
Spatial join



 Key, pointer pairs ~ index
 Join on multiple query conditions
 Spatial data

 We focus only on intersection joins = we want to join objects that intersect
 E.g. all pairs of rivers and cities that intersect

2



NON
Most of the standard relational join algorithms are not suitable for spatial data, because 
the join condition involves multidimensional spatial attribute

 Nested loop join
The only of the standard relational join algorithms applicable also to spatial data

 Sort-merge join
Multi-dimensional data do not preserve proximity, so this method (used as is) is not 
applicable to spatial data

 Hash join
Equi-joins (joins on quality) rely on grouping objects with the same value, which is 
not possible for spatial objects since these have an extent



Given two sets of multi-dimensional objects in Euclidean space, a spatial join finds
all pairs of objects satisfying a given spatial relation between the objects, such as 
intersection

Spatial overlay join (general spatial join)

 The data set can consist of general spatial objects (points, lines, polygons)
 The data sets can have more than two dimensions
 The relation between pairs of spatial objects can be any spatial relation 

 Nearness, enclosure, direction, …

 There can be more sets in the relation (multiway spatial join) or one set joined with 
itself (self spatial join)



Our focus: Simplified spatial join

 Given two sets of rectangles 𝑅 and 𝑆, find all of the pairs of intersecting rectangles 
between the two sets, i.e. {(r,s):𝑟 ∩𝑠≠∅, 𝑟∈𝑅, 𝑠∈𝑆} 



 The objects to be searched for can be very complex 
 Testing of the join condition (spatial predicate) itself can be highly time 

consuming
 Not many objects fit into main memory

 Spatial objects are approximated using simple spatial objects
 Like in R-trees where we used MBRs

Filter

 The spatial join is conducted using the objects’ approximations => candidate set

Refine

 Pairs which pass the filter are tested for the spatial predicate using their full spatial 
representation



 The most common approximation is minimum bounding rectangle (MBR) – the 
smallest rectangle fully enclosing a given object whose sides are parallel to the 
axes.

 Dead space is the amount of space covered by the approximation but not the 
approximated object

 Large dead space areas can lead to a higher false hit rate in the filtering stage, so the 
approximation should aim to minimize dead space

Large dead area False hit



Conservative

 Every point of the object is also 
point of the approximation

 MBR, minimum bounding polygon, 
minimum bounding circle/ellipse, 
…

 Can have false positives

Progressive

 Every point of the approximation is 
also point of the object

 Maximum nested rectangles, 
circles, …

 Can have false negatives = we do 
not find all intersections



 Minimizes dead space by decomposing an object into disjoint fragments with their 
own MBRs

 After refine step and extra filtering stage is needed to remove duplicities


