File Organization



MOTIVATION

. How to organize data?
&, Implementation

&



HEAP FILE

&, Note: not heap!!
&, Variable-length records ~ file is not homogeneous
&, E.g.,alog file
&0, Data not sorted in any way, a record placed always at the end of the file
&0, Usually used along with another supporting structure
&, Insert:O(1)
Q. Fetch the last block (keep in memory) in the file and append the new record
&, Find:ON/Db)
. N - number of records
&, b - average blocking factor
&, b=|B/R]
> B =Dblock size
> R =record size
0. Whole file needs to be scanned



UNSORTED SEQUENTIAL FILE

&. Fixed-size record
&, Data not sorted in any way
&0, Heap file
&0, Suitable when data are collected without
any relationship to other data
&0, We can query for a record using its index

&, Insert:O(1)
&, Find:O(N/ b)
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SORTED SEQUENTIAL FILE

&, Fixed size record
&, Records sorted in the file according to the
primary search key
&0, According to only one — the most often
searched

Fetch

&, Sequential scan
X O(N/b)

&0, Binary search
> Direct-access medium
X O(log(N/b))

&, Range query
>¢ Find start and read k records
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SORTED SEQUENTIAL FILE — MODIFICATION

Insert

&, Inserting a new record is costly
&0, All the following records would have
to be shifted
&0, Auxiliary file/blocks called overflow
file/bucket need to be established
where the new records are inserted
&0, Outside the primary file
&0, The (main) file is periodically
reorganized

Update

&, Simple if the update does not include
the primary search key
8. If so, it is delete and insert

Delete

&, Deleted records are not directly
removed
&, Reorganization would have to take place
&0, A bit designating deleted records is
set
&0, Deleted records are removed during
periodical reorganization

What if we want to access the data using various attributes? Q



INDEX

8. Motivation:
&, Can we do it better than sorting the data?

. Yes
8. Recall binary tree, a-b tree, ...

&0, Anindex is an auxiliary structure for a data file that consists of a specifically

arranged structure containing key-pointer pairs
o E.g.,name-pointer to the block with the record

&0, Storage of the index
> Main memory
> Cashed

Secondary memory
>¢ Accessing index must also be taken into account when computing the find/fetch time

%)
§é In real use: blocking factor of the index >> blocking factor of the primary file
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INDEXED SORTED SEQUENTIAL FILE

& Fixed size records
. Structure

— | Primary file

> Primary file/area
N\Z .
28 Data sorted according to the
primary search key
Index/secondary file
XX Typically hierarchital
Overflow file/area
&, Data can be accessed either using

the index or

\Y4
Z\

\Y4
Z\

b=5

Index file
1. (base) level

Block Name .

0

b=2

Brown Kevin

/

Berkman Dolortis

£ 4

Clinard Stephnie

Coolidge Emily

. Dufty Terri
sequentially
Index file \ 6 1 Brown Kevin 0 Galvin Janice
2. (top) level / Clinard Stephnie | 1 3 » Leavy Shirleen
Dufty Terri 2 A Matthew Gigi
Leavy Shirleen 3 Peagler David
8 Brown Kevin 6 Peagler David 4 Shackelford Elsie
Walters Rob 7T — 7™ Wialters Rob 5 o] Walters Rob




INDEXED SEQUENTIAL FILE — FETCH

Searching for a specific value (query key)

&0, Check the top level of the index and identify a key-value pair with the highest value
lower than the query key

&0, Fetch the block referenced by the value

8. Repeat the previous steps with lower index levels until a primary file block is

reached
&0, Fetch time depends on the height of the tree
&0, Each level = disc access
&0, Search the primary file block for the specified key

Searching for a range of values

&0, Search for the lower bound key of the interval
&0, Sequentially scan the blocks of the primary file until the record corresponding to the

upper bound key is found



INDEXED SEQUENTIAL FILE — FETCH

Search for Galvin Janice (G)

Search for Galvin Janice — Walters Rob (G - W)

b=2

Primary file

b=3 0 Brown Kevin
Index file Berkman Doloris
1. (base) level 1 Clinard Stephnie
Coolidge Emily
Index file 6 Brown Kevin 0 Galvin Janice
2. (top) level Clinard Stephnie | 1 3 Leavy Shirleen
Dufty Terri 2 Matthew Gigi
Leavy Shirleen 3 4 Peagler David
8 Brown Kevin 6 Peagler David 4 Shackelford FElsie
Walters Rob 7 7 Walters Rob 5 5 Walters Rob




INDEXED SEQUENTIAL FILE — INSERT

Q.

