
File Organization

 How to organize data?
 Implementation

2

 Note: not heap!!
 Variable-length records ~ file is not homogeneous

 E.g., a log file

 Data not sorted in any way, a record placed always at the end of the file
 Usually used along with another supporting structure
 Insert : O(1)

 Fetch the last block (keep in memory) in the file and append the new record

 Find : O(N / b)
 N – number of records
 b – average blocking factor

 𝑏 = ⌊𝐵/𝑅⌋
 B = block size
 R = record size

 Whole file needs to be scanned

 Fixed-size record
 Data not sorted in any way

 Heap file

 Suitable when data are collected without
any relationship to other data
 We can query for a record using its index

 Insert : O(1)
 Find : O(N / b)

Block Name Department …

0 Galvin Janice Purchasing

Walters Rob Marketing

Brown Kevin Marketing

1 Walters Rob Developlment

Duffy Terri Research

Brown Kevin PR

2 Duffy Terri Developlment

Walters David Production

Brown Kevin Purchasing

3 Matthew Gigi Purchasing

Walters Rob PR

… …

 Fixed size record
 Records sorted in the file according to the

primary search key
 According to only one – the most often

searched

Fetch
 Sequential scan

 O (N / b)
 Binary search

 Direct-access medium
 O (log (N / b))

 Range query
 Find start and read k records

Block Name Department …

0 Brown Kevin PR

Brown Kevin Purchasing

1 Brown Kevin Marketing

Duffy Terri Developlment

2 Duffy Terri Research

Galvin Janice Purchasing

3 Matthew Gigi Purchasing

Walters David Production

4 Walters Rob Marketing

Walters Rob Developlment

5 Walters Rob PR

… …

Insert

 Inserting a new record is costly
 All the following records would have

to be shifted

 Auxiliary file/blocks called overflow
file/bucket need to be established
where the new records are inserted
 Outside the primary file

 The (main) file is periodically
reorganized

Update

 Simple if the update does not include
the primary search key

 If so, it is delete and insert

Delete

 Deleted records are not directly
removed

 Reorganization would have to take place

 A bit designating deleted records is
set

 Deleted records are removed during
periodical reorganization

What if we want to access the data using various attributes?

 Motivation:
 Can we do it better than sorting the data?
 Yes

 Recall binary tree, a-b tree, ...

 An index is an auxiliary structure for a data file that consists of a specifically
arranged structure containing key-pointer pairs
o E.g., name-pointer to the block with the record

 Storage of the index
 Main memory

 Cashed

 Secondary memory
 Accessing index must also be taken into account when computing the find/fetch time
 In real use: blocking factor of the index >> blocking factor of the primary file

 Fixed size records
 Structure

 Primary file/area
 Data sorted according to the

primary search key
 Index/secondary file/area

 Typically hierarchical
 Overflow file/area

 Data can be accessed either using
the index or
sequentially

Block Name …

0 Brown Kevin

Berkman Doloris

1 Clinard Stephnie

Coolidge Emily

2 Duffy Terri

Galvin Janice

3 Leavy Shirleen

Matthew Gigi

4 Peagler David

Shackelford Elsie

5 Walters Rob

Block Name

6 Brown Kevin 0

Clinard Stephnie 1

Duffy Terri 2

Leavy Shirleen 3

Peagler David 4

7 Walters Rob 5

…

Block Name

8 Brown Kevin 6

Walters Rob 7

Primary file

Index file

1. (base) level

Index file

2. (top) level

b = 2

b = 5

Searching for a specific value (query key)

 Check the top level of the index and identify a key-value pair with the highest value
lower than the query key

