
Hierarchical Indexing - Basics



 Key, pointer pairs ~ index
 Search trees (binary tree, a-b tree,…)
 Unlike hashing, trees allow retrieving a set of records with keys from a given range.
 Tree structures use “clustering” to efficiently filter out non-relevant records from the data 

set



 Bayer & McCreight, 1972
 B-tree is a sorted balanced m-ary (not binary) tree with additional constraints 

restricting the branching in each node thus causing the tree to be reasonably “wide”
 We do not want a tree that looks like a list

 Inserting or deleting a record in B-tree causes only local changes and not rebuilding 
of the whole index



Bonus fact: … Experiments have been 
performed with indexes up to 100 000 keys. 

An index of size 15 000 (100 000) can be 
maintained with an average of 9 (at least 4) 
transactions (update, delete, search) per 
second on an IBM System/360 Model 44
with a 2 311 disc drive.



B-trees are balanced m-ary trees fulfilling the following conditions:
 The root has at least two children unless it is a leaf
 Every inner node except the root has at least ⌈𝒎/𝟐⌉ and at most 𝒎 children

 Each node is at least half full

 Every node contains at least ⌈𝒎/𝟐⌉−𝟏 and at most 𝒎−𝟏 (pointers to) data records
 Pointers to data, discriminators and pointers to children are tightly coupled

 Each branch has the same length

Node organisation:
p0, (k1, p1, d1), (k2, p2, d2), … , (kn, pn, dn), u

pi – pointers to the child nodes ki – keys/discriminators di – data
u – unused space ⌈𝒎/𝟐⌉−𝟏 ≤ n ≤ 𝒎−𝟏

Records (ki, pi, di) are sorted with respect to ki.
For all kj in subtree pointed by pi : ki < kj < ki + 1



Non-redundant

 The presented definition introduced 
the non-redundant B-tree 

 Each key value occurred just once 
in the whole tree

 Pointers to data are stored with 
values

Redundant

 Redundant B-trees store the data 
values in the leaves and thus have 
to allow repeating of keys in the 
inner nodes. 
 I.e. use ≤ instead of < in the last 

condition

 The inner nodes do not contain 
pointers to the data records
 Higher blocking factor

 More widespread
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Is is redundant or non-redundant? 



 Usually one page/block contains one node

Existing database management system:

 One page usually takes 8KB
 Redundant B-trees

 Higher blocking factor of inner nodes
 Range queries – values in leaves

 Data are not stored in the indexing structure itself but addressed from the leaf nodes
 Multiple indices
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 Insert values:15,9,23,25,19,40,17,21
 m = 3
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Searching a (non-redundant) tree 𝑇 for a record with key 𝑘 :

1. Enter the tree in the root node.
2. If the node contains a key 𝒌𝒊 such that 𝒌𝒊=𝒌

return the data associated with 𝒅𝒊.
3. Else if the node is leaf, return NULL.
4. Else find lowest 𝒊 such that 𝒌<𝒌𝒊 and set 𝒋=𝒊−𝟏. 

If there is no such 𝑖 set 𝒋 as the rightmost index with existing key.
5. Fetch the node pointed to by 𝒑𝒋. 
6. Repeat the process from step 2.

Example: search for 40
 Remember: one node = one block
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Inserting

 Finding a leaf where the new record 
should be inserted.

 When inserting into a not yet full 
node no splitting occurs.

 When inserting into a full node, the 
node is split in such a way that the 
two resulting nodes are at least half 
full.

 Split cascade.

Deleting

 When deleting a record from a 
node more than half full, no 
reorganization happens.

 Deleting in a half full node induces 
merging of the neighboring nodes.

 Delete cascade

The logarithmic complexity is ensured by the condition that every node has to be at least half full.
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The last step gradually:

Propagate problem 

up – delete cascade

Only the root 

level can 

disappear!



Insert into a (non-redundant) tree 𝑇 for a record 𝑟 with key 𝑘 :

1. If the tree is empty, allocate a new node, insert the key 𝑘 and (pointer to record) 𝑟 and 
return.

2. Else find the leaf node 𝑳 where the key 𝒌 belongs.
3. If 𝑳 is not full insert 𝒓 and 𝑘 into 𝐿 in such a position that the keys are sorted and return.
4. Else create a new node 𝑳′.
5. Leave lower half records (all the items from 𝐿 plus 𝑟) in 𝑳 and the higher half records into 
𝑳′ except of the item with the middle key 𝑘′. 

a. If 𝐋 is the root, create a new root node, move the record with key 𝑘′ to the new root 
and point it to 𝑳 and 𝑳′ and return. 

b. Else move the record with key 𝑘′ to the parent node 𝑷 into appropriate position 
based on the value 𝑘′ and point the “left” pointer to 𝐋 and the “right” pointer to 𝑳′.

6. If 𝑷 overflows, repeat step 5 for 𝑃 else return.



Delete from tree 𝑇 for a record 𝑟 with key 𝑘 :

1. Find a node 𝑵 containing the key 𝑘.
2. Remove 𝒓 from 𝑁.
3. If number of keys in 𝑵 ≥⌈𝒎/𝟐⌉−𝟏, return.
4. Else, if possible, merge 𝑵 with either right or left sibling (includes update of the parent 

node accompanied by the decrease of the number of keys in the parent node).
5. Else reorganize records among 𝑵 and its sibling and the parent node.
6. If needed, reorganize the parent node in the same way (steps 3 – 5).



 Insert values:15,9,23,25,19,40,17,21
 m = 3
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Or, we could borrow 

a value from a sibling 

(deferred merging)

Propagate problem 

up – inside the tree 

apply the non-

redundant version!
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|page| = 8 KiB |key|  = 10 B
|node pointer| = 8 B |data pointer| = 9 B
m … arity (blocking factor)

m * |node pointer| + (m – 1) * ( |key| + |data pointer| ) ≤ |page|
m ≤ (8192 + 19 / 27 ) = 304 

With ⅔ utilization, 202 records per node, we got:
Tree height # Records

0 202

1 40.804

2 8.242.408

3 1.664.996.416

upper limit on 

number of reads 

required to 

search the index


