
R-Tree

 How to search effectively in more than one dimension?
 Objects in 2D we want to query

 E.g., find all natural museums in a certain distance from your home

 How to represent a spatial object in the database?
 Single Dimension-Based Indexing has an issue with locality

 Space filling curve = reduce 2D to 1D + e.g., B-tree

 Usage of full spatial information: Quad-tree, K-D-tree, K-D-B-tree
 Not optimal for storing data in the secondary memory

 We want a B-tree for multidimensional data: R-tree

2

 Guttman 1984
 Height-balanced tree

 Extension of redundant B-tree for spatial data
 Pointers to data only from the leaf level

 Nodes correspond to disk pages
 Each node contains n-dimensional bounding box 𝑰

 MBRs (minimum bounding rectangle)

 The leaf level contains pointers to the spatial objects
 Inner levels contain MBRs

 MBR of a node is MBR of all children

https://doi.org/10.1145/602259.602266

 Every leaf contains between 𝒎 and 𝑴 index records
 𝑴 = the maximum number of entries in a node
 𝒎 ≤ 𝑴/𝟐

 Not fixed to 50%! (We can choose.)

 Every inner node other than root contains between 𝒎 and 𝑴 entries
 The root has at least 2 children unless it is a leaf
 Each node contains a set of entries 𝑬 consisting of

 𝑬. 𝒑 – pointer to the child node (inner node) or spatial object identifier (leaves)
 𝑬. 𝑰 – 𝒏-dimensional bounding box 𝐼 = (𝐼0, 𝐼1, … , 𝐼𝑛−1), where 𝐼𝑗 corresponds to the extent of the

object 𝑰 along 𝒋-th dimension
 For each record 𝑬, 𝑬.𝑰 is the minimum bounding rectangle

 All leaves appear at the same level
 The tree is balanced

 Height of an R-tree with 𝑛 records ≤ log𝑚𝑛

https://www.researchgate.net/figure/R-Tree-indexing-example-2D-visualization-a-hierarchical-dependencies-b_fig4_225542188

Search query: all objects that intersect with a query object (a point or a bounding box)

https://www.researchgate.net/figure/R-Tree-indexing-example-2D-visualization-a-hierarchical-dependencies-b_fig4_225542188

h
tt

p
s
:/
/e

n
.w

ik
ip

e
d

ia
.o

rg
/w

ik
i/
R

-t
re

e

https://en.wikipedia.org/wiki/R-tree

 Result of a search is a set of objects intersecting the query object
 Search key is represented by the bounding box of a query object

 Search may need to follow multiple root-to-leaf paths ~ no guaranteed worst-case
performance
 The more MBRs intersect the worse the performance
 Update algorithms force the bounding rectangles to be as much separated as possible

(small, minimal ovelapping) allowing efficient filtering while searching

Search_R(T,S)

Input: R-tree with a root T, rectangle S

Output: identifiers of objects overlapping S

IF T != leaf THEN

FOR EACH E ∈ T DO

IF E.I ∩ S THEN Search_R(E.p,S);

ELSE

FOR EACH E ∈ T DO

IF E.I ∩ S THEN Output(E.p,S);

p14

p17

p7

p5 p3

p13

p6

p2

p16

p18

p1

p15

p20

p19

p12

p4

p8

p11
p9

p10

R1

R2

R1 R2

R3 R4 R5 R6 R7 R8

p14 p4 p17

 p5 p3 p13

 p6 p2 p16 p4 p18 p15 p1

p12 p19 p20 p11

 p9 p10 p8

Insert_R(T,E)

Input: R-tree with a root T, index record E

Output: updated R-tree

ChooseLeaf(T,L,E); {chooses leaf L for E}

IF E fits in L THEN

Insert(L,E);

LL ← NIL;

ELSE

SplitNode(L,LL,E);

AdjustTree(L,LL,T); {propagates changes upwards}

IF T was split THEN

install a new root;

ChooseLeaf(T,L,E)

