Spatial join




MOTIVATION

&, Key, pointer pairs ~ index

&0, Join on multiple query conditions

&, Spatial data
8. We focus only on intersection joins = we want to join objects that intersect
&0, E.g.all pairs of rivers and cities that intersect

&



NON-SPATIAL JOIN

Most of the standard relational join algorithms are not suitable for spatial data, because
the join condition involves multidimensional spatial attribute

&0, Nested loop join
The only of the standard relational join algorithms applicable also to spatial data
&0, Sort-merge join
Multi-dimensional data do not preserve proximity, so this method (used as is) is not
applicable to spatial data
&, Hash join
Equi-joins (joins on quality) rely on grouping objects with the same value, which is
not possible for spatial objects since these have an extent



SPATIAL JOIN

Given two sets of multi-dimensional objects in Euclidean space, a spatial join finds
all pairs of objects satisfying a given spatial relation between the objects, such as

intersection
Spatial overlay join (general spatial join)

&0, The data set can consist of general spatial objects (points, lines, polygons)
8. The data sets can have more than two dimensions
&0, The relation between pairs of spatial objects can be any spatial relation
8. Nearness, enclosure, direction, ...
&0, There can be more sets in the relation (multiway spatial join) or one set joined with

itself (self spatial join)

@



SPATIAL JOIN

Our focus: Simplified spatial join

&, Given two sets of rectangles R and S, find all of the pairs of intersecting rectangles
between the two sets, i.e. {(r,s):r Ns#0, rER, s€S}



FILTER-REFINE POLICY

&, The objects to be searched for can be very complex
>k Testing of the join condition (spatial predicate) itself can be highly time
consuming
> Not many objects fit into main memory
&0, Spatial objects are approximated using simple spatial objects
&, Like in R-trees where we used MBRs

Filter
&0, The spatial join is conducted using the objects’ approximations => candidate set
Refine

&0, Pairs which pass the filter are tested for the spatial predicate using their full spatial
representation

@



RPPROXIMATIONS

&0, The most common approximation is minimum bounding rectangle (MBR) — the
smallest rectangle fully enclosing a given object whose sides are parallel to the
axes.

&0, Dead space is the amount of space covered by the approximation but not the
approximated object

&, Large dead space areas can lead to a higher false hit rate in the filtering stage, so the
approximation should aim to minimize dead space

N

_ -
|

Large dead area False hit




RPPROXIMATIONS

Conservative

&0, Every point of the object is also
point of the approximation

&0, MBR, minimum bounding polygon,
minimum bounding circle/ellipse,

&0, Can have false positives

Progressive

&, Every point of the approximation is

also point of the object

&0, Maximum nested rectangles,
circles, ...

&0, Can have false negatives = we do
not find all intersections




APPROXIMATIONS : 0BJECT DECOMPOSITION

&0, Minimizes dead space by decomposing an object into disjoint fragments with their
own MBRs
&0, After refine step and extra filtering stage is needed to remove duplicities

~ N
/ 7
_/




