
Distributed Data

 No standard definition

 First occurrence of the term: High Performance Computing (HPC)

Gartner: “Big Data” is high volume,

high velocity, and/or high variety

information assets that require new

forms of processing to enable

enhanced decision making, insight

discovery and process optimization.

3 (4, 5)

Vs

Volume

Variety Velocity

Big Data

 Information technology research and advisory company

 Founded in 1979 by Gideon Gartner

 HQ in Stanford, Connecticut, USA
 > 5,300 employees

 > 12,400 client organizations

 Provides: competitive analysis reports, industry overviews,
market trend data, product evaluation reports, …

http://www.gartner.com/

http://www.gartner.com/
http://en.wikipedia.org/wiki/File:Gartner136.png
http://en.wikipedia.org/wiki/File:Gartner136.png

IBM: Depending on the industry and organization, Big Data encompasses

information from internal and external sources such as transactions, social

media, enterprise content, sensors, and mobile devices.

Companies can leverage data to adapt their products and services to better

meet customer needs, optimize operations and infrastructure, and find new

sources of revenue.

http://www.ibmbigdatahub.com/

Social media and networks

(all of us are generating data)

Scientific instruments

(collecting all sorts of data)

Mobile devices

(tracking all objects all the time)

Sensor technology and networks

(measuring all kinds of data)

http://www.ibmbigdatahub.com/

2.5 billion monthly active users

5 billion comments are left on Facebook pages monthly

55 million status updates are made every day

Every 60 seconds
 317,000 status updates

 147,000 photos uploaded

 54,000 shared links

https://www.omnicoreagency.com/facebook-statistics/

https://www.omnicoreagency.com/facebook-statistics/

Data model = the model by which the database
organizes data

Aggregate
 A data unit with a complex structure

 Not just a set of tuples like in RDBMS

 Domain-Driven Design: “an aggregate is a collection of
related objects that we wish to treat as a unit”
 A unit for data manipulation and management of consistency

There is no universal strategy how to draw aggregate
boundaries
 Depends on how we manipulate the data

Relational databases are aggregate-ignorant
 It is not a bad thing, it is a feature

 Allows to easily look at the data in different ways

 Better choice when we do not have a primary structure for
manipulating data

Aggregate orientation
 Aggregates give the information about which bits of data will be

manipulated together

 Which should live on the same node

 Helps greatly with running on a cluster

 We need to minimize the number of nodes we need to query when we are
gathering data

Consequence for transactions
 NoSQL (non-relational) databases support atomic manipulation of

a single aggregate at a time

Vertical Scaling (scaling up)

 Traditional choice has been in favour
of strong consistency
 System architects have in the past gone in

favour of scaling up (vertical scaling)
 Involves larger and more powerful machines

 Works in many cases but…

 Vendor lock-in
 Not everyone makes large and powerful

machines
 Who do, often use proprietary formats

 Makes a customer dependent on a vendor
for products and services
 Unable to use another vendor

Horizontal Scaling (scaling out)

 Systems are distributed across multiple
machines/nodes (horizontal scaling)
 Commodity machines (cost effective)

 Often surpasses scalability of vertical approach

 But…

 Fallacies of distributed computing:
 The network is reliable

 Latency is zero

 Bandwidth is infinite

 The network is secure

 Topology does not change

 There is one administrator

 Transport cost is zero

 The network is homogeneous

Scaling out = running the database on a cluster of
servers

Two orthogonal techniques to data distribution:
 Replication – takes the same data and copies it over multiple

nodes

 Master-slave or peer-to-peer

 Sharding – puts different data on different nodes

We can use either or combine them

SINGLE SERVER

No distribution at all
 The database runs on a single machine

 It can make sense to use Big Data with a single-
server distribution model
 Graph databases

 The graph is “almost” complete → it is difficult to distribute it

SHARDING

 Horizontal scalability
→ putting different
parts of the data onto
different servers

 Different people are
accessing different
parts of the dataset

 The ideal case is rare

 To get close to it, we have to ensure that data that is accessed
together are stored together

 How to arrange the nodes:
a. One user mostly gets data from a single server

b. Based on a physical location

c. Distribute across the nodes with equal amounts of the load

 Many distributed databases offer auto-sharding

 A node failure makes the shard’s data unavailable
 Sharding is often combined with replication

MASTER-SLAVE REPLICATION
 We replicate data across

multiple nodes

 One node is designed as
primary (master), others
as secondary (slaves)

 Master is responsible for
processing any updates
to that data

PEER-TO-PEER REPLICATION

 Problems of master-slave
replication:
 Does not help with scalability

of writes

 The master is still a bottleneck

 Provides resilience against
failure of a slave, but not of a
master

 Peer-to-peer replication: no
master
 All the replicas have equal

weight

“In each cluster's first year, it's typical that 1,000 individual machine failures will occur;
thousands of hard drive failures will occur; one power distribution unit will fail, bringing down
500 to 1,000 machines for about 6 hours; 20 racks will fail, each time causing 40 to 80 machines
to vanish from the network; 5 racks will "go wonky," with half their network packets missing in
action; and the cluster will have to be rewired once, affecting 5 percent of the machines at any
given moment over a 2-day span, Dean said. And there's about a 50 percent chance that the
cluster will overheat, taking down most of the servers in less than 5 minutes and taking 1 to 2
days to recover.”

https://www.datacenterknowledge.com/archives/2008/05/30/failure-rates-in-google-data-centers

https://www.datacenterknowledge.com/archives/2008/05/30/failure-rates-in-google-data-centers

 h(x) = x mod 12

 The addition or deletion of one machine changes it to x mod 13 or x mod 11

 Remapping of everything to maintain consistency.

