 The index stores score values in ascending order

 mongoDB can traverse the index in either ascending or descending
order to return sorted results (without sorting)

 mongoDB does not need to inspect data outside of the
index to fulfil the query

mongoDB
Indices – Usage for Covered Results

mongoDB
Index Types

 Default _id
 Exists by default

 If applications do not specify _id, it is created automatically

 Unique by default

 Single Field
 User-defined indices on a single field of a document

 Compound
 User-defined indices on multiple fields

 Multikey index
 To index the content stored in arrays

 Creates separate index entry for every element of the array

Single field index on
the score field

(ascending).

Compound index on
the userid field

(ascending) and the
score field

(descending).

Multikey index on
the addr.zip field

sorts first by userid

and then, within each
userid value, sort

by score

mongoDB
Index Types

 Geospatial Field
 2d indexes = use planar geometry when returning results

 For data representing points on a two-dimensional plane

 2sphere indexes = use spherical (Earth-like) geometry to return
results

 For data representing longitude, latitude

 Text Indexes
 Searching for string content in a collection

 Hash Indexes
 Indexes the hash of the value of a field

 Only support equality matches (not range queries)

mongoDB
Indices

db.people.ensureIndex({ "phone-number": 1 })

 Creates a single-field index on the phone-number field of the people
collection

db.products.ensureIndex({ item: 1, category: 1, price: 1 }
)

 Creates a compound index on the item, category, and price fields

db.accounts.ensureIndex({ "tax-id": 1 }, { unique: true })

 Creates a unique index
 Prevents applications from inserting documents that have duplicate values for the

inserted fields

db.collection.ensureIndex({ _id: "hashed" })

 Creates a hashed index on _id

More on

Internals

mongoDB
Replication

 Master/slave replication

 Replica set = group of
instances that host the
same data set
 primary (master) –

receives all write
operations

 secondaries (slaves) –
apply operations from the
primary so that they have
the same data set

mongoDB
Replication Steps

 Write:
1. mongoDB applies write operations on the primary

2. mongoDB records the operations to the primary’s oplog

3. Secondary members replicate oplog + apply the operations to
their data sets

 Read: All members of the replica set can accept read
operations

 By default, an application directs its read operations to the
primary member

 Guaranties the latest version of a document

 Decreases read throughput

 Read preference mode can be set

operation log

mongoDB
Replication – Read Preference Mode

Read Preference Mode Description

primary operations read from the current replica set primary

primaryPreferred operations read from the primary, but if unavailable,

operations read from secondary members

secondary operations read from the secondary members

secondaryPreferred operations read from secondary members, but if

none is available, operations read from the primary

nearest operations read from the nearest member (= shortest

ping time) of the replica set, irrespective of the

member’s type

default

minimize the effect of network latency

mongoDB
Replica Set Elections

 Replica set can have at
most one primary

 If the current primary
becomes unavailable,
an election determines
a new primary

 Note:
 Elections need some

time

 Approx. 1 minute

 No primary no writes

mongoDB
Replica Set Elections – Influencing Factors

 Heartbeat (ping)
 Every 2s sent to each other

 No response for 10s node is inaccessible

 Priority comparisons
 Higher priority = preferred to be voted

 Members with priority = 0
 Cannot become primary (not eligible)

 Cannot trigger election, but can vote

 The current primary has the highest priority and is within 10s of the
latest oplog entry OK

 A higher-priority member catches up to within 10s of the latest oplog
entry of the current primary elections
 The higher-priority node has a chance to become primary

 Connections
 A node cannot become primary unless it can connect to a majority of

the members

mongoDB
Replica Set Elections – Mechanism

 Replica sets hold an election any time there is no
primary:
 Initiation of a new replica set

 A secondary loses contact with a primary

 A primary steps down

 A primary will step down:
 After receiving the replSetStepDown command

 Forces a primary to become a secondary

 If one of the current secondaries is eligible for election and has a
higher priority

 If it cannot contact a majority of the members of the replica set

mongoDB
Replica Set Elections – Mechanism

 The replica set elects an eligible member with the highest priority
value as primary
 By default, all members have a priority of 1

 Can be adjusted

 The first member to receive the majority of votes becomes primary
 By default, all members have 1 vote

