

MOTIVATION

&0, Raw flash, no in-place update, no FTL
&0, Flash translation layer
&, B-Trees are good — we want to use them

B-TREE ISSUE ~ WANDERING TREE

&,
Q.
Q.
&,

B-tree efficiently makes use of block-oriented storage by keeping related records
together on the same page.

&0, Inner nodes of a B+-tree store only keys and pointers
When a record update happens, the leaf node needs to be modified
Since in-place update is not supported by the SSDs, the whole page needs to be
moved into a new location
Page move requires modification of the pointer in the parent node — iterative
process ending only in the root

1 valid node
I invalid node

| [; || » z

T T R

1i-TREE

Q

BB

In u-Tree all the nodes along the path from the root to the leaf are put together into a
single flash memory page

u-Tree outperforms B+-tree by up to 28% and by up to 90% with a 8KB in-memory
cache.

Unlike B-tree, u-Tree’s nodes are of variable size

No significant difference between B+-Tree and u-Tree except that the size of a node
in a p-Tree is determined by its level and the height of the tree

BB B

https://dl.acm.org/doi/abs/10.1145/1289927.1289953

1i-TREE

&, Leaf node always occupies half of the page.

8. As the level is increased, the node size is reduced
by half

&0, Only the root node has the same size as its
children nodes

Root

Root

Root

Root

[Tn?gigor?:je
T -~
Lo | e [¢ |
A
c B

4

512 bytes

- 512 bytes

- 1024 bytes

2048 bytes

Height

RLGORITHM

Teaves reside
in level 1

Algorithm 2 Retrieval

Input: key K (search predicate)
Output: page_address O (which points to the record corre-

sponding to K')

I: C <= GetNodeFromPage(root page address, H)

e

2. L= H

10:
: end while
12:
13:
14:
15:
16:

: while C.type # LEAF do

K,; < smallest search-key greater than K

L&=L-1

if K; exists then
C < GetNodeFromPage(P;, L)

else
C = GetNodeFromPage(Py, L), where m is the num-
ber of pointers in '

end if

if K; exists in (', such that K; = K then
return FP;

else
return NULL

end if

RLGORITHM

Algorithm 1 GetNodeFromPage

Size of the Input: page_address P, level L
block/node to read Nl)gtput: node N
IS < Q/2% |, where Q is the size of a page
2. 0«8
Offset of the / if L = H then
block/node to read 4: Ef =52
b O<=0
6: end if
7: N < read at page P from offset O with size S

return N

::’_:,::u

RLGORITHM

Algorithm 3 Insertion

Input: key K, page_address P (which points to the record cor-

responding to K)
1: allocate a new page N

2: (R, K', P") < InsertEntry(K, P, N, root page address, H)

if R=FULL then
allocate a new pag
C' < GetNodeFromPage(N, H)
H<< H+1
(Cy, Cy) = Split(C)
C'" < GetNodeFromPage(N, H)
insert (C;.K1,N) and (C).K1, N’) into C’
10: write node C; on page N
11: write node C). on page N’
12: write node C’ on page N’

13: end if

/

The root node becomes
full as a result of the

current insertion

Algorithm 4 InsertEntry

Input: key K, page_address P, N, B, level L

Output: return_value R, key K', page_address P’
1: C < GetNodeFromPage(B, L)
2: if Cliype # LEAF then

3: find C.F;, such that C.K; < K < C.K;

4: if C.P; doesn’t exist then

5: ¢ <= m, where m is the number of pointers in €'
6: end if

7 (R,K',P") < InsertEntry(K, P,N,C.P;, L. — 1)
8 CPF<=N

9: if R =SPLIT then
10: K=K PP N&=P
11: else
12: write node C' on page N
13: return R < NULL
14: end if

15: end if
16: if C has space for (K, P) then
17: insert (K, P) into C'

18: write node C' on page N
19: if C is full then

20: return R < FULL
21: else

22: return R < NULL
23: endif

24: else

25: allocate a new page N’

26: (O} Cy) < Split(C)

27: insert (K, P) into (Cr.K1 > K)7? Cy : (]

28 if Cytype # LEAF & 3C,..P; = N then

29: swap C7 < Cr

30: endif

31: write node Cj on page N

32: write node C) on page N’

33: return R <= SPLIT,.K' = C,. K1, P = N'
34: end if