 Infeasible when n is changing all the time

 Solution: Consistent Hashing

 1997

 David Karger et al. (MIT)

Key-value database

A table in RDBMS with two columns,

such as ID and NAME
 ID column being the key
NAME column storing the value (a BLOB)

Basic operations:
Get the value for the key
Put a value for a key
Delete a key from the data store

 No master node
 Each node is fully capable of serving any client request

 Uses consistent hashing to distribute data around the cluster
 Minimizes reshuffling of keys when a hash-table data structure is

rebalanced

 Slots are added/removed

 Hash function maps the keys to a circle

 Each node in the cluster is responsible for an interval of hashes (slot) in
the circle

 Only k/n keys need to be remapped on average

 k = number of keys

 n = number of intervals (slots)

instead of almost all in most other hashing types

http://michaelnielsen.org/blog/wp-content/uploads/2009/06/consistent_hashing_3.PNG
http://michaelnielsen.org/blog/wp-content/uploads/2009/06/consistent_hashing_3.PNG

 Center of any cluster: 160-bit integer space (Riak ring) which is divided into
equally-sized partitions

 Physical nodes run virtual nodes (vnodes)
 vnode is responsible for storing a separate portion of the keys

 They solve the problem of changing length of intervals

 Each physical node in the cluster is responsible for:

1/(number of physical nodes)

of the ring

 Number of vnodes on each node:

(number of partitions)/(number of physical nodes)

 Nodes can be added and removed from the cluster dynamically
 Riak will redistribute the data accordingly

 Example:
 A ring with 32 partitions

 4 physical nodes

 8 vnodes per node

bucket key

physical nodes

 Setting called N value
 Default: N=3

 Riak objects inherit the N value from their bucket

 Riak’s key feature: high
availability

 Hinted handoff
1. Node failure

2. Neighboring nodes
temporarily take over storage
operations

3. When the failed node returns,
the updates received by the
neighboring nodes are handed
off to it

 Gossip protocol
 Motivation: robust spread of information when people gossip

 To share and communicate ring state and bucket properties around the
cluster

 Gossiping = sending an information to a randomly selected node

 According to the acquired information it updates its knowledge about the
cluster

 Each node „gossips":

 Whenever it changes its claim on the ring

 Announces its change

 Periodically sends its current view of the ring state

 For the case a node missed previous updates

 Document database

 Use JSON

 Stored as BSON
 Binary representation of JSON

 Have maximum size: 16MB (in BSON)
 Not to use too much RAM

 GridFS tool divides larger files into fragments

REPLICATION

 Master/slave replication

 Replica set = group of
instances that host the same
data set
 primary (master) – receives all

write operations

 secondaries (slaves) – apply
operations from the primary so
that they have the same data set

 Write:
1. mongoDB applies write operations on the primary

2. mongoDB records the operations to the primary’s oplog

3. Secondary members replicate oplog + apply the operations to their
data sets

 Read: All members of the replica set can accept read
operations

 By default, an application directs its read operations to the primary
member

 Guaranties the latest version of a document

 Decreases read throughput

 Read preference mode can be set

operation log

SHARDING

Supported through sharded clusters

Consisting of:
 Shards – store the data

 Each shard is a replica set

 For testing purposes can be a single node

 Query routers – interface with client applications
 Direct operations to the appropriate shard(s) + return the result to

the user

 More than one  to divide the client request load

 Config servers – store the cluster’s metadata
 Mapping of the cluster’s data set to the shards

 Recommended number: 3

Where are the

data?

Get the data

Partitions a collection’s data by the shard key
 Indexed (possibly compound) field that exists in every

document in the collection
 Immutable

 Divided into chunks distributed across shards
 Range-based partitioning

 Hash-based partitioning

 When a chunk grows beyond
the chunk size, it is split
 Small chunks more even distribution

at the expense of more frequent

migrations

 Large chunks  fewer migrations

default: 64MB

RANGE-BASED PARTITIONING

 Each value of the shard key falls at some point on line from
negative infinity to positive infinity

 The line is partitioned into non-overlapping chunks

 Documents with “close” shard key values are likely to be in
the same chunk
 More efficient range queries

 Can result in an uneven distribution of data

HASH-BASED PARTITIONING

 Computes a hash of a field’s value
 Hashes form chunks

 Ensures a more random distribution of a collection in the
cluster
 Documents with “close” shard key values are unlikely to be a part of the

same chunk

 A range query may need to target most/all shards

 http://nosql-database.org/

 Pramod J. Sadalage – Martin Fowler: NoSQL Distilled: A Brief Guide to the
Emerging World of Polyglot Persistence

 Eric Redmond – Jim R. Wilson: Seven Databases in Seven Weeks: A Guide to
Modern Databases and the NoSQL Movement

http://nosql-database.org/

