PRINCIPLES OF DATA ORGANISATION

R-Tree Greene

MOTIVATION

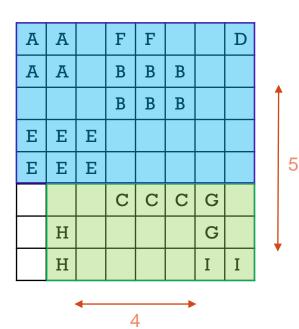
- Mow to search effectively in more than one dimension?
- & B-tree for multidimensional data ~ R-tree

R-TREE GREENE

- <u>Greene 1989</u>
- Modification of the split algorithm of the original R-tree (Guttman)
- 🗴 Splitting is based on a hyperplane which defines in which node the objects will fall

INSERT: SPLITNODE

```
SplitNode(P,PP,E)
ChooseAxis(); // choose the hyperplane
Distribute();
```


ChooseAxis()

PickSeads; { from Guttman's version – returns seeds E_i and E_j } For every axis compute the distance between MBRs E_i , E_j ; Normalize the distances by the respective edge length of the bounding rectangle of the original node; Pick the axis with greatest normalized separation;

Distribute()

Sort E_i s in the chosen axis j based on the j-th coordinate; Add first [(M+1)/2] records into P and rest of them into PP;

PickSeeds:

A and I (Guttman): 64 - 6 = 58

ChooseAxis:

Axis X: 4/8

Axis Y: 5/8 ... maximum

Normalization: we have 8x8, but in case of 8x32 the

distance should be relative to this size

Distribute:

I, H, G, C and E, B, A, F, D

Note: Or E can bee moved to the other group