
R+Tree & R*Tree

 How to search effectively in more than one dimension?
 B-tree for multidimensional data ~ R-tree

 Theoretical problems with R-trees

2

 Sellis et al 1987
 MBRs of R+-tree have zero overlap while allowing underfilled nodes and duplication

of MBRs in the nodes
 No minimum number of entries

 Achieved by splitting an object and placing it into multiple leaves if necessary
 Takes into account not only coverage (total area of a covering rectangle) but also

overlap (area existing in one or more rectangles)
 Fewer paths are explored when searching, only one for point query

 But insert requires cutting etc.

https://drum.lib.umd.edu/bitstream/handle/1903/4541/TR_87-32.pdf

Left R-Tree, right R+Tree, We can see that G is in two nodes.

 Beckmann et al. 1990
 R*-tree tries to minimize coverage (area) and overlap by adding another criterion -

margin
 Utilisation ~ 70%
 Modification of insert procedure

https://epub.ub.uni-muenchen.de/4256/1/31.pdf
http://www.vldb.org/conf/1994/P500.PDF

ChooseLeaf_RS(T,L,E)

Input: R-tree with a root T, index record E

Output: leaf L

N ← T;

WHILE N ≠ leaf DO

IF following level contains leaves THEN

choose F from N minimizing overlap (𝐅 ∪ 𝐄) and solve ties by picking F whose F.I

needs minimal extension or having minimal area;

ELSE { no change }

choose F from N where F.I needs minimal extension to I’ while E.I ⊂ F.I’ and

area(F.I’) is minimal;

N:=F.p;

L:= N;

 Exhaustive algorithm where entries are sorted based on available axes.
 For each axis, 𝑴−𝟐𝒎+𝟐 distributions of 𝑴+𝟏 entries into 2 groups are determined.
 For each distribution following so-called goodness values are computed

(𝐺𝑖 denotes 𝑖-th group)
 area : 𝑎𝑟𝑒𝑎(𝑀𝐵𝑅(𝐺1)) + 𝑎𝑟𝑒𝑎(𝑀𝐵𝑅(𝐺2))
 margin : 𝑚𝑎𝑟𝑔𝑖𝑛(𝑀𝐵𝑅(𝐺1)) + 𝑚𝑎𝑟𝑔𝑖𝑛(𝑀𝐵𝑅(𝐺2))
 overlap : 𝑎𝑟𝑒𝑎(𝑀𝐵𝑅(𝐺1) ∩𝑀𝐵𝑅(𝐺2))

ChooseSplitAxis

FOREACH axis DO

Sort the entries along given axis;

S ← sum of all margin-values of all different distributions;

Choose the axis with the minimum S as split axis;

Distribute

Along the split axis, choose the distribution with minimum

overlap-value. Resolve ties by choosing the distribution with

minimum area-value;

Split_RS(P,PP,E)

ChooseSplitAxis();

Distribute();

A A F F D

A A B B B

B B B

E E E

E E E

C C C G

H G

H I I

ChooseSplitAxis:

X: AEH, FBCGID 22 + 26 … margin

AEHF, BCGID 26 + 26

AEHFB, CGID 28 + 26

AEHFBC, GID 28 + 20

sum = 202

Y: DFA, BECGHI 20 + 30

DFAB, ECGHI 22 + 26

DFABE, CGHI 26 + 22

DFABEC, GHI 28 + 24

sum = 188 … pick the minimum = split axis

Distribute:

DFA, BECGHI 8 … overlap

DFAB, ECGHI 0

DFABE, CGHI 0

DFABEC, GHI 7

DFAB, ECGHI 64 … area

DFABE, CGHI 61

M = 8, m = 3

 When inserting into rectangles created long in the past, it can happen that these
rectangles cannot guarantee good retrieval performance in the current situation

 Standard split causes only local reorganization of the rectangles
 To achieve dynamic reorganizations R*-tree forces entries to be reinserted during

the insertion routine

OverflowTreatment

IF the level is not the root level AND this is the first call of OverflowTreatment within this Insert THEN

Reinsert();

ELSE

Split();

Reinsert

FOREACH M + l entries of a node N DO

Compute the distance between the centers of their rectangles and the center of the bounding

rectangle of N;

Sort the entries in decreasing order of their distances;

P := first p entries from N; { p is a parameter which can differ for leaf and non-leaf node }

FOREACH E ∈ P DO remove E from N; { Includes shrink of the bounding rectangle }

FOREACH E ∈ P DO Insert(E);

