PRINCIPLES OF DATA ORGANISATION

R-Tree Greene

MOTIVATION

(c. How to search effectively in more than one dimension?
© B-tree for multidimensional data \sim R-tree

R-TREE GRERNE

(2. Greene 1989
@ Modification of the split algorithm of the original R-tree (Guttman)
d. Splitting is based on a hyperplane which defines in which node the objects will fall

INSERT : SPIITNODE

SplitNode(P,PP,E)

ChooseAxis(); // choose the hyperplane
Distribute();

ChooseAxis()

PickSeads; \{ from Guttman's version - returns seeds E_{i} and E_{j} \}
For every axis compute the distance between MBRs $\mathrm{E}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}$;
Normalize the distances by the respective edge length of the bounding rectangle of the original node;
Pick the axis with greatest normalized separation;

Distribute()

Sort $\mathrm{E}_{\mathrm{i}} \mathrm{s}$ in the chosen axis j based on the j -th coordinate; Add first $\lceil(M+1) / 2\rceil$ records into P and rest of them into PP;

A	A		F	F			D
A	A		B	B	B		
			B	B	B		
E	E	E					
E	E	E					
			C	C	C	G	
	H					G	
	H					I	I

PickSeeds:

A and I (Guttman): 64-6 $=58$

ChooseAxis:

Axis X: 4/8
Axis Y: 5/8 ... maximum
Normalization: we have 8×8, but in case of 8×32 the distance should be relative to this size

Distribute:

I, H, G, C and E, B, A, F, D
Note: Or E can bee moved to the other group

