File Organization

MOTIVATION

. How to organize data?
&, Implementation

&

HEAP FILE

&, Note: not heap!!
&, Variable-length records ~ file is not homogeneous
&, E.g.,alog file
&0, Data not sorted in any way, a record placed always at the end of the file
&0, Usually used along with another supporting structure
&, Insert:O(1)
Q. Fetch the last block (keep in memory) in the file and append the new record
&, Find:ON/Db)
. N - number of records
&, b - average blocking factor
&, b=|B/R]
> B =Dblock size
> R =record size
0. Whole file needs to be scanned

UNSORTED SEQUENTIAL FILE

&. Fixed-size record
&, Data not sorted in any way
&0, Heap file
&0, Suitable when data are collected without
any relationship to other data
&0, We can query for a record using its index

&, Insert:O(1)
&, Find:O(N/ b)

0

Galvin Janice

Block Name Department ...

Purchasing

Walters Rob

Marketing

Brown Kevin

Marketing

Walters Rob

Developlment

Dufty Terri

Research

Brown Kevin

PR

Dutfty Terri

Developlment

Walters David

Production

Brown Kevin

Purchasing

Matthew Gigi

Purchasing

Walters Rob

PR

SORTED SEQUENTIAL FILE

&, Fixed size record
&, Records sorted in the file according to the
primary search key
&0, According to only one — the most often
searched

Fetch

&, Sequential scan
X O(N/b)

&0, Binary search
> Direct-access medium
X O(log(N/b))

&, Range query
>¢ Find start and read k records

Block Name Department ...

0

Brown Kevin

PR

Brown Kevin

Purchasing

Brown Kevin

Marketing

Dufty Terri

Developlment

Dufty Terri

Research

Galvin Janice

Purchasing

atthew Gigi

Purchasing

Walters David

Production

Walters Rob

Marketing

Walters Rob

Developlment

Walters Rob

PR

SORTED SEQUENTIAL FILE — MODIFICATION

Insert

&, Inserting a new record is costly
&0, All the following records would have
to be shifted
&0, Auxiliary file/blocks called overflow
file/bucket need to be established
where the new records are inserted
&0, Outside the primary file
&0, The (main) file is periodically
reorganized

Update

&, Simple if the update does not include
the primary search key
8. If so, it is delete and insert

Delete

&, Deleted records are not directly
removed
&, Reorganization would have to take place
&0, A bit designating deleted records is
set
&0, Deleted records are removed during
periodical reorganization

What if we want to access the data using various attributes? Q

INDEX

8. Motivation:
&, Can we do it better than sorting the data?

. Yes
8. Recall binary tree, a-b tree, ...

&0, Anindex is an auxiliary structure for a data file that consists of a specifically

arranged structure containing key-pointer pairs
o E.g.,name-pointer to the block with the record

&0, Storage of the index
> Main memory
> Cashed

Secondary memory
>¢ Accessing index must also be taken into account when computing the find/fetch time

%)
§é In real use: blocking factor of the index >> blocking factor of the primary file

\Z7
I\

@

INDEXED SORTED SEQUENTIAL FILE

& Fixed size records
. Structure

— | Primary file

> Primary file/area
N\Z .
28 Data sorted according to the
primary search key
Index/secondary file
XX Typically hierarchital
Overflow file/area
&, Data can be accessed either using

the index or

\Y4
Z\

\Y4
Z\

b=5

Index file
1. (base) level

Block Name .

0

b=2

Brown Kevin

/

Berkman Dolortis

£ 4

Clinard Stephnie

Coolidge Emily

. Dufty Terri
sequentially
Index file \ 6 1 Brown Kevin 0 Galvin Janice
2. (top) level / Clinard Stephnie | 1 3 » Leavy Shirleen
Dufty Terri 2 A Matthew Gigi
Leavy Shirleen 3 Peagler David
8 Brown Kevin 6 Peagler David 4 Shackelford Elsie
Walters Rob 7T — 7™ Wialters Rob 5 o] Walters Rob

INDEXED SEQUENTIAL FILE — FETCH

Searching for a specific value (query key)

&0, Check the top level of the index and identify a key-value pair with the highest value
lower than the query key

&0, Fetch the block referenced by the value

8. Repeat the previous steps with lower index levels until a primary file block is

reached
&0, Fetch time depends on the height of the tree
&0, Each level = disc access
&0, Search the primary file block for the specified key

