
Larson & Kajla

 Key, pointer pairs ~ index
 Hashed file organization
 External static hashing

 We need to know the size of the data beforehand

 Perfect hashing introduced in 1984
 Uses two sets of hash functions

 ℎi (𝑘), 𝑖 ∈ {1,…, 𝑀} generates a sequence of page addresses where a record with
a key 𝑘 could be inserted

 𝑠i (𝑘), 𝑖 ∈ {1,…, 𝑀} generates a sequence of 𝑑-bit long strings called signatures
 Pages have assigned 𝑑-bit long strings called separators

 Restrict the values that can be inside a page (“height of the door”)
 A record with a key 𝑘 can be inserted into page determined by ℎi(𝑘) (or can be found in)

only if its signature 𝑠i(𝑘) is smaller than the separator of that page

 Records are sorted in the page according to increasing values of their signatures
 The approach is optimized for reading (static hashing)

 Page separator is the lowest signature of all the records which could not fit into that
page (overflown records)

 The initial value of the separator is 2d-1

 d = length (in bits) of a signature
 Signatures cannot take this value

 During the INSERT operation, more records can be pushed out of the page → INSERT
cascade

Insert a record with key ‘ab’
ℎ1 (𝑎𝑏) = 10 ℎ2 (𝑎𝑏) = 46
𝑠1 (𝑎𝑏) = 1011 𝑠2 (𝑎𝑏) = 0101
𝑏 = 3

The target page for ‘ab’ is 46, so it pushes
out records with keys ‘gh’ and ‘ij’ ~ new
page separator.

ℎj (𝑔ℎ) = 46 ℎj+1 (𝑔ℎ) = 95
𝑠j (𝑔ℎ) = 1000 𝑠j+1 (𝑔ℎ) = 1011

ℎj (𝑖𝑗) = 46 ℎj+1 (𝑖𝑗) = 116
𝑠j (𝑖𝑗) = 1000 𝑠j+1 (𝑖𝑗) = 0100

10

od-0100

sep: 1000

46

ef-0100

gh-1000

ij-1000

sep: 1001

95

kl-0100

mn-1001

sep: 1111

116

op-0010

sep: 1000

10

od-0100

sep: 1000

46

ef-0100

ab-0101

sep: 1000

95

kl-0100

mn-1001

gh-1011

sep: 1111

116

op-0010

ij-0100

sep: 1000

void ACCESS(int sep[], KEY_TYPE k, PAGE_TYPE &page, bool &found) {
int m = sep::size();
for (int i = 0; i < m; i++) {
int adr = hi(k);
sign = si(k);
if (sign < sep[adr]) {

GET_PAGE(adr, page);
found = SEARCH_PAGE(page, k);
return;

}
}
found = FALSE;

}

Load from

secondary

memory

Hash function
ℎ0 (𝑘)=𝑘 𝑚𝑜𝑑 𝑀
ℎ𝑖+1 (𝑘)=(ℎ𝑖 (𝑘)+𝑠𝑡𝑒𝑝) 𝑚𝑜𝑑 𝑀, 𝑠𝑡𝑒𝑝=(⌊𝑘/𝑀⌋ 𝑚𝑜𝑑 (𝑀−2))+1

𝑀 should be prime number so that all pages can be visited

Signature function
𝑠𝑖 (𝑘)=(𝑟𝑖 (𝑘) 𝑚𝑜𝑑 𝑒) 𝑚𝑜𝑑 2^𝑑

𝒓𝒊 – generates a random number
𝒆, 𝒅 – constants

Knuth’s random number generator works with binary string of the key 𝒌’ (if 𝒌 is not a
number it needs first be converted to it)

𝑟0 (𝑘′) = 𝑘′
𝑟𝑖+1 (𝑘′) = (𝑎 * 𝑟𝑖 (𝑘′) + 𝑐) 𝑚𝑜𝑑 2^32, 𝑎 = 3141592653, 𝑐 = 2718281829

Larson used 𝑒= 2^13 − 1 = 8191 to get suitable numbers from r
2^𝑑 secures that the signature will contain 𝒅 bits