 Can be disabled = non-voting members
 Hold copies of data

 Can become primary

 Not recommended to set more than 1 (better use priority)

 All members of a replica set can veto an election, e.g.,
 If the member seeking an election is not up-to-date with the most recent

operation accessible in the replica set

 If the member seeking an election has a lower priority than another
member in the set that is also eligible for election

 …

mongoDB
Replication – Arbiters

 Arbiter
 A special node

 Does not maintain a
data set
 Does not require

dedicated hardware

 Cannot be a primary

 Exists to vote in
elections
 For replicas with even

number of members

mongoDB
Replication – Secondaries

 A secondary can be configured as:
 Priority 0 – to prevent it from becoming a primary in

an election
 e.g., a standby

 Hidden – to prevent applications from reading from it
 Just replicates the data for special usage

 Can vote in elections

 Delayed – to keep a running “historical” snapshot
 For recovery from errors like unintentionally deleted

databases

mongoDB
Sharding

 Supported through sharded clusters

 Consisting of:
 Shards – store the data

 Each shard is a replica set

 For testing purposes can be a single node

 Query routers – interface with client applications
 Direct operations to the appropriate shard(s) + return the

result to the user

 More than one to divide the client request load

 Config servers – store the cluster’s metadata
 Mapping of the cluster’s data set to the shards

 Recommended number: 3

mongoDB
Sharded Cluster

Where are the

data?

Get the data

mongoDB
Data Partitioning

 Partitions a collection’s data by the shard key
 Indexed (possibly compound) field that exists in every

document in the collection
 Immutable

 Divided into chunks distributed across shards
 Range-based partitioning

 Hash-based partitioning

 When a chunk grows beyond

the chunk size, it is split
 Small chunks more even distribution

at the expense of more frequent

migrations

 Large chunks fewer migrations
default: 64MB

mongoDB
Range-Based Partitioning

 Each value of the shard key falls at some point on line
from negative infinity to positive infinity

 The line is partitioned into non-overlapping chunks

 Documents with “close” shard key values are likely to be
in the same chunk
 More efficient range queries

 Can result in an uneven distribution of data

mongoDB
Hash-Based Partitioning

 Computes a hash of a field’s value
 Hashes form chunks

 Ensures a more random distribution of a collection in the
cluster
 Documents with “close” shard key values are unlikely to be a

part of the same chunk

 A range query may need to target most/all shards

mongoDB
Journaling

 Journaling = mongoDB stores and applies write operations in
memory and in a journal before the changes are done in the data
files
 To bring the database to a consistent state after hard shutdown

 Can be switched on/off

 Journal directory – holds journal files

 Journal file = write-ahead redo logs
 Append only file

 Deleted when all the writes are performed

 When it holds 1GB of data, mongoDB creates a new journal file
 The size can be modified

 Clean shutdown removes all the files in the journal directory

mongoDB
Transactions

 Write operations are atomic at the level of a single document
 Including nested documents (sufficient for many cases, but not all)

 When a single write operation modifies multiple documents, it is not
atomic
 Other operations may interleave

 Transactions:
 Isolation of a single write operation that affects multiple documents

 No client sees the changes until the operation completes or errors out

 db.foo.update({ field1 : 1 , $isolated : 1 }, { $inc : {
field2 : 1 } } , { multi: true })

 Two-phase commit
 Transaction-like semantics for multi-document updates

 Idea:
 Store all the information about the steps of an operation in a transaction and store the

transaction

 Retrieve the transaction and perform its steps

 After performing each step, update the state of the transaction to reflect that.

