
Spatial join for Internal Memory

 Key, pointer pairs ~ index
 Non-spatial join
 Spatial join in main memory
 We focus only on intersection joins

2

 The algorithm is identical to the standard relational one
 It works with arbitrary object type and join condition

 Given datasets 𝐴 and 𝐵 the join takes 𝑂(|𝐴|×|𝐵|) time
 Suitable for small datasets

NESTED_LOOP_JOIN(setA, setB, joinCondition)

INPUT: Sets to join and condition based on which the join happens

OUTPUT: Pairs of objects satisfying the join condition

FOREACH a ∈ setA

FOREACH b ∈ setB

IF Satisfied(a, b, joinCondition) THEN

REPORT(a, b);

 Variant of nested loop join where first a spatial index is created over one of the sets
 The indexed set is queried by each of the objects from the second set for

intersection (window query)
 Given datasets 𝐴 and 𝐵, the join takes 𝑂(log(|𝐴|)×|𝐵|) time

 Not including time needed for building the index

INDEX_NESTED_LOOP_JOIN(setA, setB)

INPUT: Sets to join

OUTPUT: Pairs of intersecting objects

ix := CreateSpatialIndex(setA)

FOREACH b ∈ setB

REPORT(ix.Search(b));

 Similar to non-spatial sort-merge join
 Two-phase algorithm for identification of intersecting rectangles:

1. Sorting the rectangles in ascending order based on their left sides (𝑥-axis)
2. Sweeping a vertical scan line through the sorted list from left to right, halting at each

of the rectangle‘s lower x coordinates and identification of rectangles intersecting
(vertical line) with the current rectangle and checking for intersection based on the
𝑦-axis

 Sweep structure tracks active rectangles and has to support three operations
 Insert
 RemoveInactive

Removes from the active set all rectangles that do not overlap a given rectangle
(line)

 Search
Searches for all active rectangles that intersect a given rectangle and outputs
them

 If the data are sorted, only the data in the sweep structures need to be kept in
internal memory

 Given datasets 𝐴 and 𝐵 the algorithm takes 𝑂(log(𝑛)×𝑛) where 𝑛=|𝐴+𝐵|
 Including the list sort time

PLANE_SWEEP(setA, setB)

INPUT: Sets of rectangles to join

OUTPUT: Pairs of intersecting rectangles

listA ← SortByLeftSide(setA);

listB ← SortByLeftSide(setB);

sweepStructA ←CreateSweepStructure();

sweepStructB ← CreateSweepStructure();

WHILE NOT(listA.End()) || NOT (listB.End()) DO

IF listA.First() < listB.First() THEN

sweepStructA.Insert(listA.First());

sweepStructB.RemoveInactive(listA.First());

sweepStructB.Search(listA.First());

listA.Next();

ELSE

sweepStructB.Insert(listB.First ());

sweepStructA.RemoveInactive(listB.First());

sweepStructA.Search(listB.First());

listB.Next();

