
Hashing Introduction

 Index
 Give (artificial) ID – get position of the record in the primary file

 Direct access ~ equality query
 Not for range queries

 Also known as direct accessing, randomizing
 Hashing is a technique capable of accessing a record in memory in O(1) time by

using hash functions
• Maps search keys to (physical or logical) addresses (buckets)

 Hash function is a mapping from the query space to the address space
h : K* → {0, 1, … , M -1}
• Query space = the space of all possible values of the query key

• Ex. Name, address, age, …

• Usually: address space << query space
 h(k) determines the address of a record with a key k

 A good hash function should have:
 Uniform distribution: Each bucket should contain keys from all parts of the address

space
 Distributes the values evenly across buckets
 All buckets are expected to contain a roughly equal number of hash values
 There are no unused buckets

 Random distribution: Each bucket should be equally filled regardless of the key value
distribution
 The result should be dependent on all bits of the key

 A good hash function should be:
 Deterministic: the resulting value is dependent only on the input values

 For the same key we get the same address
 Fast: it should take only few instructions to compute the resulting value of the hash

function
 Usually an algorithm evaluates the function

 A bad function
 would map all the search keys onto the same address
 search = sequential scan

 The numerical representation of the key represents the relative (or absolute) address
 A small number of values that fit into the (primary memory) address space

 Advantages:
 fast
 perfect (no collisions)

 Disadvantages:
 usable only for relatively small domains
 commonly neither uniform nor random

 Depends on the distribution of the values of the keys

 Examples:
 32-bit integer values – can directly represent the bucket index
 26 letters → 3-letter codes can be uniquely mapped into 26^3 = 17576-long

array

 𝒉(𝒌) = 𝒌 𝒎𝒐𝒅 𝑴

 For M = 16 value of ℎ(𝑘) is dependent solely on the 4 low-order (least significant)
bits of the key
 These bits can be poorly distributed, which can lead to poor distribution of the results

 i.e. lots of collisions

 M is advised to be a prime number

 𝒉(𝒌) = 𝒌 / 𝑴

 We need to know the range of the domain
 Can be seen as an inverse to modulo since it looks at the high-order bits

 If the distribution of the high-order bits is poorly distributed, so will the results

 For M =100 and domain range < 𝟎; 𝟏𝟎𝟎𝟎 >
 values < 𝟎; 𝟗𝟗 > will go to the first slot
● values < 100; 1𝟗𝟗 > will go to the second slot
● ...

 Squares the key value, and then takes the middle 𝒓 bits of the result, giving a value in
the range <𝟎;𝟐r-1>

 Good to use with integers
 Is not dependent on the distribution of low- or high-order bits – all bits contribute to

the final value
 In the previous two cases, a change of some bits has no impact

𝑟 = 2, 𝑘 = 4567 → 4567^2 = 20857489 → ℎ(𝑘) = 57

4567
4567

31969
27402

22835
18268 _
20857489

 Hashing structure fits in main memory ~ limited space
 Each bucket contains one record

 Basically associative array

 Hash table utilises a hash function (map) to match the keys with their associated
values

 If multiple keys are mapped to the same position ~ collision
 Hash tables vary in collision handling

I. Separate chaining/hashing
II. Open addressing
III. Coalesced chaining/hashing
IV. Cuckoo hashing

Buckets contain links to chains of collided records

000

001

002

…

057

058

…

Kevin

Janic

e
Sharon

Michael

David

H

A

S

H

F

U

N

C

T

I

O

N

KEYS BUCKETS

Terry

Jenice Marketing

Kevin Research

Sharon Design

Terry Marketing

David Research

Michael Design

RECORDS

Different part of

the main

(primary)

memory!!

