
Distributed Data

 No standard definition

 First occurrence of the term: High Performance Computing (HPC)

Gartner: “Big Data” is high volume,

high velocity, and/or high variety

information assets that require new

forms of processing to enable

enhanced decision making, insight

discovery and process optimization.

3 (4, 5)

Vs

Volume

Variety Velocity

Big Data

 Information technology research and advisory company

 Founded in 1979 by Gideon Gartner

 HQ in Stanford, Connecticut, USA
 > 5,300 employees

 > 12,400 client organizations

 Provides: competitive analysis reports, industry overviews,
market trend data, product evaluation reports, …

http://www.gartner.com/

http://www.gartner.com/
http://en.wikipedia.org/wiki/File:Gartner136.png
http://en.wikipedia.org/wiki/File:Gartner136.png

IBM: Depending on the industry and organization, Big Data encompasses

information from internal and external sources such as transactions, social

media, enterprise content, sensors, and mobile devices.

Companies can leverage data to adapt their products and services to better

meet customer needs, optimize operations and infrastructure, and find new

sources of revenue.

http://www.ibmbigdatahub.com/

Social media and networks

(all of us are generating data)

Scientific instruments

(collecting all sorts of data)

Mobile devices

(tracking all objects all the time)

Sensor technology and networks

(measuring all kinds of data)

http://www.ibmbigdatahub.com/

2.5 billion monthly active users

5 billion comments are left on Facebook pages monthly

55 million status updates are made every day

Every 60 seconds
 317,000 status updates

 147,000 photos uploaded

 54,000 shared links

https://www.omnicoreagency.com/facebook-statistics/

https://www.omnicoreagency.com/facebook-statistics/

Data model = the model by which the database
organizes data

Aggregate
 A data unit with a complex structure

 Not just a set of tuples like in RDBMS

 Domain-Driven Design: “an aggregate is a collection of
related objects that we wish to treat as a unit”
 A unit for data manipulation and management of consistency

There is no universal strategy how to draw aggregate
boundaries
 Depends on how we manipulate the data

Relational databases are aggregate-ignorant
 It is not a bad thing, it is a feature

 Allows to easily look at the data in different ways

 Better choice when we do not have a primary structure for
manipulating data

Aggregate orientation
 Aggregates give the information about which bits of data will be

manipulated together

 Which should live on the same node

 Helps greatly with running on a cluster

 We need to minimize the number of nodes we need to query when we are
gathering data

Consequence for transactions
 NoSQL (non-relational) databases support atomic manipulation of

a single aggregate at a time

Vertical Scaling (scaling up)

 Traditional choice has been in favour
of strong consistency
 System architects have in the past gone in

favour of scaling up (vertical scaling)
 Involves larger and more powerful machines

 Works in many cases but…

 Vendor lock-in
 Not everyone makes large and powerful

machines
 Who do, often use proprietary formats

 Makes a customer dependent on a vendor
for products and services
 Unable to use another vendor

Horizontal Scaling (scaling out)

 Systems are distributed across multiple
machines/nodes (horizontal scaling)
 Commodity machines (cost effective)

 Often surpasses scalability of vertical approach

 But…

 Fallacies of distributed computing:
 The network is reliable

 Latency is zero

 Bandwidth is infinite

 The network is secure

 Topology does not change

 There is one administrator

 Transport cost is zero

 The network is homogeneous

Scaling out = running the database on a cluster of
servers

Two orthogonal techniques to data distribution:
 Replication – takes the same data and copies it over multiple

nodes

 Master-slave or peer-to-peer

 Sharding – puts different data on different nodes

We can use either or combine them

SINGLE SERVER

No distribution at all
 The database runs on a single machine

 It can make sense to use Big Data with a single-
server distribution model
 Graph databases

 The graph is “almost” complete → it is difficult to distribute it

SHARDING

 Horizontal scalability
→ putting different
parts of the data onto
different servers

 Different people are
accessing different
parts of the dataset

 The ideal case is rare

 To get close to it, we have to ensure that data that is accessed
together are stored together

 How to arrange the nodes:
a. One user mostly gets data from a single server

b. Based on a physical location

c. Distribute across the nodes with equal amounts of the load

 Many distributed databases offer auto-sharding

 A node failure makes the shard’s data unavailable
 Sharding is often combined with replication

MASTER-SLAVE REPLICATION
 We replicate data across

multiple nodes

 One node is designed as
primary (master), others
as secondary (slaves)

 Master is responsible for
processing any updates
to that data

PEER-TO-PEER REPLICATION

 Problems of master-slave
replication:
 Does not help with scalability

of writes

 The master is still a bottleneck

 Provides resilience against
failure of a slave, but not of a
master

 Peer-to-peer replication: no
master
 All the replicas have equal

weight

“In each cluster's first year, it's typical that 1,000 individual machine failures will occur;
thousands of hard drive failures will occur; one power distribution unit will fail, bringing down
500 to 1,000 machines for about 6 hours; 20 racks will fail, each time causing 40 to 80 machines
to vanish from the network; 5 racks will "go wonky," with half their network packets missing in
action; and the cluster will have to be rewired once, affecting 5 percent of the machines at any
given moment over a 2-day span, Dean said. And there's about a 50 percent chance that the
cluster will overheat, taking down most of the servers in less than 5 minutes and taking 1 to 2
days to recover.”

https://www.datacenterknowledge.com/archives/2008/05/30/failure-rates-in-google-data-centers

https://www.datacenterknowledge.com/archives/2008/05/30/failure-rates-in-google-data-centers

 h(x) = x mod 12

 The addition or deletion of one machine changes it to x mod 13 or x mod 11

 Remapping of everything to maintain consistency.

