
Hierarchical Indexing – Advanced 



 Key, pointer pairs ~ index
 B-tree

 Balanced tree
 Node = page/block
 Redundant/non-redundant



Clustered index

 Corresponds to the idea of index-
sequential file organization

 Logical order of the key values 
determines the physical order of the 
corresponding data records

 Only one
 Fast range queries

Nonclustered index

 Order of data in the index and the primary 
file is not related

 Multiple nonclustered indexes can exist

Index pages

Data pages

…

…

…

… …



Sparse index

 Entry for each page/block
 Clustered index – data in a page/block 

the data is sorted

 Note: Clustered index can be sparse or 
dense

Dense index

 Entry for every data record
 Nonclustered (non-primary) index must 

be dense



CREATE TABLE Product(

id INT PRIMARY KEY NONCLUSTERED,

code NVARCHAR(5),

name NVARCHAR(50),

type INT);

CREATE NONCLUSTERED INDEX ixProductCode ON Product(code);

CREATE CLUSTERED INDEX ixProductName ON Product(name);

Forces 

ordering 



When indexing a large collection, inserting 
records one by one can be tedious

 Sort the data based on the search key in 
the pages

 Insert pointer to the leftmost page into a 
new root

 Move over the data file and insert the 
respective keys into the rightmost index 
page above the leaf level. If the 
rightmost page overflows, split.

6

not yet inserted records
3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

4 11 22 31

9 13

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

4 11 22

9

36

31

13



 Sorted: 3, 4, 6, 9, 10, 11, 12, 13…

3 4 6 9

4

10 11 12 13

11

9

3 4 6 9

4

10 11 12 13 …

9

If we expect 

lots of inserts



 Modification of B-tree where an overflow does not have to lead to a page split
 When a page overflows

 Sibling pages are checked
 The content of the overflowed page is joined into set 𝑋 with the left or right 

neighbors
 The record to be inserted is added into 𝑿 and the content is equally distributed 

into the two nodes
 The changes are projected into the parent node where the keys have to be 

modified (but no new key is inserted → no split cascade)
 For high 𝑚 this change leads to about 75% utilization in the worst case



6 15

1 2 9 10 11 12

14

9 15

1 2 6 10 11 12 14



 Certain sequences of inserts can lead to only 50% utilization
 Let us keep an overflow page for each node
 When a page overflows, the overflown record is inserted into the respective overflow 

page
 Insert is faster
 Better utilization
 Search is slower

 We need to searh the overflow area

 When both the original and the overflow page are full, the original page is split and 
the overflow page is emptied



10 11 13 14

12 15 18

19 2016 171 2 4 5

3 6

7 8

9

Example: Increasing sequence of numbers 1, 2, 3, 4, …, 20 (e.g. typically primary key)  fill factor 

is 0.5 so the worst possible



1 2 3 4

Insert  5

1 2 3 4

5

Insert  10-20

1 2 3 4

5 6 7 8

Insert  6,7,8

6 7 8 91 2 3 4

5

1 2 3 4 6 7 8 9

5 10 15

16 17 18 1911 12 13 14

20

Insert  9

Fill factor 0.83



 Often we want to index not only numbers but also strings 
→ variable length-records (VLR) → different 𝑚 for different nodes
 Note: In existing DB systems, indexable string data types have upper limit on the 

number of characters (NVARCHAR(n)) → not exactly VLR
 When splitting a page with VLR, rather length of the records is taken into account 

than the number of records
 Result: the distribution is driven by the resulting length

 Can lead to violation of the condition regarding the minimum number 
of records in a B-tree

 Longer records tend to get closer to the root, causing lower arity close to the root
 When merging, a short record can be replaced by a longer one causing height 

increase



@ D O @ F A L L @ N O T @

Representing the sentence:  “DO NOT FALL ASLEEP”

• node size is 15 

• pointers represented by @ 
• For the sake of simplicity let us consider size of a pointer to be identical to the size of a character

• Inserting “ASLEEP” causes overflow → splitting

• Sequence to be split: @ASLEEP@DO@FALL@NOT@ 

• → O is the middle character

@ A S L E E P @ @ F A L L @ N O T @

@ D O @



 Modification of redundant B-tree
 Inner node keys do not have to be subsets of the keys in the leaf level, 

they only need to separate
 Smaller keys lead to higher node capacity → lower trees → faster access
 Suitable choice of separators are prefixes of the keys

F

B Co M

An As C E I N No

A

An

And

As

By

Certain

Computation

Computations

Equation

Equations

For

From

In

Its

Method

Methods

New

Note

Notes



 Redundant B-tree
 The leaf level is chained by pointers

 The leaf nodes do not have to be physically next to each other

 Faster range queries
 Preferred in existing database management system
 Sometimes the inner levels chained as well 

 e.g., Microsoft SQL Server

…

…

.

.

.



 Generalization of page balancing
 The root node has at least 2 children
 Every node different from the root has at least ⌈(𝟐𝒎−𝟏)/𝟑⌉ children

 2/3 utilization (in B-tree we have 50%)

 Idea: 2 full pages are split into 3 pages (one new page)
 Algorithm:

 If a node is full but none of its neighbors is full, page balancing takes place
 If the insert occurs in a full page which has full left or right neighbor

 Their content is joined into a set 𝑋 together with the new record
 A new page 𝑃 is allocated
 The records from 𝑋 are equally distributed into the 3 pages 

(the 2 existing and 𝑃)
 A new key is added into the parent node and the keys are adjusted

 The delete operation is handled similarly
 Idea: We use page balancing or we take 3 nodes and merge into 2



 m = 5

5 7 10 15

Insert 30

5 7 10

10

15 30

Insert 20,13

5 7 10

10

13 15 20 30

Insert 21

5 7 10 13

13

15 20 21 30

Page balancing

Insert 3

3 5 7

7 15

10 13 15 20 21 30



Oracle 11g MSQL Server 

2016

PostgreSQL 9.2 MySQL 5.5

Standard index B+tree B+tree B+tree B+tree

Bitmap index Yes No No No

Hash index Yes (clustering) Yes (clustering) Yes Yes

Spatial index R-tree B+tree

Hilbert curve

R-tree R-tree


