
Spatial join



 Key, pointer pairs ~ index
 Join on multiple query conditions
 Spatial data

 We focus only on intersection joins = we want to join objects that intersect
 E.g. all pairs of rivers and cities that intersect

2



NON
Most of the standard relational join algorithms are not suitable for spatial data, because 
the join condition involves multidimensional spatial attribute

 Nested loop join
The only of the standard relational join algorithms applicable also to spatial data

 Sort-merge join
Multi-dimensional data do not preserve proximity, so this method (used as is) is not 
applicable to spatial data

 Hash join
Equi-joins (joins on quality) rely on grouping objects with the same value, which is 
not possible for spatial objects since these have an extent



Given two sets of multi-dimensional objects in Euclidean space, a spatial join finds
all pairs of objects satisfying a given spatial relation between the objects, such as 
intersection

Spatial overlay join (general spatial join)

 The data set can consist of general spatial objects (points, lines, polygons)
 The data sets can have more than two dimensions
 The relation between pairs of spatial objects can be any spatial relation 

 Nearness, enclosure, direction, …

 There can be more sets in the relation (multiway spatial join) or one set joined with 
itself (self spatial join)



Our focus: Simplified spatial join

 Given two sets of rectangles 𝑅 and 𝑆, find all of the pairs of intersecting rectangles 
between the two sets, i.e. {(r,s):𝑟 ∩𝑠≠∅, 𝑟∈𝑅, 𝑠∈𝑆} 



 The objects to be searched for can be very complex 
 Testing of the join condition (spatial predicate) itself can be highly time 

consuming
 Not many objects fit into main memory

 Spatial objects are approximated using simple spatial objects
 Like in R-trees where we used MBRs

Filter

 The spatial join is conducted using the objects’ approximations => candidate set

Refine

 Pairs which pass the filter are tested for the spatial predicate using their full spatial 
representation



 The most common approximation is minimum bounding rectangle (MBR) – the 
smallest rectangle fully enclosing a given object whose sides are parallel to the 
axes.

 Dead space is the amount of space covered by the approximation but not the 
approximated object

 Large dead space areas can lead to a higher false hit rate in the filtering stage, so the 
approximation should aim to minimize dead space

Large dead area False hit



Conservative

 Every point of the object is also 
point of the approximation

 MBR, minimum bounding polygon, 
minimum bounding circle/ellipse, 
…

 Can have false positives

Progressive

 Every point of the approximation is 
also point of the object

 Maximum nested rectangles, 
circles, …

 Can have false negatives = we do 
not find all intersections



 Minimizes dead space by decomposing an object into disjoint fragments with their 
own MBRs

 After refine step and extra filtering stage is needed to remove duplicities


