
R-Tree



 How to search effectively in more than one dimension?
 Objects in 2D we want to query

 E.g., find all natural museums in a certain distance from your home

 How to represent a spatial object in the database?
 Single Dimension-Based Indexing has an issue with locality

 Space filling curve = reduce 2D to 1D + e.g., B-tree

 Usage of full spatial information: Quad-tree, K-D-tree, K-D-B-tree
 Not optimal for storing data in the secondary memory

 We want a B-tree for multidimensional data: R-tree
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 Guttman 1984
 Height-balanced tree

 Extension of redundant B-tree for spatial data
 Pointers to data only from the leaf level

 Nodes correspond to disk pages
 Each node contains n-dimensional bounding box 𝑰

 MBRs (minimum bounding rectangle)

 The leaf level contains pointers to the spatial objects
 Inner levels contain MBRs

 MBR of a node is MBR of all children

https://doi.org/10.1145/602259.602266


 Every leaf contains between 𝒎 and 𝑴 index records
 𝑴 = the maximum number of entries in a node 
 𝒎 ≤ 𝑴/𝟐

 Not fixed to 50%! (We can choose.)

 Every inner node other than root contains between 𝒎 and 𝑴 entries
 The root has at least 2 children unless it is a leaf
 Each node contains a set of entries 𝑬 consisting of

 𝑬. 𝒑 – pointer to the child node (inner node) or spatial object identifier (leaves)
 𝑬. 𝑰 – 𝒏-dimensional bounding box 𝐼 = (𝐼0, 𝐼1, … , 𝐼𝑛−1), where 𝐼𝑗 corresponds to the extent of the 

object 𝑰 along 𝒋-th dimension
 For each record 𝑬, 𝑬.𝑰 is the minimum bounding rectangle

 All leaves appear at the same level
 The tree is balanced

 Height of an R-tree with 𝑛 records ≤ log𝑚𝑛



https://www.researchgate.net/figure/R-Tree-indexing-example-2D-visualization-a-hierarchical-dependencies-b_fig4_225542188

Search query: all objects that intersect with a query object (a point or a bounding box)

https://www.researchgate.net/figure/R-Tree-indexing-example-2D-visualization-a-hierarchical-dependencies-b_fig4_225542188
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https://en.wikipedia.org/wiki/R-tree


 Result of a search is a set of objects intersecting the query object
 Search key is represented by the bounding box of a query object

 Search may need to follow multiple root-to-leaf paths ~ no guaranteed worst-case 
performance
 The more MBRs intersect the worse the performance
 Update algorithms force the bounding rectangles to be as much separated as possible 

(small, minimal ovelapping) allowing efficient filtering while searching

Search_R(T,S)

Input: R-tree with a root T, rectangle S

Output: identifiers of objects overlapping S

IF T != leaf THEN

FOR EACH E ∈ T DO

IF E.I ∩ S THEN Search_R(E.p,S);

ELSE

FOR EACH E ∈ T DO

IF E.I ∩ S THEN Output(E.p,S);
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Insert_R(T,E)

Input: R-tree with a root T, index record E

Output: updated R-tree

ChooseLeaf(T,L,E); {chooses leaf L for E}

IF E fits in L THEN 

Insert(L,E); 

LL ← NIL;

ELSE 

SplitNode(L,LL,E);

AdjustTree(L,LL,T); {propagates changes upwards}

IF T was split THEN 

install a new root;

ChooseLeaf(T,L,E)

Input: R-tree with a root T, index record E

Output: leaf L

N ← T;

WHILE N ≠ leaf DO

chose such entry F from N whose F.I needs

least enlargement to include E.I, in case of 

tie choose F.I with smallest area;

N ← F.p;

L ← N;



AdjustTree(L,LL,T)

Input: R-tree with a root T, leafs L and LL

Output: updated R-tree

N ← L; 

NN ← LL;

WHILE N ≠ T DO

P ← Parent(N); 

PP ← NIL;

modify EN.I in P so that it contains all rectangles in N;

IF NN != NIL THEN

create ENN, where ENN.p = NN and ENN.I covers all rectangles in NN;

IF ENN fits in P THEN 

Insert(P, ENN); 

PP ← NIL;

ELSE 

SplitNode(P,PP, ENN);

N ← P; 

NN ← PP

LL ← NN;
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A good split should minimize the probability of searching in too much nodes  the total 
covering area should be minimized ~ dead space (space not covering any objects) should be 

minimized, but overlaps are problematic as well

Good splitBad split

???
Good split Bad split



 Exhaustive algorithm
 Exhaustive generation of all possible divisions
 2𝑀−1

 Quadratic cost algorithm
 The best seed (= a pair of MBRs) is picked 

 Two entries that would consume the most space if put together
 The remaining MBRs are added one by one

 Pick the one that would make the biggest difference in the area when put 
into one of the two groups 

 Add it to the one with the least difference
 Linear-cost algorithm

 Seed picking is based on finding rectangles with the greatest normalised 
separation along any dimension



SplitNode(P,PP,E)

Input: node P, new node PP, m original entries, new entry E

Output: modified P, PP

PickSeeds(); { chooses first Ei and Ej for P and PP }

WHILE not assigned entry exists DO

IF remaining entries need to be assigned to P or PP in 

order to have the minimum number of entries m THEN 

assign them;

ELSE 

Ei ← PickNext() {choose where to assign next entry}

Add Ei into group that will have to be enlarged least to

accommodate it. Resolve ties by adding the entry to the

group with smaller area, then to the one with fewer entries;

PickSeeds()

FOREACH Ei, Ej (𝑖≠𝑗) DO

dij ← area(J) − area(Ei.I) − area(Ej.I);

{ J is the MBR covering Ei and Ej }

pick Ei and Ej with maximal dij;

PickNext()

FOREACH remaining Ei DO

d1 ← area increase required for MBR of P and Ei.I;

d2 ← area increase required for MBR of PP and Ei.I;

pick Ei with maximal |d1 − d2|;

Quadratic

complexity



A A F F D

A A B B B

B B B

E E E

E E E

C C C G

H G

H I I

PickSeeds:

A and B: (3x6)-(4+6) = 8

…

A and I: (8x8)-(4+2) = 58 ... maximum death area

...

PickNext:

A I 

B 18-4 = 14 35-2 = 33 19

C 32 13 19

D 13 14 1

E 11 38 27

F 6 38 32

G 45 4 41 … maximum difference

H 12 12 0

Merge G and I and re-compute values for this new group (IG)

We get groups: AFBECH and IGD

M = 8, m = 3

Note: If m = 4, we get AFBEC and IGHD (and there will be a big overlap)



The insert procedure can lead to both arrangements.



For any finite set 𝑆 of disjoint regions in plane, there does not always exist such a set of 
MBRs where:

 Every region resides in exactly one MBR
 Every MBR bounds 𝑛 regions where 1<𝑛<𝑚
 The intersection of all the MBRs is empty

R

Cannot be split into two 

non-overlaping groups


