
𝜇-Tree



 Raw flash, no in-place update, no FTL
 Flash translation layer

 B-Trees are good – we want to use them



 B-tree efficiently makes use of block-oriented storage by keeping related records 
together on the same page.
 Inner nodes of a B+-tree store only keys and pointers

 When a record update happens, the leaf node needs to be modified
 Since in-place update is not supported by the SSDs, the whole page needs to be 

moved into a new location
 Page move requires modification of the pointer in the parent node → iterative 

process ending only in the root



 Kang et. al. 2007
 In 𝜇-Tree all the nodes along the path from the root to the leaf are put together into a 

single flash memory page
 𝜇-Tree outperforms B+-tree by up to 28% and by up to 90% with a 8KB in-memory 

cache.
 Unlike B-tree, 𝜇-Tree’s nodes are of variable size
 No significant difference between B+-Tree and 𝜇-Tree except that the size of a node 

in a 𝛍-Tree is determined by its level and the height of the tree

https://dl.acm.org/doi/abs/10.1145/1289927.1289953


 Leaf node always occupies half of the page.
 As the level is increased, the node size is reduced 

by half
 Only the root node has the same size as its 

children nodes



Leaves reside 

in level 1



Size of the 

block/node to read

Offset of the 

block/node to read



The root node becomes 

full as a result of the 

current insertion