.
X,

When an index is created, index nodes are fixed and do not change during
modifications of the primary file

>¢ Index structure is static

80, Later we will see that it does not have to be
New records need to be stored in reserved areas (pockets) within the primary file
o Long pockets decrease efficiency
Overflown data are inserted into a new block (created dynamically) — overflown
block
o Outside the primary file

o Buckets can be chained and therefore theoretically the ISF does not need to be rebuilt
& But decrease performance

Pointer to the overflow area
>¢ for each record in a block
* More space
e Shorter sequences in the overflow area
>X for each block



INDEXED SEQUENTIAL FILE

Pros

&, Fast access using primary search key
&0, Shares pros of the sequential file

Cons

&0, Fast access only when using primary
search key
&0, Otherwise sequential scan
&0, Problems with primary file when
updating
8. Pockets slow down data access
&0, Occasional reorganisation (also slow)



INDEXED FILE ORGANIZATION

Q0. Allows to search the file according to different attributes without the need to scan the
whole file sequentially
&0, The primary file stays unsorted or is sorted according to one key only
(primary index)
Q. Sorted = we need to keep the ordering
Q. If sorted using an artificial key, range queries are not common
& Unsorted - e.g., heap with additional smart structure

& For each query key an index file can be built
— one primary data file, multiple index files
&L Basically corresponds to a standard database table
Q. One table
Q. Multiple indexes built over it (possibly of different types)



INDEX

Primary index Secondary index

&, Index over the attribute based on &, There can be multiple secondary
which the records in the primary indexes
file are sorted . We do not index blocks of the

&0, Only one primary file, but a sorted list of

&0, If the value of the primary attribute indexed values (with pointers to
is modified, the file needs to be the blocks with the data)
reorganised — should be &, The bottom level of the index = we
relatively invariable index records, not blocks

& Well-suited for range queries & Next levels = we index blocks (with

sorted records)

&, Range queries for long ranges
can be very expensive

&0, There does not have to be a
primary index
&0, It is desirable to keep it in memory
&0, Small keys (integer, not string)

@



SECONDARY INDEX

Block Age

Bottom level
of index

6 18 A
23 N
29 N
7 30 /
32
40 /
8

Primary file

Block Name Age

0 f Brown Kevin 30
fr Berkman Doloris 18

1 Clinard Stephnie 48
N Coolidge Emily 40
2 Dufty Terri 40
s Galvin Janice 23

3 Leavy Shirleen 50
y Matthew Gigi 51
} Peagler David 29
- Shackelford Elsie 32

5 Walters Rob 48




INDEX

Direct index

&, Index is bound directly to records
&0, Pointers to the primary data file

&0, Primary file reorganization —

modification of indexing structures

Indirect index

&, Contains keys of the data
(which are in the primary
index)

&, Not pointers to the primary file
&0, Accessing a record needs one
more access to the primary

index

&0, If the primary file is
reorganised, the secondary
indexes stay intact

@



INDEX

secondary indirect index B)
primary direct
T index

C)
i
primary file

e sorted/unsorted

« if PFis not + canbe
sorted, we can secondary direct index accessed using
have only full scan
secondary D)

indexes @



HRSHED FILE ORGANIZATION

Direct access with one unique key

Use hash function to map records to pages/blocks addresses

’) If the data can not {it into a page/block when inserting, an overflow strategy is employed
Placement within the page is not specified

When f{ile is being reorganized, the pages are filled only to, e.g., 80%
Q. To avoid overflow with next insert
Q. The value depends on expected insert count

prrRE



[ One search key? }

YES

[ Sequential access only? 1

[ Direct access only? }

YES NO