 A transaction is complete when it is in a final state

mongoDB
Two-phase Commit – Example (part I.)

db.accounts.save({name: "A", balance: 1000,
pendingTransactions: []})

db.accounts.save({name: "B", balance: 1000,
pendingTransactions: []})

 Creating of a collection of (two) accounts (A and B)

db.transactions.save({source: "A", destination: "B",
value: 100, state: "initial"})

 Step 1. Create a transaction (having an initial state) and store it into
collection of transactions
 e.g., transferring money from account A to B

 Other states of a transaction: initial, pending, applied, done, canceling,
and canceled

mongoDB
Two-phase Commit – Example (part II.)

t = db.transactions.findOne({state: "initial"})

db.transactions.update({_id: t._id},

{ $set: {state: "pending"} })

 Step 2. Set transaction state to pending

db.accounts.update({ name: t.source,
pendingTransactions: {$ne: t._id} },

{ $inc: {balance: -t.value},

$push: {pendingTransactions: t._id}})

db.accounts.update({ name: t.destination,
pendingTransactions: {$ne: t._id} },

{ $inc: {balance: t.value},

$push: {pendingTransactions: t._id}})

 Step 3. Apply transaction to both accounts + add as pending

Condition

ensuring atomic

operation: If not

in pending, apply

and add to

pending

mongoDB
Two-phase Commit – Example (part III.)

db.transactions.update({_id: t._id},

{ $set: {state: "applied"} })

 Step 4. Set transaction state to applied

db.accounts.update({name: t.source},

{ $pull: {pendingTransactions: t._id} })

db.accounts.update({name: t.destination},

{ $pull: {pendingTransactions: t._id} })

 Step 5. Remove pending transaction for the accounts

db.transactions.update({_id: t._id},

{ $set: {state: "done"} })

 Step 6. Set transaction state to done

mongoDB
Two-phase Commit – Failures

 Between step 1 (initial state) and 3 (application)

 Applications should get a list of transactions in the

pending state and resume from step 2 (switch to

pending)

 Between step 3 (application) and step 6 (setting

as done)

 Application should get a list of transactions in the

applied state and resume from step 5 (remove

pending)

mongoDB
Two-phase Commit – Rollback

 When the application needs to “cancel” the
transaction
 e.g., it can never recover since one of the accounts

does not exist/stops existing during the transaction,
…

 Cases:
 After application of transaction (step 3) – create an

inverse transaction
 e.g., switch the values in source and destination fields

 After creation of transaction (step 1) – execute
rollback (see next slide)

mongoDB
Two-phase Commit – Rollback

db.transactions.update({_id: t._id},

{$set: {state: "cancelling"}})

 Set the transaction to cancelling

db.accounts.update({name: t.source,
pendingTransactions: t._id}, {$inc: {balance:
t.value}, $pull: {pendingTransactions: t._id}})

db.accounts.update({name: t.destination,
pendingTransactions: t._id}, {$inc: {balance:
-t.value}, $pull: {pendingTransactions: t._id}})

 Undo the transaction

db.transactions.update({_id: t._id}, {$set: {state:
"cancelled"}})

 Set the transaction to cancelled

Atomic

operation: If

in pending,

undo and

remove from

pending

mongoDB
Two-phase Commit – Multiple Applications

 Requirement: only one application can handle a given
transaction at any point in time

 Solution:
1. Create a marker in the transaction document to identify

executing application

2. Use findAndModify method to modify the transaction

t = db.transactions.findAndModify(

{query: {state: "initial", application: {$exists: 0}},

update: {$set: {state: "pending", application: "A1"}},

new: true})

 Atomically modifies and returns the document, if the
application is not specified

mongoDB Enterprise

 Commercial edition of mongoDB

 Includes:
 Advanced Security – Kerberos authentication

 Management Service – a suite of tools for managing mongoDB
deployments

 Monitoring, backup capabilities, helping users optimize clusters, …

 Enterprise Software Integration – SNMP support to integrate
mongoDB with other tools

 Certified OS Support – has been tested and certified on Red
Hat/CentOS, Ubuntu, SuSE and Amazon Linux

 …

https://www.mongoDB.com/products/mongoDB-enterprise

https://www.mongodb.com/products/mongodb-enterprise

References

 Eric Redmond – Jim R. Wilson: Seven Databases in
Seven Weeks: A Guide to Modern Databases and the
NoSQL Movement

 Pramod J. Sadalage – Martin Fowler: NoSQL Distilled:
A Brief Guide to the Emerging World of Polyglot
Persistence

 Tiny mongoDB Browser Shell:
https://mongoplayground.net/

 mongoDB Manual: http://docs.mongoDB.org/manual/

https://mongoplayground.net/
http://docs.mongodb.org/manual/

