
Hierarchical Indexing – Advanced 



 Key, pointer pairs ~ index
 B-tree

 Balanced tree
 Node = page/block
 Redundant/non-redundant



Clustered index

 Corresponds to the idea of index-
sequential file organization

 Logical order of the key values 
determines the physical order of the 
corresponding data records

 Only one
 Fast range queries

Nonclustered index

 Order of data in the index and the primary 
file is not related

 Multiple nonclustered indexes can exist

Index pages

Data pages

…

…

…

… …



Sparse index

 Entry for each page/block
 Clustered index – data in a page/block 

the data is sorted

 Note: Clustered index can be sparse or 
dense

Dense index

 Entry for every data record
 Nonclustered (non-primary) index must 

be dense



CREATE TABLE Product(

id INT PRIMARY KEY NONCLUSTERED,

code NVARCHAR(5),

name NVARCHAR(50),

type INT);

CREATE NONCLUSTERED INDEX ixProductCode ON Product(code);

CREATE CLUSTERED INDEX ixProductName ON Product(name);

Forces 

ordering 



When indexing a large collection, inserting 
records one by one can be tedious

 Sort the data based on the search key in 
the pages

 Insert pointer to the leftmost page into a 
new root

 Move over the data file and insert the 
respective keys into the rightmost index 
page above the leaf level. If the 
rightmost page overflows, split.
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 Sorted: 3, 4, 6, 9, 10, 11, 12, 13…

3 4 6 9

4

10 11 12 13

11

9

3 4 6 9

4

10 11 12 13 …

9

If we expect 

lots of inserts



 Modification of B-tree where an overflow does not have to lead to a page split
 When a page overflows

 Sibling pages are checked
 The content of the overflowed page is joined into set 𝑋 with the left or right 

neighbors
 The record to be inserted is added into 𝑿 and the content is equally distributed 

into the two nodes
 The changes are projected into the parent node where the keys have to be 

modified (but no new key is inserted → no split cascade)
 For high 𝑚 this change leads to about 75% utilization in the worst case
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 Certain sequences of inserts can lead to only 50% utilization
 Let us keep an overflow page for each node
 When a page overflows, the overflown record is inserted into the respective overflow 

page
 Insert is faster
 Better utilization
 Search is slower

 We need to searh the overflow area

 When both the original and the overflow page are full, the original page is split and 
the overflow page is emptied
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Example: Increasing sequence of numbers 1, 2, 3, 4, …, 20 (e.g. typically primary key)  fill factor 

is 0.5 so the worst possible
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 Often we want to index not only numbers but also strings 
→ variable length-records (VLR) → different 𝑚 for different nodes
 Note: In existing DB systems, indexable string data types have upper limit on the 

number of characters (NVARCHAR(n)) → not exactly VLR
 When splitting a page with VLR, rather length of the records is taken into account 

than the number of records
 Result: the distribution is driven by the resulting length

 Can lead to violation of the condition regarding the minimum number 
of records in a B-tree

 Longer records tend to get closer to the root, causing lower arity close to the root
 When merging, a short record can be replaced by a longer one causing height 

increase



@ D O @ F A L L @ N O T @

Representing the sentence:  “DO NOT FALL ASLEEP”

• node size is 15 

• pointers represented by @ 
• For the sake of simplicity let us consider size of a pointer to be identical to the size of a character

• Inserting “ASLEEP” causes overflow → splitting

• Sequence to be split: @ASLEEP@DO@FALL@NOT@ 

• → O is the middle character

@ A S L E E P @ @ F A L L @ N O T @

@ D O @



 Modification of redundant B-tree
 Inner node keys do not have to be subsets of the keys in the leaf level, 

they only need to separate
 Smaller keys lead to higher node capacity → lower trees → faster access
 Suitable choice of separators are prefixes of the keys
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 Redundant B-tree
 The leaf level is chained by pointers

 The leaf nodes do not have to be physically next to each other

 Faster range queries
 Preferred in existing database management system
 Sometimes the inner levels chained as well 

 e.g., Microsoft SQL Server
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 Generalization of page balancing
 The root node has at least 2 children
 Every node different from the root has at least ⌈(𝟐𝒎−𝟏)/𝟑⌉ children

 2/3 utilization (in B-tree we have 50%)

 Idea: 2 full pages are split into 3 pages (one new page)
 Algorithm:

 If a node is full but none of its neighbors is full, page balancing takes place
 If the insert occurs in a full page which has full left or right neighbor

 Their content is joined into a set 𝑋 together with the new record
 A new page 𝑃 is allocated
 The records from 𝑋 are equally distributed into the 3 pages 

(the 2 existing and 𝑃)
 A new key is added into the parent node and the keys are adjusted

 The delete operation is handled similarly
 Idea: We use page balancing or we take 3 nodes and merge into 2
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Oracle 11g MSQL Server 

2016

PostgreSQL 9.2 MySQL 5.5

Standard index B+tree B+tree B+tree B+tree

Bitmap index Yes No No No

Hash index Yes (clustering) Yes (clustering) Yes Yes

Spatial index R-tree B+tree

Hilbert curve

R-tree R-tree


