
Spatial join for External Memory



 Key, pointer pairs ~ index
 Non-spatial join
 Spatial join in secondary memory

 We focus only on intersection joins

2



 Both datasets must be indexed using a hierarchical index
 E.g., R-tree

 Synchronized traversal can be used to test the join condition
 Similar to iterative filter and refine approach



 The algorithm traverses the two trees in a synchronized fashion and compares 
bounding objects at given levels

 If a node corresponding to a part of the space does not match the condition it can be 
excluded from the traversal

INDEXED_TRAVERSAL_JOIN(rootA, rootB)

INPUT: Roots of the structures representing the sets to be joined

OUTPUT: Pairs of intersecting rectangles

queue ← CreateQueue();

queue.Add(pair(rootA, rootB));

WHILE NOT(queue.Empty()) DO

nodePair ← queue.Pop();

pairs ← IdentifyIntersectingPairs(nodePair);

FOREACH p ∈ pairs DO

IF p is leaf THEN ReportIntersection(p);

ELSE queue.Add(p);



 Often applied when neither of the sets 
to be joined is indexed

 The set is partitioned
 Resulting partitions should be small 

enough to fit in internal memory

 Once the data are partitioned, each 
pair of overlapping partitions is read 
into internal memory and internal 
memory techniques are used



GRID_JOIN(setA, setB)

INPUT: Sets of objects to be joined

OUTPUT: Pairs of intersecting objects

{ determine the partitions: }

m ← AvailableInternalMemory();

mbrSize ← BytesToStoreMBR();

minNrOfPartitions ← (setA.Size() + setB.size())*mbrSize() / m;

partList ← DeterminePartitions(minNrOfPartitions);

{ object appears in every partition it intersects }

partitionPointersA ← PartitionData(partList, SetA); 

partitionPointersB ← PartitionData(partList, SetB);

FOREACH part ∈ partList DO

partitionA ← ReadPartition(partitionPointersA, part);

partitionB ← ReadPartition(partitionPointersB, part); 

PLANE_SWEEP(partitionA, partitionB); { or any other algorithm for internal memory }



Sort and remove duplicates

 Requires sorting, which implies increased computational demands
 The duplicities get together

Reference point method

 A consistently chosen reference point is selected from the intersecting region.
 Intersection is reported only if the reference point lies within given partition.

partition border



 Basic grid algorithm is rarely used since the objects distribution is often not uniform
 Patel & DeWitt 1996 proposed to group partitions using a mapping function to 

minimize skew by creating partitions having similar number of items

https://doi.org/10.1145/235968.233338

