Hashing Introduction

MOTIVATION

&1 Index

& Give (artificial) ID — get position of the record in the primary file
&0, Direct access ~ equality query

& Not for range queries

HASHING

&0, Also known as direct accessing, randomizing
&0, Hashing is a technique capable of accessing a record in memory in O(1) time by
using hash functions
* Maps search keys to (physical or logical) addresses (buckets)
&0, Hash function is a mapping from the query space to the address space
h:K*—~{0,1,... , M-1}
* Query space = the space of all possible values of the query key
* Ex.Name, address, age, ...
* Usually: address space << query space
&0, h(k) determines the address of a record with a key k

HASH FUNCTION

&0, A good hash function should have:
&0, Uniform distribution: Each bucket should contain keys from all parts of the address
space
Q. Distributes the values evenly across buckets
Q. All buckets are expected to contain a roughly equal number of hash values
Q, There are no unused buckets
&0, Random distribution: Each bucket should be equally filled regardless of the key value
distribution
&)_ The result should be dependent on all bits of the key
&, A good hash function should be:

&0, Deterministic: the resulting value is dependent only on the input values
&7_ For the same key we get the same address
&0, Fast: it should take only few instructions to compute the resulting value of the hash
function
&). Usually an algorithm evaluates the function

&, A bad function

2” would map all the search keys onto the same address
'4

2§ search = sequential scan

HASH FUNCTIONS — TRIVIAL

&0, The numerical representation of the key represents the relative (or absolute) address
&0, A small number of values that fit into the (primary memory) address space

&, Advantages:
%g fast o
R perfect (no collisions)
&, Disadvantages:
>£ usable only for relatively small domains
> commonly neither uniform nor random
Depends on the distribution of the values of the keys

> Examples:
oN
: > 32-bit integer values — can directly represent the bucket index
X 26 letters — 3-letter codes can be uniquely mapped into 263 = 17576-long
array

@

HASH FUNCTIONS — MODULO

Q. h(k) =k mod M

&0, For M = 16 value of h(k) is dependent solely on the 4 low-order (least significant)
bits of the key

). These bits can be OOI]Y distributed, which can lead to poor distribution of the results
p p
&.’ i.e.lots of collisions

0. M is advised to be a prime number

HASH FUNCTIONS — BINNING

0 h(k)=k/M

&, We need to know the range of the domain
&, Can be seen as an inverse to modulo since it looks at the high-order bits

&0, If the distribution of the high-order bits is poorly distributed, so will the results
&, For M =100 and domain range < 0; 1000 >

&0, values < 0; 99 > will go to the first slot

® values <100; 199 > will go to the second slot

o

HASH FUNCTIONS — MID-SQUARE

&0, Squares the key value, and then takes the middle r bits of the result, giving a value in

the range <0;27!>

&, Good to use with integers

&, Is not dependent on the distribution of low- or high-order bits — all bits contribute to

the final value
&0, Inthe previous two cases, a change of some bits has no impact

r =2,k = 4567 — 45672 = 20857489 — h(k) = 51

4567
4567
31969
27402
22835
18268
20857489

INTERNAL HASHING

Hashing structure fits in main memory ~ limited space
Each bucket contains one record

&0, Basically associative array
Hash table utilises a hash function (map) to match the keys with their associated
values
If multiple keys are mapped to the same position ~ collision
Hash tables vary in collision handling

[. Separate chaining/hashing

II. Open addressing

I[II. Coalesced chaining/hashing

IV. Cuckoo hashing

B BB

3]

I. SEPARATE CHAINING

Buckets contain links to chains of collided records

KEYS

Kevin

Janic

\ /

Sharon

Michael

/\

David

Terry

BUCKETS RECORDS
H
A
S /m > Jenice Marketing Different part of
AN the main
" Kevin Research (primary)
F (— K |
U \ Sharon Design memory::
N] /
c /y 057 Terry Marketing
T
\ \
I David Research
(0]
N Michael Design