 Infeasible when n is changing all the time

 Solution: Consistent Hashing

 1997

 David Karger et al. (MIT)

Key-value database

A table in RDBMS with two columns,

such as ID and NAME
 ID column being the key
NAME column storing the value (a BLOB)

Basic operations:
Get the value for the key
Put a value for a key
Delete a key from the data store

 No master node
 Each node is fully capable of serving any client request

 Uses consistent hashing to distribute data around the cluster
 Minimizes reshuffling of keys when a hash-table data structure is

rebalanced

 Slots are added/removed

 Hash function maps the keys to a circle

 Each node in the cluster is responsible for an interval of hashes (slot) in
the circle

 Only k/n keys need to be remapped on average

 k = number of keys

 n = number of intervals (slots)

instead of almost all in most other hashing types

http://michaelnielsen.org/blog/wp-content/uploads/2009/06/consistent_hashing_3.PNG
http://michaelnielsen.org/blog/wp-content/uploads/2009/06/consistent_hashing_3.PNG

 Center of any cluster: 160-bit integer space (Riak ring) which is divided into
equally-sized partitions

 Physical nodes run virtual nodes (vnodes)
 vnode is responsible for storing a separate portion of the keys

 They solve the problem of changing length of intervals

 Each physical node in the cluster is responsible for:

1/(number of physical nodes)

of the ring

 Number of vnodes on each node:

(number of partitions)/(number of physical nodes)

 Nodes can be added and removed from the cluster dynamically
 Riak will redistribute the data accordingly

 Example:
 A ring with 32 partitions

 4 physical nodes

 8 vnodes per node

bucket key

physical nodes

 Setting called N value
 Default: N=3

 Riak objects inherit the N value from their bucket

 Riak’s key feature: high
availability

 Hinted handoff
1. Node failure

2. Neighboring nodes
temporarily take over storage
operations

3. When the failed node returns,
the updates received by the
neighboring nodes are handed
off to it

 Gossip protocol
 Motivation: robust spread of information when people gossip

 To share and communicate ring state and bucket properties around the
cluster

 Gossiping = sending an information to a randomly selected node

 According to the acquired information it updates its knowledge about the
cluster

 Each node „gossips":

 Whenever it changes its claim on the ring

 Announces its change

 Periodically sends its current view of the ring state

 For the case a node missed previous updates

 Document database

 Use JSON

 Stored as BSON
 Binary representation of JSON

 Have maximum size: 16MB (in BSON)
 Not to use too much RAM

 GridFS tool divides larger files into fragments

REPLICATION

 Master/slave replication

 Replica set = group of
instances that host the same
data set
 primary (master) – receives all

write operations

 secondaries (slaves) – apply
operations from the primary so
that they have the same data set

 Write:
1. mongoDB applies write operations on the primary

2. mongoDB records the operations to the primary’s oplog

3. Secondary members replicate oplog + apply the operations to their
data sets

 Read: All members of the replica set can accept read
operations

 By default, an application directs its read operations to the primary
member

 Guaranties the latest version of a document

 Decreases read throughput

 Read preference mode can be set

operation log

SHARDING

Supported through sharded clusters

Consisting of:
 Shards – store the data

 Each shard is a replica set

 For testing purposes can be a single node

 Query routers – interface with client applications
 Direct operations to the appropriate shard(s) + return the result to

the user

 More than one to divide the client request load

 Config servers – store the cluster’s metadata
 Mapping of the cluster’s data set to the shards

 Recommended number: 3

Where are the

data?

Get the data

Partitions a collection’s data by the shard key
 Indexed (possibly compound) field that exists in every

document in the collection
 Immutable

 Divided into chunks distributed across shards
 Range-based partitioning

 Hash-based partitioning

 When a chunk grows beyond
the chunk size, it is split
 Small chunks more even distribution

at the expense of more frequent

migrations

 Large chunks fewer migrations

default: 64MB

RANGE-BASED PARTITIONING

 Each value of the shard key falls at some point on line from
negative infinity to positive infinity

 The line is partitioned into non-overlapping chunks

 Documents with “close” shard key values are likely to be in
the same chunk
 More efficient range queries

 Can result in an uneven distribution of data

HASH-BASED PARTITIONING

 Computes a hash of a field’s value
 Hashes form chunks

 Ensures a more random distribution of a collection in the
cluster
 Documents with “close” shard key values are unlikely to be a part of the

same chunk

 A range query may need to target most/all shards

 http://nosql-database.org/

 Pramod J. Sadalage – Martin Fowler: NoSQL Distilled: A Brief Guide to the
Emerging World of Polyglot Persistence

 Eric Redmond – Jim R. Wilson: Seven Databases in Seven Weeks: A Guide to
Modern Databases and the NoSQL Movement

http://nosql-database.org/