Collided record is inserted into the next free bucket (basic version)

000 Janice Marketing

001 Kevin Research

002 Sharon Design

… … …

057 David Research

058

Kevin

Janice

Sharon

David

H

A

S

H

F

U

N

C

T

I

O

N

KEYS BUCKETS

Terry

Full

Searching for a record with key K:

1. compute the address 𝑨 from the query key 𝐾
using the hash function

2. if no record is present at 𝑨, the searched

record is not in the table

3. Otherwise, scan (see the following slides) the

table until either record with key 𝑲 is

found (record found) or an empty slot is

encountered (record not present)

Example:

• hash(Terry) = 002  collision

• Use for Terry the next free bucket: 058

• hash(Michael) = 058  collision

• Use for Michael the next free bucket

Next bucket is determined by a probe sequence generated by a probe function.
The function should also keep a track of whether it did not get into a cycle.

void insert(const Key& k, const Record& r)

{

int home; // Home position for k

int pos = home = h(k); // Init probe sequence

int i = 0;

while (HT[pos].key() != EMPTYKEY) {

i++;

pos = (home + p(k, i)) % M; // probe function

if (k == HT[pos].key()) {

cout << "Duplicates not allowed\n";

return;

}

}

HT[pos] = r;

}

Clustering

 When sequentially scanning for a next free slot, the probe sequences can collide
and thus cause clustering
 Long sequence for receiving a record

 Optimal probe function should provide each slot with an equal probability of
receiving a record
 It should cycle through all slots in the hash table before returning to the home

position.

Linear probing

 𝒑(𝒌,𝒊)=𝒄 * 𝒊
 𝒄 and 𝑴 should

share no factors
 M – the size of

address space

 i – the number of
failed attempts to
find an empty
bucket

 c = 1 … try the
next bucket

Quadratic probing

 𝒑(𝒌,𝒊)=(𝒄1 𝒊 + 𝒄2 𝒊
2)

 Wrong choice of constants
can prevent from visiting
every slot

 There exists a fitting choice
of the constants
 c1 = 0, c2 = 1

M = prime number
 At least half slots will be

visited

 c1 = ½ c2 = ½
M = power of 2

 Every slot will be visited

(Pseudo-)random probing

 𝒑(𝒌,𝒊) = 𝒑𝒆𝒓𝒎[𝒊]
 𝑝𝑒𝑟𝑚 is a pre-defined

table with permutations
of length M

Double hashing

 𝒑(𝒌,𝒊) = 𝒊 ∗ g (𝒌)
 The probe sequence is

now different for
different keys

 Combines separate chaining and open addressing
 The chains are stored in the hash table

 When a collision occurs, the new value is stored to the first free bucket from the end
of the table

 The end of the chain is connected to this new value
 Collided records are chained to decrease the retrieval time

 For both insert and query operations

 Two chains never merge (as probe sequences can)

Combines separate chaining and open addressing
Two chains never merge (as probe sequences can)

000 Janice Marketing

001 Kevin Research

002 Sharon Design

… … …

057 David Research

058 Terry Marketing

059 Michael Design

… … …

Kevin

Janice

Sharon

Michael

David

H

A

S

H

F

U

N

C

T

I

O

N

KEYS BUCKETS

Terry

Two hash functions 𝒉1, 𝒉2

 No overflow chains or scanning of the hash table
 If ℎ1 (𝑘) is full, insert the record anyway and kick the residing record (𝑘′) into its alternative

location ℎ2 (𝑘′)
 If ℎ2 (𝑘′) is full, repeat the strategy until a new position is found or the process is too long
 If too long, choose new functions and rebuild (rehash) the structure

 Often implemented by 2 tables each having its own hash function
 Values move between the tables

Insert Z : ℎ1 (𝑍) = 7, ℎ2 (𝑍) = 0 (positions in the table)

The graph shows the insertion “chain”

 𝑍→𝑊
 𝑊→𝐻
 𝐻→𝑍
 𝑍→𝐴
 𝐴→𝐵
 𝐵→𝑒𝑚𝑝𝑡𝑦

 Insert:
 Worst case complexity: O(n)
 Amortized: O(1)

 Look-up, delete: O(1)

https://programming.guide/cuckoo-hashing.html

https://programming.guide/cuckoo-hashing.html

