
Fagin

 Key, pointer pairs ~ index
 Hashed file organization
 Dynamic hashing

 We can add new records (without performace penalty)
 We do not need to specify the amout of data beforehand

 Collapsing a trie (prefix tree)
 We use a growing part of the tree

 Fagin 1979
 In general: hash function h(k) returns a string of bits

 But we do not need all of them all the time
 Directory based

 Level of indirection = we do not need a continuous space in the secondary
memory

 Global depth dG
Bits needed to tell any pair of records from different buckets apart

 Local depth dL (own for each bucket/page)
Number of bits common to all records in a bucket
 2^(𝑑G−𝑑L) = how many directory records point to a page

 Hash function (uniform, fast,...) provides dG -long address of the directory entry with
a pointer to the bucket/page

 Overflowing causes a change in the structure of the directory (dg, dL) and the
primary file
 Adding new blocks or modyfying (doublong) the directory

000

001

010

011

100

101

110

111

2 A

3 B

3 C

1 D

dL

dG = 3

DIRECTORY

In the main

memory

Bits we use

Buckets/pages in

the secondary

memory

dL < dG more than one pointer =

the page can be split, dL++

dL == dG 

doubling the

directory and

splitting the

page

Finding a record with a key 𝑘

 Compute k’ = H(k)
 Compute k’’ = hdG (k’)
 Access page pointed to by the directory record with key k’’
 Scan the accessed page for record with key k

 If the record is not found, it is not present in the file

Inserting a record R with a key k

 Find a page where the record R should be inserted
 If the page is not full, insert R into the page and return
 If the page is full, split the page

 Locally
 Globally

Split page P if dL(P) < dG

 Allocate new page Q
 Modify the directory pointers originally pointing to P so that, e.g., half of them

having common first dL(P) bits followed by 0 point to P and rest of them point to Q
 Set dL(P) = dL(Q) = dL(P) + 1
 Reinsert all the data from P

Split page P if dL(P) == dG

 Double the directory size
 dG = dG+ 1
 For each page Q, set the pointers so that if Q was pointed to by an entry with a bit

key x, now it is pointed by entries with keys starting with x0 and x1

H(k1) = 100100

H(k2) = 010110

H(k3) = 110110

 The performance stays more or less constant with increasing number of stored
records

 The directory might not fit in the main memory
 If the block factor is low, many splits can occur leaving many pages empty