 Fetch the block referenced by the value
 Repeat the previous steps with lower index levels until a primary file block is

reached
 Fetch time depends on the height of the tree
 Each level = disc access

 Search the primary file block for the specified key

Searching for a range of values

 Search for the lower bound key of the interval
 Sequentially scan the blocks of the primary file until the record corresponding to the

upper bound key is found

Block Name …

0 Brown Kevin

Berkman Doloris

1 Clinard Stephnie

Coolidge Emily

2 Duffy Terri

Galvin Janice

3 Leavy Shirleen

Matthew Gigi

4 Peagler David

Shackelford Elsie

5 Walters Rob

Primary file

Block Name

6 Brown Kevin 0

Clinard Stephnie 1

Duffy Terri 2

Leavy Shirleen 3

Peagler David 4

7 Walters Rob 5

…

Block Name

8 Brown Kevin 6

Walters Rob 7

Index file

1. (base) level

Index file

2. (top) level

Search for Galvin Janice (G)

Search for Galvin Janice – Walters Rob (G – W)

b = 2

b = 5

 When an index is created, index nodes are fixed and do not change during
modifications of the primary file
 Index structure is static

 Later we will see that it does not have to be

 New records need to be stored in reserved areas (pockets) within the primary file
o Long pockets decrease efficiency

 Overflown data are inserted into a new block (created dynamically) – overflown
block
o Outside the primary file
o Buckets can be chained and therefore theoretically the ISF does not need to be rebuilt

 But decrease performance

 Pointer to the overflow area
 for each record in a block

• More space
• Shorter sequences in the overflow area

 for each block

Pros

 Fast access using primary search key
 Shares pros of the sequential file

Cons

 Fast access only when using primary
search key

 Otherwise sequential scan

 Problems with primary file when
updating

 Pockets slow down data access
 Occasional reorganisation (also slow)

 Allows to search the file according to different attributes without the need to scan the
whole file sequentially

 The primary file stays unsorted or is sorted according to one key only
(primary index)
 Sorted = we need to keep the ordering

 If sorted using an artificial key, range queries are not common

 Unsorted – e.g., heap with additional smart structure

 For each query key an index file can be built
→ one primary data file, multiple index files

 Basically corresponds to a standard database table
 One table
 Multiple indexes built over it (possibly of different types)

Primary index

 Index over the attribute based on
which the records in the primary
file are sorted
 Only one

 If the value of the primary attribute
is modified, the file needs to be
reorganised → should be
relatively invariable

 Well-suited for range queries
 There does not have to be a

primary index
 It is desirable to keep it in memory

 Small keys (integer, not string)

Secondary index

 There can be multiple secondary
indexes

 We do not index blocks of the
primary file, but a sorted list of
indexed values (with pointers to
the blocks with the data)

 The bottom level of the index = we
index records, not blocks

 Next levels = we index blocks (with
sorted records)

 Range queries for long ranges
can be very expensive

Block Name Age

0 Brown Kevin 30

Berkman Doloris 18

1 Clinard Stephnie 48

Coolidge Emily 40

2 Duffy Terri 40

Galvin Janice 23

3 Leavy Shirleen 50

Matthew Gigi 51

4 Peagler David 29

Shackelford Elsie 32

5 Walters Rob 48

Primary file

Block Age

6 18

23

29

7 30

32

40

8 …

Bottom level

of index

Block Age

12 18 6

30 7

…

Direct index

 Index is bound directly to records
 Pointers to the primary data file

 Primary file reorganization →
modification of indexing structures

Indirect index

 Contains keys of the data
(which are in the primary
index)

 Not pointers to the primary file

 Accessing a record needs one
more access to the primary
index

 If the primary file is
reorganised, the secondary
indexes stay intact

primary file

primary direct

index

secondary indirect index

secondary direct index

secondary indirect index

A)

B)

C)

D)

• sorted/unsorted

• can be

accessed using

full scan

• if PF is not

sorted, we can

have only

secondary

indexes

 Direct access with one unique key
 Use hash function to map records to pages/blocks addresses
 If the data can not fit into a page/block when inserting, an overflow strategy is employed
 Placement within the page is not specified
 When file is being reorganized, the pages are filled only to, e.g., 80%

 To avoid overflow with next insert
 The value depends on expected insert count

One search key?

Indexed fileSequential access only?

Sequential file Direct access only?

Hashed file Indexed sequential file

YES NO

NO

NOYES

YES