Searching for a range of values

&0, Search for the lower bound key of the interval
&0, Sequentially scan the blocks of the primary file until the record corresponding to the

upper bound key is found

INDEXED SEQUENTIAL FILE — FETCH

Search for Galvin Janice (G)

Search for Galvin Janice — Walters Rob (G - W)

b=2

Primary file

b=3 0 Brown Kevin
Index file Berkman Doloris
1. (base) level 1 Clinard Stephnie
Coolidge Emily
Index file 6 Brown Kevin 0 Galvin Janice
2. (top) level Clinard Stephnie | 1 3 Leavy Shirleen
Dufty Terri 2 Matthew Gigi
Leavy Shirleen 3 4 Peagler David
8 Brown Kevin 6 Peagler David 4 Shackelford FElsie
Walters Rob 7 7 Walters Rob 5 5 Walters Rob

INDEXED SEQUENTIAL FILE — INSERT

Q.

.
X,

When an index is created, index nodes are fixed and do not change during
modifications of the primary file

>¢ Index structure is static

80, Later we will see that it does not have to be
New records need to be stored in reserved areas (pockets) within the primary file
o Long pockets decrease efficiency
Overflown data are inserted into a new block (created dynamically) — overflown
block
o Outside the primary file

o Buckets can be chained and therefore theoretically the ISF does not need to be rebuilt
& But decrease performance

Pointer to the overflow area
>¢ for each record in a block
* More space
e Shorter sequences in the overflow area
>X for each block

INDEXED SEQUENTIAL FILE

Pros

&, Fast access using primary search key
&0, Shares pros of the sequential file

Cons

&0, Fast access only when using primary
search key
&0, Otherwise sequential scan
&0, Problems with primary file when
updating
8. Pockets slow down data access
&0, Occasional reorganisation (also slow)

INDEXED FILE ORGANIZATION

Q0. Allows to search the file according to different attributes without the need to scan the
whole file sequentially
&0, The primary file stays unsorted or is sorted according to one key only
(primary index)
Q. Sorted = we need to keep the ordering
Q. If sorted using an artificial key, range queries are not common
& Unsorted - e.g., heap with additional smart structure

& For each query key an index file can be built
— one primary data file, multiple index files
&L Basically corresponds to a standard database table
Q. One table
Q. Multiple indexes built over it (possibly of different types)

INDEX

Primary index Secondary index

&, Index over the attribute based on &, There can be multiple secondary
which the records in the primary indexes
file are sorted . We do not index blocks of the

&0, Only one primary file, but a sorted list of

&0, If the value of the primary attribute indexed values (with pointers to
is modified, the file needs to be the blocks with the data)
reorganised — should be &, The bottom level of the index = we
relatively invariable index records, not blocks

& Well-suited for range queries & Next levels = we index blocks (with

sorted records)

&, Range queries for long ranges
can be very expensive

&0, There does not have to be a
primary index
&0, It is desirable to keep it in memory
&0, Small keys (integer, not string)

@

SECONDARY INDEX

Block Age

Bottom level
of index

6 18 A
23 N
29 N
7 30 /
32
40 /
8

Primary file

Block Name Age

0 f Brown Kevin 30
fr Berkman Doloris 18

1 Clinard Stephnie 48
N Coolidge Emily 40
2 Dufty Terri 40
s Galvin Janice 23

3 Leavy Shirleen 50
y Matthew Gigi 51
} Peagler David 29
- Shackelford Elsie 32

5 Walters Rob 48

INDEX

Direct index

&, Index is bound directly to records
&0, Pointers to the primary data file

&0, Primary file reorganization —

modification of indexing structures

Indirect index

&, Contains keys of the data
(which are in the primary
index)

&, Not pointers to the primary file
&0, Accessing a record needs one
more access to the primary

index

&0, If the primary file is
reorganised, the secondary
indexes stay intact

@

INDEX

secondary indirect index B)
primary direct
T index

C)
i
primary file

e sorted/unsorted

« if PFis not + canbe
sorted, we can secondary direct index accessed using
have only full scan
secondary D)

indexes @

HRSHED FILE ORGANIZATION

Direct access with one unique key

Use hash function to map records to pages/blocks addresses

’) If the data can not {it into a page/block when inserting, an overflow strategy is employed
Placement within the page is not specified

When f{ile is being reorganized, the pages are filled only to, e.g., 80%
Q. To avoid overflow with next insert
Q. The value depends on expected insert count

prrRE

[One search key? }

YES

[Sequential access only? 1

[Direct access only? }

YES NO

