
Multidimensional Indexing : Introduction



 How to search effectively in more than one dimension?
 We know 1D

 How to represent spatial object in the database?
 Single Dimension-Based Indexing has an issue with locality

 Multidimensional indexes focus on storing spatial objects in such a way that objects 
close to each other in the space are also close in the structure and on the disk, i.e., 
maintain locality
 We will now focus on basics not the secondary memory as before

2



 General spatial objects are more complex than simple points
 To easily represent a possibly complex spatial object, we use approximation 

expressed by (Minimum) Bounding Rectangle/cube/box/object (MBR)
 2D: rectangle

 Comparison of objects is reduced to the comparison of their MBRs
 Pros and cons



 N-dimensional grid covers the space and is not dependent on the data distribution 
in any way
 The grid is formed in advance
 We anchor the data

 Every point object can be addressed by the grid address
 Objects distribution in the grid does not have to be uniform → retrieval times for 

different grid cells may differ substantially for different parts of the space



 Finkel, Bentley; 1974
 Tree structure representing recursive splitting of a space into quadrants

 Quad = quadrant (4 regions)

 Each node has from zero to four children
 Typically the regions are squares 

 Any arbitrary shape is possible

https://link.springer.com/article/10.1007/BF00288933


K D
 Bentley; 1975
 Problem: quad tree can be unbalanced
 Objects in k-dimensional space
 Binary search tree where inner nodes consist of a point, an axis identification 

(hyperplane in d-dimensions), and two pointers
 Inner nodes correspond to hyperplanes splitting space into two parts where the 

location of the hyper plane is defined by the point

https://dl.acm.org/doi/abs/10.1145/361002.361007


A(50,50)

B(10,70)

(0,0)

C(80,20)

F(75,85)E(40,85)

D(25,25)

G(10,60)

A

B C

D E F

G

Discriminator

(axis)

x

y

x

y



 Robinson; 1981
 Problem: k-d-tree is designed for main memory

 What if it does not fit there?

 Combination of K-D-Tree and B-Tree
 Each tree node is stored as a page, but unlike B-trees 50% utilisation can not be 

guaranteed
 Each inner node contains multiple split axes to fill the node’s capacity
 Leaf nodes contain indexed records (points)

 Like in redundant B-trees

 Splitting and merging happens analogously to B-trees

https://dl.acm.org/doi/abs/10.1145/582318.582321


Maximum page 

capacity is 4

Axis selection is 

done by 

alternating the axis 

(in this image)


