
Linear (Litwin) hashing

 Key, pointer pairs ~ index
 Hashed file organization
 Dynamic hashing

 More records can be added

 Collapsing a trie
 Issue: Fagin’s directory had to be doubled

 Litwin 1980, Enbody & Du 1988
 Directory-less scheme

 No need to double the directory
 No level of indirection

 We need a continuous address space in the secondary memory

 Principal idea
 Avoid doubling of the directory
 Let us add one page after a pre-specified condition

 E.g., overflow or given number of inserts (bucket load factor)
 The space grows linearly – one page after another

 If we find ourselves in i-th step/iteration, then after 2i insertions we get into
i + 1 iteration

 Expensive expansion process is divided into stages
 Stage d starts when the number of pages is s = 2d and ends when the number

reaches 2d+1

 0. stage = 1 page
 1. stage = 2 pages
 2. stage = 4 pages
 ...
 d = the number of bits to be used to address all pages in a given stage

 0 bits for 1 page
 1 bit for 2 pages
 2 bits for 4 pages
 …

 A (split) pointer p is used to point to pages 0 … 2d

 The purpose of p is to identify the next page to be split

 At the beginning of stage 𝒅, 𝒑 points to page 0
 After every split operation it is increased by 1 (moves to the next page)

 If a page overflows before it is its time to split, overflow pages need to be utilized
 The growth of the primary file is linear

 When splitting, the new page will be at position p+s
 Records from page p (and overflow pages) will be distributed between

p and p+s using hd+1(k)
 We use one more bit to distribute the data

 At each stage we have two types of hash functions
 for pages already split
 for pages not yet split

 When we enter a new stage, we move pointer p to the start

0 … s-1

new page

“stage delimiter”

0 … s-1

split pages

not yet split pages

not yet split pages

b = 3

split: after 2 inserts

Stage d = 0

2d = 1 page

Stage 1

2d = 2 pages

Insert 20, 11 20, 11 Split

20 11

0 1

Insert 8,3 20, 8 11, 3

0 1

Split

20, 8 11, 3

00 1 10
Insert

24,32 20, 8, 24 11, 3

00 1 10

32

Split

20, 8, 24

00 01 10 11

32

11, 3
Stage 2

2d = 4 pages

20 = 10100

11 = 1011

8 = 1000

3 = 11

24 = 11000

32 = 100000

Unlike directory-based hashing, address of a record has to be computed.
Pages left of p are already split and therefore need one more bit for addressing than
pages right of p.

ADDR GetAddres (KEY k, int cnt_pages) {

d = floor(log(cnt_pages, 2));

s = exp(2, d);

p = cnt_pages % s;

addr = h(k) % s;

if (addr < p) addr = h(k) % exp(2, d + 1);

return addr;

}

Uncontrolled splitting

 Page pointed to by p is split after a
given number of insertions

 Page pointed to by p is split when any
page overflows

Controlled splitting

 Splitting occurs when the utilization of
page pointed to by p reaches a
threshold, e.g. 80%

 Problem: some pages may overflow, but we split some other page

 Overflow handling:
 One global overflow area
 One overflow page for each page
 One buddy page for each page

