
Multidimensional Indexing : Introduction



 How to search effectively in more than one dimension?
 We know 1D

 How to represent spatial object in the database?
 Single Dimension-Based Indexing has an issue with locality

 Multidimensional indexes focus on storing spatial objects in such a way that objects 
close to each other in the space are also close in the structure and on the disk, i.e., 
maintain locality
 We will now focus on basics not the secondary memory as before

2



 General spatial objects are more complex than simple points
 To easily represent a possibly complex spatial object, we use approximation 

expressed by (Minimum) Bounding Rectangle/cube/box/object (MBR)
 2D: rectangle

 Comparison of objects is reduced to the comparison of their MBRs
 Pros and cons



 N-dimensional grid covers the space and is not dependent on the data distribution 
in any way
 The grid is formed in advance
 We anchor the data

 Every point object can be addressed by the grid address
 Objects distribution in the grid does not have to be uniform → retrieval times for 

different grid cells may differ substantially for different parts of the space



 Finkel, Bentley; 1974
 Tree structure representing recursive splitting of a space into quadrants

 Quad = quadrant (4 regions)

 Each node has from zero to four children
 Typically the regions are squares 

 Any arbitrary shape is possible

https://link.springer.com/article/10.1007/BF00288933


K D
 Bentley; 1975
 Problem: quad tree can be unbalanced
 Objects in k-dimensional space
 Binary search tree where inner nodes consist of a point, an axis identification 

(hyperplane in d-dimensions), and two pointers
 Inner nodes correspond to hyperplanes splitting space into two parts where the 

location of the hyper plane is defined by the point

https://dl.acm.org/doi/abs/10.1145/361002.361007


A(50,50)

B(10,70)

(0,0)

C(80,20)

F(75,85)E(40,85)

D(25,25)

G(10,60)

A

B C

D E F

G

Discriminator

(axis)

x

y

x

y



 Robinson; 1981
 Problem: k-d-tree is designed for main memory

 What if it does not fit there?

 Combination of K-D-Tree and B-Tree
 Each tree node is stored as a page, but unlike B-trees 50% utilisation can not be 

guaranteed
 Each inner node contains multiple split axes to fill the node’s capacity
 Leaf nodes contain indexed records (points)

 Like in redundant B-trees

 Splitting and merging happens analogously to B-trees

https://dl.acm.org/doi/abs/10.1145/582318.582321


Maximum page 

capacity is 4

Axis selection is 

done by 

alternating the axis 

(in this image)


