
Larson & Kajla

 Key, pointer pairs ~ index
 Hashed file organization
 External static hashing

 We need to know the size of the data beforehand

 Perfect hashing introduced in 1984
 Uses two sets of hash functions

 ℎi (𝑘), 𝑖 ∈ {1,…, 𝑀} generates a sequence of page addresses where a record with
a key 𝑘 could be inserted

 𝑠i (𝑘), 𝑖 ∈ {1,…, 𝑀} generates a sequence of 𝑑-bit long strings called signatures
 Pages have assigned 𝑑-bit long strings called separators

 Restrict the values that can be inside a page (“height of the door”)
 A record with a key 𝑘 can be inserted into page determined by ℎi(𝑘) (or can be found in)

only if its signature 𝑠i(𝑘) is smaller than the separator of that page

 Records are sorted in the page according to increasing values of their signatures
 The approach is optimized for reading (static hashing)

 Page separator is the lowest signature of all the records which could not fit into that
page (overflown records)

 The initial value of the separator is 2d-1

 d = length (in bits) of a signature
 Signatures cannot take this value

 During the INSERT operation, more records can be pushed out of the page → INSERT
cascade

Insert a record with key ‘ab’
ℎ1 (𝑎𝑏) = 10 ℎ2 (𝑎𝑏) = 46
𝑠1 (𝑎𝑏) = 1011 𝑠2 (𝑎𝑏) = 0101
𝑏 = 3

The target page for ‘ab’ is 46, so it pushes
out records with keys ‘gh’ and ‘ij’ ~ new
page separator.

ℎj (𝑔ℎ) = 46 ℎj+1 (𝑔ℎ) = 95
𝑠j (𝑔ℎ) = 1000 𝑠j+1 (𝑔ℎ) = 1011

ℎj (𝑖𝑗) = 46 ℎj+1 (𝑖𝑗) = 116
𝑠j (𝑖𝑗) = 1000 𝑠j+1 (𝑖𝑗) = 0100

10

od-0100

sep: 1000

46

ef-0100

gh-1000

ij-1000

sep: 1001

95

kl-0100

mn-1001

sep: 1111

116

op-0010

sep: 1000

10

od-0100

sep: 1000

46

ef-0100

ab-0101

sep: 1000

95

kl-0100

mn-1001

gh-1011

sep: 1111

116

op-0010

ij-0100

sep: 1000

void ACCESS(int sep[], KEY_TYPE k, PAGE_TYPE &page, bool &found) {
int m = sep::size();
for (int i = 0; i < m; i++) {
int adr = hi(k);
sign = si(k);
if (sign < sep[adr]) {

GET_PAGE(adr, page);
found = SEARCH_PAGE(page, k);
return;

}
}
found = FALSE;

}

Load from

secondary

memory

Hash function
ℎ0 (𝑘)=𝑘 𝑚𝑜𝑑 𝑀
ℎ𝑖+1 (𝑘)=(ℎ𝑖 (𝑘)+𝑠𝑡𝑒𝑝) 𝑚𝑜𝑑 𝑀, 𝑠𝑡𝑒𝑝=(⌊𝑘/𝑀⌋ 𝑚𝑜𝑑 (𝑀−2))+1

𝑀 should be prime number so that all pages can be visited

Signature function
𝑠𝑖 (𝑘)=(𝑟𝑖 (𝑘) 𝑚𝑜𝑑 𝑒) 𝑚𝑜𝑑 2^𝑑

𝒓𝒊 – generates a random number
𝒆, 𝒅 – constants

Knuth’s random number generator works with binary string of the key 𝒌’ (if 𝒌 is not a
number it needs first be converted to it)

𝑟0 (𝑘′) = 𝑘′
𝑟𝑖+1 (𝑘′) = (𝑎 * 𝑟𝑖 (𝑘′) + 𝑐) 𝑚𝑜𝑑 2^32, 𝑎 = 3141592653, 𝑐 = 2718281829

Larson used 𝑒= 2^13 − 1 = 8191 to get suitable numbers from r
2^𝑑 secures that the signature will contain 𝒅 bits