II. OPEN ADDRESSING

Collided record is inserted into the next free bucket (basic version)

Searching for a record with key K:

KEYS — BUCKETS 1. compute the address A from the query key K

H using the hash function
A . , 2. ifnorecord is present at 4, the searched

S /’- L record is not in the table

H \‘- Kevin Research 3. Otherwise, scan (see the following slides) the
IFJ —> Sharon Design table until either record with key K is

. /‘- | run found (record found) or an empty slot is
c encountered (record not present)
T /7- David Research

T - Example:

0 - - hash(Terry) = 002 — collision

= N - Use for Terry the next free bucket: 058

|
-

hash(Michael) = 058 — collision
Use for Michael the next free bucket @

II. OPEN ADDRESSING — PROBE FUNCTION

Next bucket is determined by a probe sequence generated by a probe function.
The function should also keep a track of whether it did not get into a cycle.

void insert(const Key& k, const Record& r)

{
int home; // Home position for k
int pos = home = h(k); // Init probe sequence
inti=0;
while (HT[pos].key() != EMPTYKEY) {
i++;
pos = (home + p(k, 1)) % M; // probe function

if (k == HT[pos].key()) {
cout << "Duplicates not allowed\n";
return;

}
}
HT[pos] =1;
}

II. OPEN ADDRESSING — PROBE FUNCTION

Clustering

&0, When sequentially scanning for a next free slot, the probe sequences can collide
and thus cause clustering
8. Long sequence for receiving a record
&, Optimal probe function should provide each slot with an equal probability of
receiving a record
&0, It should cycle through all slots in the hash table before returning to the home
position.

II. OPEN ADDRESSING — PROBE FUNCTIONS

Linear probing

& pki)=c*i
. ¢ and M should

share no factors
&0, M - the size of
address space

&, I-the number of
failed attempts to
find an empty
bucket

&0, c=1...try the
next bucket

Quadratic probing (Pseudo-)random probing
Q. plk.i)=(c,i+c,i?) Q. p(k,i) = perm[i]
&, Wrong choice of constants &, perm is a pre-defined
can prevent from visiting table with permutations
every slot of length M

&, There exists a fitting choice
of the constants
X ¢,=0,c,=1

M = prime number Double hashing
>€ At least half slots will be
oN .
" Visited o pki)=ixgk)
X c,=Vc,=% &, The probe sequence is
M = power of 2 now different for
3¢ Every slot will be visited different keys

L)

1. CORLESCED CHAINING

&0, Combines separate chaining and open addressing
&0, The chains are stored in the hash table
&0, When a collision occurs, the new value is stored to the first free bucket from the end
of the table
&0, The end of the chain is connected to this new value
&0, Collided records are chained to decrease the retrieval time
&0, For both insert and query operations
&, Two chains never merge (as probe sequences can)

1. CORLESCED CHAINING

Combines separate chaining and open addressing
Two chains never merge (as probe sequences can)

Sharon

David

= 3 s | 15

]

ZOHI-JOZC!"!:IEU)!D':I:

/- Janice Marketing

Kevin Research

/y- Sharon Design

> - David Research

[

=

IV. CUCK00 HASHING

Two hash functions h,, h,

&0, No overflow chains or scanning of the hash table
&, If 1, (k) is full, insert the record anyway and kick the residing record (k') into its alternative
location /1, (k')
Q. If i, (k') is full, repeat the strategy until a new position is found or the process is too long
Q. If too long, choose new functions and rebuild (rehash) the structure
&0, Often implemented by 2 tables each having its own hash function
& Values move between the tables

IV. CUCKOO HASHING — EXAMPLE

InsertZ :h, (Z) =1, h, (Z) = 0 (positions in the table)
The grapl shows/the insertion “chain”

Z—W
W—H
H—Z7

/—

A—B
B—empty

B pRrRRrRE

Insert:

Q. Worst case complexity: O(n)
Q. Amortized: O(1)
Look-up, delete: O(1)

@

Y

https://programming.guide/cuckoo-hashing.html

