PRINCIPLES OF DATA ORGANISATION

$\mathrm{R}+$ Tree \& $\mathrm{R} *$ Tree

MOTIVATION

(c. How to search effectively in more than one dimension?
© B-tree for multidimensional data ~R-tree
@ Theoretical problems with R-trees

R+TREE

〕. Sellis et al 1987
d. MBRs of R+-tree have zero overlap while allowing underfilled nodes and duplication of MBRs in the nodes
(2) No minimum number of entries
. Achieved by splitting an object and placing it into multiple leaves if necessary
d. Takes into account not only coverage (total area of a covering rectangle) but also overlap (area existing in one or more rectangles)
@ Fewer paths are explored when searching, only one for point query
d. But insert requires cutting etc.

R+TREE : EXHMPLE

Left R-Tree, right R+Tree, We can see that G is in two nodes.

R*TRER

d. Beckmann et al. 1990
d. R*-tree tries to minimize coverage (area) and overlap by adding another criterion margin
(2. Utilisation ~ 70\%
d. Modification of insert procedure

INSERT: CHOOSELEAF

```
ChooseLeaf_RS(T,L,E)
Input: R-tree with a root T, index record E
Output: leaf L
N}\leftarrow\textrm{T}
WHILE N = leaf DO
    IF following level contains leaves THEN
        choose F from N minimizing overlap (F U E) and solve ties by picking F whose F.I
        needs minimal extension or having minimal area;
    ELSE { no change }
        choose F from N where F.I needs minimal extension to I' while E.I \subset F.I' and
        area(F.I') is minimal;
    N:=F.p;
L:= N;
```


SPLITTING IN R*RREE

d. Exhaustive algorithm where entries are sorted based on available axes.
d. For each axis, $M-\mathbf{2 m + 2}$ distributions of $M+1$ entries into 2 groups are determined.
d. For each distribution following so-called goodness values are computed
(G_{i} denotes i-th group)
\therefore area $: \operatorname{area}\left(\operatorname{MBR}\left(G_{1}\right)\right)+\operatorname{area}\left(\operatorname{MBR}\left(G_{2}\right)\right)$
margin : $\operatorname{margin}\left(\operatorname{MBR}\left(G_{1}\right)\right)+\operatorname{margin}\left(\operatorname{MBR}\left(G_{2}\right)\right)$
overlap : area $\left(M B R\left(G_{1}\right) \cap M B R\left(G_{2}\right)\right)$

INSERT : SPHITNODE

```
Split_RS(P,PP,E)
ChooseSplitAxis();
Distribute();
```


ChooseSplitAxis FOREACH axis DO

Sort the entries along given axis;
$\mathrm{S} \leftarrow$ sum of all margin-values of all different distributions; Choose the axis with the minimum S as split axis;

Distribute

Along the split axis, choose the distribution with minimum overlap-value. Resolve ties by choosing the distribution with minimum area-value;

A	A		F	F			D
A	A		B	B	B		
			B	B	B		
E	E	E					
E	E	E					
			C	C	C	G	
	H					G	
	H					I	I

$\mathrm{M}=8, \mathrm{~m}=3$

ChooseSplitAxis:

X: AEH, FBCGID $22+26 \ldots$ margin
AEHF, BCGID $26+26$
AEHFB, CGID $28+26$ AEHFBC, GID $28+20$ sum $=202$
Y: DFA, BECGHI $20+30$
DFAB, ECGHI $22+26$
DFABE, CGHI $26+22$ DFABEC, GHI $28+24$ sum $=188 \ldots$ pick the minimum $=$ split axis

Distribute:

DFA, BECGHI 8 ... overlap
DFAB, ECGHI 0
DFABE, CGHI 0
DFABEC, GHI 7
DFAB, ECGHI 64 ... area
DFABE, CGHI 61

FORCED REINSERT

© When inserting into rectangles created long in the past, it can happen that these rectangles cannot guarantee good retrieval performance in the current situation
d Standard split causes only local reorganization of the rectangles
\& To achieve dynamic reorganizations R^{*}-tree forces entries to be reinserted during the insertion routine

INSERT : SPIITNODE

OverflowTreatment

```
IF the level is not the root level AND this is the first call of OverflowTreatment within this Insert THEN
    Reinsert();
ELSE
    Split();
```


Reinsert

FOREACH M + l entries of a node N DO
Compute the distance between the centers of their rectangles and the center of the bounding rectangle of N ;
Sort the entries in decreasing order of their distances;
P := first \mathbf{p} entries from N; $\{\mathbf{p}$ is a parameter which can differ for leaf and non-leaf node \}
FOREACH E \in P DO remove E from N ; \{ Includes shrink of the bounding rectangle \}
FOREACH E \in P DO Insert(E);