Input: R-tree with a root T, index record E

Output: leaf L

N ← T;

WHILE N ≠ leaf DO

chose such entry F from N whose F.I needs

least enlargement to include E.I, in case of

tie choose F.I with smallest area;

N ← F.p;

L ← N;

AdjustTree(L,LL,T)

Input: R-tree with a root T, leafs L and LL

Output: updated R-tree

N ← L;

NN ← LL;

WHILE N ≠ T DO

P ← Parent(N);

PP ← NIL;

modify EN.I in P so that it contains all rectangles in N;

IF NN != NIL THEN

create ENN, where ENN.p = NN and ENN.I covers all rectangles in NN;

IF ENN fits in P THEN

Insert(P, ENN);

PP ← NIL;

ELSE

SplitNode(P,PP, ENN);

N ← P;

NN ← PP

LL ← NN;

p14

p17

p7

p5 p3

p13

p6

p2

p16

p18

p1

p15

p20

p19

p12

p4

p8

p11
p9

p10

R1

R2

R1 R2

R3 R4 R5 R6 R7 R8

p14 p4 p17

 p5 p3 p13

 p6 p2 p16 p4 p18 p15 p1

p12 p19 p20 p11

 p9 p10 p8

A good split should minimize the probability of searching in too much nodes the total
covering area should be minimized ~ dead space (space not covering any objects) should be

minimized, but overlaps are problematic as well

Good splitBad split

???
Good split Bad split

 Exhaustive algorithm
 Exhaustive generation of all possible divisions
 2𝑀−1

 Quadratic cost algorithm
 The best seed (= a pair of MBRs) is picked

 Two entries that would consume the most space if put together
 The remaining MBRs are added one by one

 Pick the one that would make the biggest difference in the area when put
into one of the two groups

 Add it to the one with the least difference
 Linear-cost algorithm

 Seed picking is based on finding rectangles with the greatest normalised
separation along any dimension

SplitNode(P,PP,E)

Input: node P, new node PP, m original entries, new entry E

Output: modified P, PP

PickSeeds(); { chooses first Ei and Ej for P and PP }

WHILE not assigned entry exists DO

IF remaining entries need to be assigned to P or PP in

order to have the minimum number of entries m THEN

assign them;

ELSE

Ei ← PickNext() {choose where to assign next entry}

Add Ei into group that will have to be enlarged least to

accommodate it. Resolve ties by adding the entry to the

group with smaller area, then to the one with fewer entries;

PickSeeds()

FOREACH Ei, Ej (𝑖≠𝑗) DO

dij ← area(J) − area(Ei.I) − area(Ej.I);

{ J is the MBR covering Ei and Ej }

pick Ei and Ej with maximal dij;

PickNext()

FOREACH remaining Ei DO

d1 ← area increase required for MBR of P and Ei.I;

d2 ← area increase required for MBR of PP and Ei.I;

pick Ei with maximal |d1 − d2|;

Quadratic

complexity

A A F F D

A A B B B

B B B

E E E

E E E

C C C G

H G

H I I

PickSeeds:

A and B: (3x6)-(4+6) = 8

…

A and I: (8x8)-(4+2) = 58 ... maximum death area

...

PickNext:

A I

B 18-4 = 14 35-2 = 33 19

C 32 13 19

D 13 14 1

E 11 38 27

F 6 38 32

G 45 4 41 … maximum difference

H 12 12 0

Merge G and I and re-compute values for this new group (IG)

We get groups: AFBECH and IGD

M = 8, m = 3

Note: If m = 4, we get AFBEC and IGHD (and there will be a big overlap)

The insert procedure can lead to both arrangements.

For any finite set 𝑆 of disjoint regions in plane, there does not always exist such a set of
MBRs where:

 Every region resides in exactly one MBR
 Every MBR bounds 𝑛 regions where 1<𝑛<𝑚
 The intersection of all the MBRs is empty

R

Cannot be split into two

non-overlaping groups

